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Abstract:  We discuss an application of probabilistic inversion techniques to a model of 
campylobacter transmission in chicken processing lines. Such techniques are indicated when we 
wish to quantify a model which is new and perhaps unfamiliar to the expert community. In this 
case there are no measurements for estimating model parameters, and experts are typically 
unable to give a considered judgment. In such cases, experts are asked to quantify their 
uncertainty regarding variables which can be predicted by the model. The experts’ distributions 
(after combination) are then pulled back onto the parameter space of the model, a process 
termed “probabilistic inversion”. This study illustrates two such techniques, Iterative 
Proportional Fitting (IPF) and PARmeter Fitting for Uncertain Models (PARFUM). In addition, 
we illustrate how expert judgement on predicted observable quantities in combination with 
probabilistic inversion may be used for model validation and/or model criticism. 
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1. Introduction 
 
Campylobacter contamination of chicken meat may be responsible for up to 40% of the annual 
100,000 cases of Campylobacter-associated gastroenteritis in The Netherlands, and a similar 
proportion of an estimated 30 deaths. A recent effort to rank various control options for 
Campylobacter contamination of chicken carcasses has led to the development of a 
mathematical model of a typical chicken processing line [14, 16].This model has been 
quantified in an expert judgment study involving 12 experts [15]. Key parameters in the model 
are transfer coefficients from the chickens’ skin and intestines to the processing environment, 
and from the environment back to the chickens’ skin. Experimental data on such transfer 
coefficients is not available, and experts are unable to quantify their uncertainty on the values of 
these coefficients. Hence, the model must be quantified by asking the experts about other 
quantities which, under specific circumstances, can be predicted by the model. These quantities 
typically involve aggregate phenomena with which experts are sufficiently familiar to render a 
judgment. The experts need not endorse  or even know the model.  Their uncertainty 
distributions are combined to form a “decision maker’s” distribution, as described in [15].  The 
problem then arises of “pulling back” the decision maker’s distributions onto the parameter 
space of the model. This is an example of probabilistic inversion and forms the focus of this 
article. Probabilistic inversion is increasingly used in risk and consequence analysis. Recent 
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applications may be found in [9, 10],  for a discussion see [11, 13]. A complete mathematical 
discussion of the techniques employed here is found in [6].  
 
The ‘pull-back’ distribution on model parameters may be pushed through the model to re-
predict the quantities assessed by the decision maker. This provides an opportunity for model 
validation and/or criticism.  If the re-predicted distributions agree with the original decision 
maker’s distributions, then the model provides a suitable vehicle for capturing the decision 
maker’s uncertainty. If these distributions do not agree, then the model is not suitable to 
represent the decision maker’s uncertainty. In this case the model must be re-evaluated and 
possibly revised. For more discussion and examples of this aspect see [10]. The present study 
illustrates this, and thereby underscores  the value of structured expert judgment in model 
criticism, even when the experts are unfamiliar with the model. 
 
This article begins with a brief description of the mathematical model for chicken processing 
lines. A non-technical discussion of probabilistic inversion techniques based in iterative 
algorithms is then given. Finally results with the chicken processing expert data are presented. 
A final section draws conclusions. 
 
 
2. The chicken processing line  
  
A schematic representation of a typical broiler chicken processing line is given in Figure 1.  
 

 
Figure 1 Broiler Chicken Processing line 
 
For campylobacter transmission, the relevant phases are Scalding, defeathering, evisceration, 
washing, and chilling. Two types of scalding processes are considered, namely low and 
intermediate temperature, as two types of chilling, namely air and spray chilling.   Each phase is 
modelled as a physical transport process. A typical phase in the processing line is illustrated in 
figure 2. 
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Figure 2.  A typical phase in the chicken processing model 
 
Nenv represents the number of campylobacter in the physical environment of the chicken in a 
processing phase (expressed in cfu, colony forming units). Next is the number on the exterior of 
the chicken, and Cint is the concentration in the intestines, containing the feces. The transfer 
coefficients are explained in Table 1 below, and depend on the processing phase S.  

