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Probabilistic Inversion in Priority Setting

of Emerging Zoonoses

Dorota Kurowicka,!>* Catalin Bucura,! Roger Cooke,"? and Arie Havelaar®

This article presents methodology of applying probabilistic inversion in combination with ex-
pert judgment in priority setting problem. Experts rank scenarios according to severity. A
linear multi-criteria analysis model underlying the expert preferences is posited. Using prob-
abilistic inversion, a distribution over attribute weights is found that optimally reproduces the
expert rankings. This model is validated in three ways. First, consistency of expert rankings is
checked, second, a complete model fitted using all expert data is found to adequately repro-
duce observed expert rankings, and third, the model is fitted to subsets of the expert data and
used to predict rankings in out-of-sample expert data.
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1. INTRODUCTION

Diseases that are naturally transmitted from
warm-blooded animals to humans are called
zoonoses. In Europe zoonoses originating from
wildlife sources and transmitted by arthropods are
considered to become increasingly important in
the future. Climate and ecological changes may
favor already existing arthropods to expand to other
regions and thus new pathogens could be introduced
in Europe. In 2007, the Dutch National Institute of
Public Health and Environment (RIVM), together
with several other research institutes, started a joint
effort to monitor zoonoses and zoonotic agents in
the Netherlands. One of the aims of this project is
to build a model that allows prioritization of existing
as well as emerging zoonoses in terms of their future
threat. In this article we discuss analytic techniques
used in building the model.
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Priority setting is a multi-dimensional problem,
in which technical information is often intertwined
with value judgments. Several priority setting proce-
dures have been used and described. Traditionally,
a priority setting procedure entails asking a limited
number of experts to reach consensus. An example
of this approach in the domain of emerging zoonoses
has been published in Reference 1.() Its method is
relatively straightforward, but not very transparent
and the repeatability is low. Currently, semi-quantive
methods are frequently used in which criteria are
divided into a limited number of classes (e.g., low,
medium, and high). Criteria may also be scored on
arbitrary scales (e.g.,0, 1,...,5) and scores for all cri-
teria are aggregated to produce an overall score. An
example of this approach was published in Reference
2. Here, the transparency and the repeatability is im-
proved, but the classes are chosen rather arbitrarly.
Linear relations between the different classes of cri-
teria or between criteria are often assumed but not
founded in data. For this project, we aim at develop-
ing quantitative methods using natural numbers in-
stead of arbitrary numbers. These methods are more
transparant, objective, and can form the basis of fu-
ture knowledge management systems.
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The quantitative method is based on the well-
established multi-criteria analysis (MCA) method.
This method has been used in many decision-
making contexts including animal health.®® MCA of-
fers methods and techniques to structure complex
decision making. Generally, MCA consists of the fol-
lowing five phases:

(A) List and structure appropriate criteria (as-
pects of risk) to assess pathogens.

(B) Evaluate pathogens on the selected criteria.

(C) Determine the relative importance (weight)
of each of criterion.

(D) Aggregate the scores and weights of the crite-
ria into one overall value per pathogens.

(E) Perform sensitivity analysis.

This article will present a preliminary approach
to phase A, and will focus on new mathematical tech-
niques to address phase C. The results of phases B,
D, and E will be reported elsewhere. The basic tech-
niques applied here were also used in a study of ma-
rine ecosystem threats.*)
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Based on discussions between institutions partic-
ipating in the project a prototype model with nine
characteristics was chosen to capture the most rel-
evant aspects of risk of a pathogen. These char-
acteristics, which we call attributes, are given in
Table 1. Attributes should be measurable quantities
that can be described on a monotonic scale. They
have to be carefully and clearly defined. Each at-
tribute has four or five levels, each associated with
a value. We should be able to calculate or estimate
these values for all pathogens. Lower numerical val-
ues of attributes correspond to the less threatening
cases.

We stress that these attributes are only prelimi-
nary (full description will be published in elsewhere).

The attributes are expressed in different units.
We therefore need to transform them to a monotonic
scale on [0,1]. For attributes 2, 3, 5, and 8 we first used
logarithmic transformation and then all attributes
were scaled linearly such that the most threatening
level took value 1.

The model has to combine values of all attributes
for a pathogen in a numerical score that will be used