aext,S 
 probability per cfu campylobacter on the exterior (skin and feathers) to move from the carcass 

exterior to the environment, per processing stage S.  

benv,S       probability per cfu campylobacter in the environment to move from the environment to the 

carcass exterior, per processing stage S.  

aint,S        probability per cfu campylobacter in the leaking feces to move to the environment, per 

processing stage S. (With corresponding probability 1-aint,S per cfu to mo ve from the interior to 

the exterior of the carcass directly.) 

cenv,S      probability of inactivation or removal per cfu campylobacter in the environment which is not 

transferred to the carcass exterior, per processing stage S.  

wint,S(i) amount of feces (gram) that leaks from carcass i at processing stage S.  

cext,,S      probability of inactivation or removal per cfu campylobacter on the carcass exterior which is not 

transferred to the environment, per processing stage S. 

Table 1. Transfer coefficients for processing phase S 

Line of carcasses 
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Mass balance equations are formulated which say, eg, that the cfu’s at the end of phase S on the 
exterior equals the number at the beginning, minus what is transferred to the environment or 
inactivated/removed entirely, plus what moves onto the exterior during phase S. For more 
detail, see [16]. 
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In equilibrium we have Nenv,S(i) = Nenv,S(i-1), so that: 
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Ideally, we would like to have numerical values for the coefficients in table 1. However, 
experimental data yielding these values are not available. Failing that, we would like to quantify 
the uncertainty in the transfer coefficients. Expert judgment could be applied for this purpose, if 
the experts had detailed knowledge of the interactions in each processing phase. Unfortunately, 
that is not the case.  
 
Experts are however able to quantify their uncertainty regarding the number of cfu’s on a 
broiler in the situations described below taken from the elicitation protocol.:  
 
At the beginning of a new slaughtering day a thinned-flock is slaughtered in a “typical large broiler chicken 
slaughterhouse”. Suppose each chicken of this flock to be infected with Campylobacter, both externally and 
internally. We suppose every chicken to be ext ernally infected with 105 campylobacters per carcass and internally 
with 108 campylobacters per gram of caecal content  at the beginning of each slaughtering stage (a hypothetical 
situation). So at the beginning of scalding, plucking etc., each chicken has this (identical) external and internal 
contamination rate. 
 
Question A1: 
All chickens of the particular flock are passing successively each slaughtering stage. How many campylobacters 
(per carcass) will be found after each of the mentioned stages of the slaughtering process, each time on the first 
chicken of the flock? 
 
Experts respond to these questions, for each phase, by stating the 5, 50 and 95% quantiles of 
their uncertainty distributions. A sample from the elicitation protocol is given in the appendix. 
If distributions on the transfer coefficients in table 1 are given, then a distributions, per 
processing phase, for the elicited variables can be computed from the mass balance equations 
by a Monte Carlo simulation of the following equations (the processing phase S is suppressed in 
the notation): 
 
A1 = 10^5 × (1-aext,) × (1-ca)+10^8 × (1-aint) × wint × (1-ca); 
 
A2 = A1+b × (aext × 10^5 + (aint) × wint  × 10^8)/(b + cenv - b × cenv); 
 
B1 = 10^4 × (1 - aexr - ca + aexr  × ca); 
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B2= B1 + b × aexr  × 10^4/(b + ce - b*ce); 
 
C= (1 – b - ce + b × ce)^99 * b × (aext * 10^5 + (aint) × wint  × 10^8)/(b + cenv - b × cenv ); 
 
W int  =  Wint .                 (1)   
 
The variables A1, A2,… w int are the variables assessed by the experts.   Question A2 is  given 
in the appendix. Questions B1 and B2 are similar to A1 and A2, but refer to a flock in which the 
birds are externally contaminated, but not colonized (internally). Question C asks for the 
infection on the 100th broiler of an uninfected flock which  is processed after an internally and 
externally infected flock. Wint was queried directly. It is included here to indicate that its 
distribution must conform to the decision maker’s quantile assessments. For the first 3 
processing phases, we have 6 equations; for  later phases the intestines are removed and  the 
variable Wint is not defined.  In total we have 39 such equations, counting the alternative 
processes for scalding and chilling1. The number of equations is equal to the number of transfer 
coefficients for the whole line.  
  
Assuming distributions for coefficients on the right hand sides are known, we could sample 
from these distributions and build up distributions for the quantities on the left hand side. These 
quantities are assessed by the experts.  We would like these distributions to comply with the 
quantiles given by the decision maker.  
 
The probabilistic inversion problem may now be expressed as follows: find a joint distribution 
over the transfer coefficients, such that the quantiles of the quantities on left hand sides of the 
above equations agree with the decision maker’s quantiles.  If more than one such joint 
distribution exists, pick the least informative of these. If no such joint distribution exists, pick a 
“best fitting” distribution. 
   
 
3. Probabilistic inversion 
 
Let X and Y  be n- and m-dimensional random vectors, respectively, and let G be a function 
from ℜn to ℜm. We call x ∈ ℜn  an inverse of   y ∈ ℜm

   under G if  G(x) = y. Similarly we call 
X a probabilistic inverse of Y under G if G(X) ~ Y, where “~” means “has the same distribution 
as”.   If {Y | Y ∈ C} is the set of random vectors satisfying constraints C, then we say that X is 
an element of the probabilistic inverse of {Y | Y ∈ C} under G if G(X)∈ C.  Equivalently, and 
more conveniently, if the distribution of Y is partially specified, then we say that X is a 
probabilistic inverse of Y under G if G(X) satisfies the partial specification of Y.  In the current 
context, the transfer coefficients in table 1 play the role of X, and the left hand sides of 
equations (1) play the role of Y. That is: 
 
Y = (A1,1, A2,1, B1, B2, C1, Wint,1,  A1,2.…..B2,5, ….C5);  ( 39 components in total) . 
 
The joint distribution of these variables is partially specified by the decision maker, namely by 
given 5, 50 and 95% quantiles. The right hand sides of (1) constitute the function G.   
 
If the function G could be inverted analytically, then it would be a simple matter to compute X 
as G-1(Y). Of course this is generally not possible, and we must devise other ways to find  X.  A 
                                                                 
1 The decision maker considered variable C for washing degenerate, i.e. zero with probability 1. Removing this 
would give 38 equations. 
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number of approaches could be considered. A thorough discussion of this problem is found in 
[6], and a shorter discussion in [13].  By far most satisfactory to date are techniques based on 
sample re-weighting, and these have been applied  to the chicken line model.  
 
The strategy for sample re-weighting can be described informally as follows. We first choose an 
initial distribution for X, that is, for the transfer coefficients. This distribution must be chosen 
such that, when we sample it a large number of times and compute Y via (1), some samples fall 
within each interquantile interval for each variable in Y, and all samples are physically possible.  
The choice of initial distribution is not further constrained, but it should cover the range of 
realistic values.  We take N samples from X and compute N  samples for Y, yielding N  samples 
for (X,Y). When drawn from the initial distribution, each of the N samples has probability 1/N .  
We now wish to re-weight these N samples such that, if we re-sample this distribution, drawing 
each sample (with replacement) with probability given by its weight, then the quantile 
constraints on Y are satisfied in the re-sampled distribution.  
 
There are various strategies for finding the weights [6]; we give an informal description of two 
strategies, namely Iterative Proportional Fitting (IPF) and PARameter Fitting for Uncertain 
Models (PARFUM). These involve iteratively re-adjusting an initial set of weights so as to 
satisfy the constraints. For convenience, we describe this for one processing phase with 6 
elicitation variables (Y is restricted to 6 components). Each elicitation variable has 4 
interquantile intervals, and the weighted sum of samples falling in each such interval must 
satisfy the corresponding quantile constraints. Thus, the sum of the weights of all samples in 
which A1 falls beneath the decision maker’s 5% quantile for variable A1 should be 5%, etc. 
 