Table I. Attributes of the Model

(4) Probability of
Transmission from
Animal to Human

(1) Probability of (2) Speed of Spread (3) Economic Damage (in Fraction of Human (5) Speed of Spread
Introduction in NL Between Animals Animals (in Million to Animal Contact Between Humans
(in %) (in days) of €) Insuring Infection) (in Days)
1. 0 1. 10000 (no 1. 5 1. 1:10,000 1. 10,000
spread)
2. 0.5 2. 30 2. 50 2. 1:1,000 2. 30
3. 5 3. 10 3. 500 3. 1:100 3. 10
4. 50 4. 3 4. 5,000 4. 1:10 4. 3
5. 100
(6) Severity of Illness,
Morbidity
(Calculated as a (7) Chance of Dying, (8) Economic Damage (9) Risk Perception (in
Product of Disability Mortality in Human Humans (in Million Number of Subjective Subjective Aspects
Weight and Duration) Population (in%) of €) Aspects that Apply) Considered in 9)
1. 0.02 1. 0 1. 5 1. 0 M Involuntary exposure
2. 0.06 2. 0.5 2. 50 2. 2 M Inequity (who profits)
3. 0.2 3. 5 3. 500 3. 4 B Cannot be avoided
4. 0.6 4. 50 4. 5000 4. 6 through personal
5. 100 behavior
B Unknown and

unnatural risk

M Hidden, postponed,
and irreversible
damage

M Identification with
victims (e.g., children)
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Table II. Scenarios in Group 1, Showing Levels and Values
Attributes
1 2 3 4 5 6 7 8 9
S1 4 50 3 10 3 500 3 1/100 3 10 3 0.2 4 50 3 500 3 4
\Y) 3 5 2 30 3 500 4 1/10 4 3 3 0.2 3 5 2 50 4 6
S3 4 50 3 10 1 5 3 1/100 4 3 3 0.2 4 50 1 5 4 6
Sy 4 50 4 3 4 5,000 4 1/10 3 10 2 0.06 3 5 2 50 1 0
Ss 4 50 1 10,000 3 500 2 1/1,000 4 3 4 0.6 3 5 3 500 2 2
Se 2 0.5 2 30 4 5,000 3 1/100 3 10 3 0.2 4 50 2 50 4 6
S7 3 5 3 10 2 50 3 1/100 4 3 3 0.2 4 50 2 50 3 4
The values have physical dimension as given in Table I.
Table III. Experts’ Assessments for Group 1
EXPERTS
SCENARIOS 1 2 3 - 5 ] 7 8 o 10 11
1] Q1) JR. WL ZC ZC WL ZC VG VG JR ZC Zc
2 VG VG | v PN~ VG TR VG 4 PX ZC ZC VG o PX~ VG
3 GF P - ZC = PX, VG ZC R TR R ZC JR [ PX
i = Ql. | VG GF_§ WL ® /] G |\ GF WL WL VG R
5] ZC o JR PX-—4+PX/ | VG | YPX-—+PX—+PX WL WL
& WL GF QI ] WL v W —» QT —» QF | WL v Q — QF GF GF
1 C XD WL F | Q- GF F WL [*Q1 -1 GF GE | "qi—+ QI

to prioritize threat of all existing as well as emerging
pathogens.

Severity scores are not observable, thus the idea
emerged to elicit orderings of certain scenarios in
terms of severity from experts. These scenarios do
not describe any particular pathogen; they are ran-
dom combinations of levels of each attribute. For
our problem we have generated randomly 30 differ-
ent scenarios reflecting hypothetical zoonoses. They
were generated such that none of them “majorizes”
the others, that is, there is no scenario whose at-
tributes’ values are greater or equal to the values of
some other scenario. Randomly choosing scenarios
avoids selection bias for the 30 scenarios.

The total set of scenarios was divided into six
groups, each group consisting of seven scenarios.
Scenarios in first groups are in general more se-
vere then in last groups. In Table II, seven sce-
narios from group 1 are shown. Scenarios overlap
between groups. In the first five groups the last two
scenarios were repeated as first ones in the consecu-
tive group. The last group contained the last four sce-
narios from group 5. This design was chosen for two
reasons: first, the task of ordering 35 scenarios was
judged to be cognitively too burdensome, and sec-

ond, overlapping the scenarios enables consistency
checks.

In the next section, we discuss elicitation of or-
derings for six groups of scenarios. Later these or-
derings will be used to find a model of scores for
pathogens.

2. EXPERTS’ DATA

Eleven experts participated in the elicitation.
Prior to the elicitation the purpose of the study as
well as the procedure was explained. Attributes and
scenarios were explained. Each scenario was written
on a card. Different groups of scenarios were dis-
tinguished by different colored cards. Experts were
asked to arrange the cards from each of the six groups
in increasing order of severity. Experts’ assessments
for the scenarios in the first group presented in
Table II are shown in Table III. We see that the first
scenario, called QJ, is ranked fourth by expert 1, sixth
by expert 2, and seventh by expert 3. Overall, we
see that experts considered QJ as very severe, much
more severe than, for example, the seventh scenario,
called PX.
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Table IV. Summary of Experts’ Assessments for Groups 1,
2,and 3

Scores Ist 2nd 3rd 4th 5th  6th 7th

Groupl §; 68 1 6 4
S, 28 2 5 1 2 1
S3 65 3 3 5
Sy 34 2 1 4 2 2
Ss 23 5 2 3 1
Se 50 2 3 2 2 2
S7 40 3 3 5
Group2 S¢ 34 2 4 1 1 1
S7 40 1 3 1 6
Sg 32 3 2 1
Sy 62 1 1 1 5 3
S0 64 1 2 1 7
S 42 1 1 1 5 2 1
S, 34 3 2 2 1 1 2
Group3 S; 53 1 1 2 3 3 1
S 17 10 1
S13 55 2 1 1 2 1 4
S14 46 4 3 2
S5 38 1 2 2 4 1 1
Si6 56 2 1 1 2 5
S17 43 4 2 1 4