Since each sample contains a value for (A1, A2, B1, B2, C, Wint),  and  each component falls in 
one of 4 interquantile intervals, we may represent this sample as a 6-vector of components, each 
component taking values in {1, 2, 3, 4}.  There are 46 = 4096 possible vectors of this type, and 
we may think of each such vector as an interquantile  cell containing a number of samples. Not 
all cells will be physically possible. It is easy to see from (1) that A1 = A2,  and B1 = B2.  Thus, if 
the 50% quantile for A1 is above the 5%  quantile for A2, then it is impossible that A1 could be 
above its median while A2 is below its 5% quantile. Fortunately it is not necessary to figure out 
which combinations of interquantile intervals are feasible; sampling X and computing Y via (1) 
does that automatically. It is well to realize, however, that a large number of mathematically 
possible interquantile cells may actually be unfeasible under the function G. In a typical 
example for a processing phase, we would draw 65,000 samples and find that 150 – 300 of the 
4096 interquantile cells were occupied. The weight assigned to each interquantile cell is simply 
the total weight of the samples falling in that cell.  In our iterative algorithms, two samples 
falling in the same cell will be treated in the same way; therefore we can restrict our problem to 
that of finding weights for the non-empty interquantile cells. When these weights are found, we 
just distribute the cell weight uniformly over the samples in the cell to get the sample weights. 
 
Rather than describe the IPF and PARFUM algorithms formally, it is appropriate here simply to 
illustrate them on a simple example and report the relevant mathematical facts. Details can be  
retrieved from the cited literature. For purposes of illustration, we consider only 2 elicitation 
variables, each with 4 interquantile intervals corresponding to the 5, 50 and 95% quantiles. The 
interquantile cells can be represented as a 4 × 4 matrix; where, for example,  a sample is said to 
fall in cell (3,2) if it is between the 50 and 95% quantiles for variable 1 and between the 5 and 
50% quantiles for variable 2. 
 



 7 

We start with an initial distribution over X and generate an initial distribution over the 
interquantile cells, which we represent in Table 2. Note that 6 cells are empty. The marginals 
are shown in boldface. 
 
 

0.1966 0.0006 0 0 0.1972 
0.0407 0.1642 0.005 0 0.2099 

0 0.0094 0.1196 0.0155 0.1445 
0 0 0.0008 0.4476 0.4484 

0.2373 0.1742 0.1254 0.4631  
 
Table 2.  Initial distribution over interquantile cells. 
 
The problem is now to adjust the non-empty cells in table 2 such that the margins equal 0.05, 
0.45, 0.45, 0.05; which are the probabilities associated with the decision maker’s interquantile 
intervals. 
 
The IPF algorithm was introduced by [12] and rediscovered by [5]. Its convergence properties 
were studied by many, including  [7, 3]. Simply stated, we first multiply each row by constant, 
so that the column sums agree with the target. For the first row this constant is target / row sum 
=0.05 / (0.1966+0.0006) . Then we multiply each column by the constant (target / column sum) 
to make the column sums agree with the target, then again the rows are multiplied by a 
constant, etc. Figure 4 illustrates the procedure. The target margins are shown by the starting 
distribution. This is first adapted to fit the row sums, leaving the column sums unfit. Then the 
first adaptation is adapted to fit the column sums, thereby unfitting the row sums.  Then the row 
sums are fit again, then the columns, etc.  
 
Csiszar [3] showed that this algorithm converges if  there is a distribution whose non-zero cells 
are a subset of the non-zero cells of the initial distribution which satisfies the target margins. In 
that case IPF converges to the distribution which has minimum information relative to the 
starting distribution, in the set of distributions with the target margins. This distribution may 
have zero’s in cells where the starting distribution is non-zero. The result holds for arbitrary 
finite dimensions, and arbitrary finite numbers of cells per dimension. The target marginal 
distributions need not be the same on each dimension.  
 
It is evident that the criterion for convergence becomes more difficult to satisfy as the number 
of zero’s increases. When the criterion is not met the probabilistic inversion problem is 
infeasible and IPF need not converge. In otherwords, there is no distribution  over the non-zero 
cells in the starting matrix which has the target margins.  In the case of two dimensions, it is 
known that IPF oscillates between 2 distributions, in case of non convergence [4]. Nothing is 
known  about the behavior of  IPF in higher dimensions when the condition for convergence is 
not satisfied. 
 
The PARFUM algorithm [1, 6] differs from IPF in the following way. Instead of first fitting the 
row sums, then the column sums, then again the row sums, etc; PARFUM successively 
averages the row and column sum fits. It is schematized in Figure 4: 
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Figure 3. Iterative proportional fitting  
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0.026 0.025418 0.000105 0 0 

0.496 0.024582 0.437309 0.03453402   

0.46 0 0.012586 0.41528651 0.031821 

0.018 0 0 0.00017947 0.018179 
     

 

  
   ? 

Column sums fit     
 
 

 

 0.098181 0.383265 0.38145026  0.137104 

0.05 0.049911 8.92E-05 0 0 

0.45 0.04827 0.372457 0.02927336 0 
0.45 0 0.010719 0.35202477 0.087256 

0.05 0 0 0.00015213 0.049848  

WANT 0.05 0.45 0.45 

0.05 0.4476 0.0008 0 

0.45 0.0155 0.1196 0.0094 
0.45 0 0.005 0.1642 

0.05 0 0 0.0006 
   start 

Row sums fit 
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 Figure 4. The PARFUM algorithm 
 
The stationary points of the PARFUM algorithm minimize the following functional: 
 
F(P) = I(Prow fit | P) + I(Pcolumn fit | P); 
 
relative to the starting distribution. Here, I(Q | P) denotes the relative information of Q with 
respect to P. The function F decreases on each PARFUM iteration and converges to a 
minimum. If P is a solution, that is, if P’s row- and column fits agree with the target, then  
Prow fit = P =  Pcolumn fit , so that F(P) = 0.  Most importantly, if the problem is feasible, then 
PARFUM  converges to a P with F(P) = 0, that is, it converges to a solution [6]. If the problem 
is not feasible, PARFUM's stationary points realize the minimum value of F. In practice 
PARFUM is observed to converge in this case also, and an example in which PARFUM 
actually oscillates between distinct stationary points realizing the same value of F has not yet 
been found.  
 
In practical experience, IPF is faster than PARFUM, but both are quite fast on modern 
platforms and easy to implement. If the problem is feasible then IPF is generally preferred. If 
infeasible, then IPF tends to distribute the lack of fit quite unevenly and tends to concentrate 
weight on a small number of samples. In such cases PARFUM often gives better results. Of 
course, if IPF does not cycle, we have no way of knowing on a finite number of iterations 
whether it is converging. Appeal to common sense is appropriate.  
 

 0.07409 0.416633 0.41572513 0.093552 
  0.05 0.45 0.45 0.05 

 
?  

 

0.051 0.049119 0.00148 0 0 
0.453 0.024972 0.400822 0.0267779 0 

0.45 0 0.014331 0.3880962 0.047916 

0.046 0 0 0.00085104 0.045636  

0.051197 0.048326 0.002871 0 0 
0.455143 0.001674 0.429187 0.024282 0 

0.450686 0 0.017943 0.424168 0.008576 

0.042974 0 0 0.00155 0.041424 

 Average Row + Column fits      Column sums fit 
  ?      

 WANT 0.05 0.45 0.45 0.05 

 0.05 0.4476 0.0008 0 0 

 0.45 0.0155 0.1196 0.0094 0 
0.45 0 0.005 0.1642 0.0407 

 0.098181 0.383265 0.38145026 0.137104 

0.05 0.049911 8.92E-05 0 0 

0.45 0.04827 0.372457 0.02927336 0 
0.45 0 0.010719 0.35202477 0.087256 

0.05 0 0 0.00015213 0.049848  0.05 0 0 0.0006 0.1966 

   Row sums fit      start 
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These algorithms have several advantages relative to other methods. First, they are ‘dumb’ in 
the sense that they do not require intelligent steering.  Second they avoid computationally 
expensive matrix manipulations, but simply loop repeatedly through the interquantile cells.  
Finally, since rows and columns are altered one at a time, the whole sample need not be stored 
in memory, and there is effectively no limit on the size of problems which can be tackled. There 
are disadvantages as well. Most significantly, it is impossible in practice to know if IPF is 
converging without verifying the condition for convergence, and this is just as hard as finding 
the solution. PARFUM has a distinct advantage in this regard.  In case of infeasibility neither 
algorithm yields information on how the original sample might be extended to yield better 
solutions.  
 
Results 
 
The results with the model described above yielded a very poor fit between the re-predicted and 
decision maker distributions for some variables.  Table 3 shows the results for defeathering. 
Especially bad fits are circled. 
 
 

  DEFEATHERING 
elicitation quantile PARFUM IPF 
variable 5% 0.053 0.014 

A1 50% 0.424 0.175 
 95% 0.871 0.719 
 5% 0.030 0.033 

A2 50% 0.256 0.151 
 95% 0.543 0.654 

 5% 0.053 0.014 
B1 50% 0.424 0.175 

 95% 0.871 0.719 
 5% 0.370 0.357 

B2 50% 0.736 0.921 
 95% 0.972 0.993 
 5% 0.184 0.158 

C 50% 0.501 0.702 
 95% 0.839 0.969 
 5% 0.133 0.050 

Wint 50% 0.606 0.500 
 95% 0.972 0.950 

Table 3  Re-predicted results of probabilistic inversion defeathering, showing the proportion of 
samples falling below the corresponding quantile. 
   
 
Inspection of the experts rationales revealed that the experts distinguished transfer mechanisms 
from the exterior to the environment. Campylobactor in the pores of  the skin would be difficult 
to remove, but on the feathers or skin surface they would come off more easily. It therefore 
makes a difference whether the birds have been contaminated during transport only (giving rise 
to only contamination of the exterior) or at the farm (resulting in intestinal colonization and 
contamination on the exterior. These two different situations had been the starting point of 
questions A and B. The processing model was therefore altered to include this second transport 
pathway, as shown in Figure 5. The coefficient aext is replaced by two coefficients, axa and axb. 
The equations for the elicited quantities now become: 
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A1 = 10^5 × (1-axa,) × (1-ca)+10^8 × (1-aint) × wint × (1-ca); 
 
A2 = A1+b × (axa × 10^5 + (aint) × wint  × 10^8)/(b + cenv - b × cenv ); 
 
B1 = 10^4 × (1-axb-ca+axb × ca); 
 
B2= B1 + b × ax b × 10^4/(b + ce – b × ce); 
 
C= (1 – b - ce + b × ce)^99 × b × (axa × 10^5 + (aint) × wint  × 10^8)/(b + cenv - b × cenv ); 
 
W int  =  Wint .          (2) 
 
 [Note that parameter symbols are not identical throughout the text, like ca=cext etc. 
    

General model (2)

Nenv Next

c env

aextA

b

c a

C int

a int wint

(1-a int) w int

ChickenEnvironment

Feces

aextB

Transport 
from skin

transport from 
feathers

 
Figure 5.  Processing model with additional transport pathway. 
[from skin is tightly attached (/), from feathers = loosely attached]. 
 
With the second model, the probabilistic inversion yielded better fits, as shown in Table 4 (this 
is due to better agreement with the experts’ mental model, and to the fact that there is now an 
extra transfer coefficient). 
 

  Scalding low 
Scalding 
Intermediate Defeathering 

 Quantile IPF PARFUM IPF PARFUM IPF PARFUM 
variable 0.05 0.05 0.05 0.04 0.04 0.02 0.05 

A_1 0.5 0.50 0.53 0.42 0.45 0.78 0.49 
 0.95 0.95 0.95 0.81 0.86 0.97 0.94 

variable 0.05 0.05 0.04 0.07 0.07 0.00 0.04 
A_2 0.5 0.50 0.41 0.70 0.65 0.14 0.38 

 0.95 0.95 0.93 0.95 0.97 0.91 0.72 
variable 0.05 0.05 0.05 0.05 0.05 0.02 0.04 

B_1 0.5 0.50 0.50 0.50 0.50 0.20 0.36 
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 0.95 0.95 0.95 0.95 0.95 0.39 0.70 
variable 0.05 0.05 0.05 0.05 0.05 0.25 0.29 

B_2 0.5 0.50 0.50 0.50 0.50 0.43 0.64 
 0.95 0.95 0.95 0.95 0.95 0.93 0.96 

variable 0.05 0.05 0.08 0.05 0.05 0.01 0.08 
C_1 0.5 0.50 0.54 0.58 0.46 0.44 0.51 

 0.95 0.95 0.96 0.94 0.88 0.99 0.94 
variable 0.05 0.05 0.06 0.05 0.05 0.05 0.13 

Wint 0.5 0.50 0.54 0.50 0.48 0.50 0.55 
 0.95 0.95 0.96 0.95 0.91 0.95 0.96 

Table 4a Re-predictions with Model(2) 
 
 

  Evisceration Washing Cooling air Cooling spray 
 Quantile IPF PARFUM IPF PARFUM IPF PARFUM IPF PARFUM 
variable 0.05 0.05 0.05 0.05 0.05 0.00 0.04 0.05 0.05 

A_1 0.5 0.50 0.51 0.50 0.51 0.05 0.39 0.53 0.50 
 0.95 0.95 0.95 0.95 0.95 0.95 0.96 1.00 0.98 

variable 0.05 0.05 0.05 0.05 0.05 0.05 0.39 0.05 0.06 
A_2 0.5 0.50 0.49 0.50 0.49 0.50 0.67 0.50 0.51 

 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.94 
variable 0.05 0.05 0.05 0.05 0.05 0.01 0.04 0.05 0.06 

B_1 0.5 0.50 0.50 0.51 0.51 0.05 0.39 0.53 0.54 
 0.95 0.95 0.95 0.95 0.95 0.91 0.94 1.00 0.98 

variable 0.05 0.05 0.05 0.05 0.05 0.00 0.04 0.05 0.04 
B_2 0.5 0.50 0.50 0.50 0.49 0.05 0.39 0.50 0.44 

 0.95 0.95 0.95 0.95 0.95 0.90 0.93 0.95 0.92 
variable 0.05 0.05 0.05 * * 0.05 0.05 0.05 0.05 

C_1 0.5 0.50 0.50 * * 0.50 0.50 0.50 0.49 
 0.95 0.95 0.95 * * 0.95 0.95 0.95 0.93 

variable 0.05 0.05 0.05 ** ** ** ** ** ** 
Wint 0.5 0.50 0.50 ** ** ** ** ** ** 

 0.95 0.95 0.95 ** ** ** ** ** ** 
Table 4b Re-predictions with Model(2), continued. * = degenerate distribution, ** = not 
present in this phase. 
 
The bold values indicate the solution chosen. We see that the PARFUM solution was chosen in 
3 of the seven cases. There is still lack of fit, in particular for defeathering and cooling air. 
However, overall, the model revision has produced a better fit. It is a truism that no model is 
fully adequate to reality. Information regarding the degree and locus of misfit is extremely 
valuable. The methods discussed here provide such information. The alternative is to search for 
compliant experts who will assess model parameters directly (and often anonymously); this 
cannot lead to model improvement.  
 
 
4. Conclusions  
 
In risk modelling, we must frequently employ expert judgment to assess model parameters 
which are not directly observable, and about which experimental evidence is lacking. The 
model under consideration may be new and even unknown to the experts. In such situations it is 
impossible to query experts directly about parameters in the model. We can ask experts about 



 13 

quantities predicted by the model with which they have some experience and some feeling. The 
problem then arises, how we should pull the experts’ uncertainty distributions on the query 
variables back onto the parameters of the model. This problem is termed probabilistic inversion. 
Iterative sample re-weighting methods are available to solve such problems, as illustrated in the 
model of chicken processing lines. IPF and PARFUM are easy to implement and have a  
theoretical foundation. They provide useful tools for the practicing risk modeller.  
 
The present study illustrates a fruitful interaction between the modellers and the experts. The 
first model discussed above lacked an important transfer mechanism, and this caused a serious 
lack of fit between the experts’ distributions and the re-predicted distributions emerging after 
probabilistic inversion. Studying the experts’ rationales led to a revision of the model and a 
good fit between the experts’ and the re-predicted distributions. 
 
 
 
Appendix: Sample of Elicitation protocol  
 
The assumptions in short: 
 
§ 'Typical large broiler chicken slaughterhouse” in the Netherlands.  
§ Average day of the year (all seasons). 
§ At the beginning of the new slaughtering day Campylobacter is absent in the slaughterhouse. 
§ All machines are functioning well. 
§ Thinned-flocks of 10,000 chickens each. 
§ The chickens of the flocks are uniform in size and weight. 
§ The broiler-house might have been clean (dry) or dirty (wet). 
§ Time of fasting is 6 hours, travelling time 3 á 4 hours and waiting time is ca. 2 hours. 
§ In the scalding tank the principle of counter current is used.  
§ Low scalding temperature is 50-52 ºC and intermediate scalding temperature is 55-56 ºC. 
 
 
Part A – A positive flock 
 
 
At the beginning of a new slaughtering day a thinned-flock is slaughtered in a “typical large broiler chicken 
slaughterhouse”. Suppose each chicken of this flock to be infected with Campylobacter, both externally and 
internally. We suppose every chicken to be externally infected with 105 campylobacters per carcass and internally 
with 108 campylobacters per gram of coecal content  at the beginning of each slaughtering stage (a hypothetical 
situation). So at the beginning of scalding, plucking etc., each chicken has this (identical) external and internal 
contamination rate. 
 
 
Question A1 
 
 
All chickens of the particular flock are passing successively each slaughtering stage. How many campylobacters 
(per carcass) will be found after each of the mentioned stages of the slaughtering process, each time on the first 
chicken of the flock? 
  
 
 
Number of campylobacters (per carcass) on the first chicken of the flock after/at the 
end of each slaughtering stage.  
Slaughtering stage 5th  50th 95th 
1. Scalding    
§ Low    
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§ Intermediate    
2. Plucking    
3. Evisceration    
4. Washing    
5. Chilling    
§ Complete air-chilling     
§ Spray-chilling    

 
Question A2 
 
All chickens of the particular flock are passing successively each slaughtering stage. How many campylobacters 
(per carcass) are found after each of the mentioned slaughtering stages, each time on the last chicken of this flock?  
 

Number of campylobacters (per carcass) on the final chicken of the flock after/at the end of each 
slaughtering stage. 
Slaughtering stage 5th  50th 95th 
1. Scalding    
§ Low    
§ Intermediate    

2. Plucking    
3. Evisceration    
4. Washing    
5. Chilling    
§ Complete air-chilling     
§ Spray-chilling    

 
 
 
Part B – An externally infected flock 
 
 
At the beginning of a new slaughtering day a thinned-flock is slaughtered in a typical large broiler chicken 
slaughterhouse in the Netherlands. Suppose every chicken of this flock to be externally infected with 
Campylobacter. Internally all chickens are free from Campylobacter. Suppose each chicken to have an external 
infection with 104 campylobacters per carcass at the beginning of each slaughtering stage (a hypothetical situation). 
So, at the beginning of scalding, plucking etc. each chicken has this (identical) external contamination rate. 
 
Question B1 
 
All chickens of the particular flock are passing successively each slaughtering stage. How many campylobacters 
(per carcass) are found after each of the mentioned slaughtering stages, each time on the first chicken of this flock?  
 

Number of campylobacters (per carcass) on the first chicken of the flock after/at the end of each 
slaughtering stage.  
Slaughtering stage  5th  50th 95th 
1. Scalding    
§ Low    
§ Intermediate    

2. Plucking    
3. Evisceration    
4. Washing    
5. Chilling    
§ Complete air-chilling     
§ Spray-chilling    

Question B2 
 
 
All chickens of the particular flock are passing successively each slaughtering stage. How many campylobacters 
(per carcass) are found after each of the mentioned slaughtering stages, each time on the last chicken of this flock?  
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Number of campylobacters (per carcass) on the last chicken of the flock after/at the end of each 
slaughtering stage. 
Slaughtering stage 5th  50th 95th 
1. Scalding    
§ Low    
§ Intermediate    

2. Plucking    
3. Evisceration    
4. Washing    
5. Chilling    
§ Complete air-chilling     
§ Spray-chilling    
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