Table V. Summary of Experts’ Assessments for Groups 4, 5,
and 6

Scores Ist 2nd 3rd 4th 5th  6th 7th

Group4 S 33 3 2 3 1 2
S17 40 5 5 1
S1g 49 3 1 4 2 1
S19 47 1 3 2 3 2
Sy 67 2 2 7
Sy 53 1 2 1 6 1
S» 20 6 4 1
Group5 Sp; 60 2 2 1 6
S» 33 3 3 1 2 1 1
Sy 55 1 1 1 1 6 1
Sy 38 2 5 2 1 1
S»s 32 4 2 1 1 2 1
Sy 45 3 2 2 1 1 2
Sy; 45 1 2 3 4 1
Group6  Sy4 36 2 2 3 2 1 1
S 35 4 2 1 3 1
Sy 49 1 3 2 1 4
Sy 47 2 1 2 3 1 2
Sys 45 2 2 3 2 1 1
Sy 56 2 1 2 6
Sy 40 2 3 2 1 3

Experts’ rankings for each group are sum-
marized in Tables IV and V. The first scenario
was ranked fourth by one expert (compare with
Table III). Six experts ranked this scenario sixth and
four experts ranked it seventh. The third column of
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Table VI. Values of S for Each Group

Group1 Group2 Group3 Group4 Group5 Group6

S 1,866 1,088 1,116 1356 680 340

these tables (denoted as “scores”) shows the rank
score of each scenario obtained by multiplying the
number of experts who ranked scenario i as jth by its
rank order, thus j. The rank score of the first scenario
is68 (1 x4+6x6+4x7=068).

Two different analyses of experts’ orderings
were performed. We first checked if experts were
consistent when ordering repeated scenarios in dif-
ferent groups. Only one expert was consistent in
all his/her assessments. One expert changed order-
ings of repeated scenarios in all groups. The oth-
ers performed “reasonably,” producing only one or
two inconsistencies. Second, we have investigated if
experts’ orderings were given at random. The coef-
ficient of concordance has been used for this pur-
pose.(®) The hypothesis of giving orderings at ran-
dom is tested by calculating the sum mean square
difference (S) between the expert-wise average rank
of a scenario and the overall average rank. For com-
pleteness we show in Table VI values of S for each
group. Large S values are significant, and the hypoth-
esis of random orderings would be rejected at the 5%
level when S = 630. The hypothesis of random order-
ings is rejected for all groups except group 6. How-
ever, the agreement for group 5 is near the rejection
threshold. We interpret this to mean that the ability
to discriminate severity of scenarios drops off as the
scenarios become less severe.

Because we cannot reject the hypothesis that or-
derings in group 6 are given at random, we have re-
moved group 6 from our analysis.

3. MODEL

Given information provided by experts we must
find a model that will satisfy experts’ assessments. We
opted for the simplest possible model satisfying re-
quirements, the linear model. Failure of the linear
model to provide an adequate fit would motivate a
search for more complicated models. We define the
score of each scenario as a linear combination of at-
tributes’ values:

9
siZZB,»X,,» i=1,...,30, 1)
j=1
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where Xj; is a value of jth attribute in ith scenario.
Bjs are parameters of this model and they have to be
found such that experts’ constraints given in tables in
Tables IV and V are satisfied. In particular, we regard
each expert as having his/her own vector (Bj...By)
of coefficients, and hence we regard the population
of experts as a distribution over possible values for
(B 1. .Bg).

Probabilistic inversion based on samples
reweighting was employed to find a distribution over
(Bi...By) that optimally reproduces the expert data.
That is, by sampling from the optimal distribution
over (Bj...By), we should find that the percentage
of experts who rank S; > §; agrees with the data in
Tables IV and V. In the next section, we explain
this technique only on a simple example. For more
information, including mathematical formulation,
proofs, and applications, we refer the reader to
References 7 and 8.

4. PROBABILISTIC INVERSION VIA SAMPLE
REWEIGHTING

Suppose we have two independent, uniformly
distributed random variables X; and X5. Since they
are independent, the probability of X; being bigger
than X is 0.5. The scatter plot with 10,000 samples
of X; and X; in case of independence is shown in
Fig. 1 (left). If we decide to impose the constraint
P(X; > X;,) = 0.8 we must change the joint distribu-
tion of X and X». For this purpose the probabilistic
inversion based on samples reweighting can be used.
We apply an iterative proportional fitting (IPF) algo-
rithm to find new weights for samples such that after
reweighting the constraint will be satisfied. Samples
for which X; > X, will get a bigger weight. Instead
of 1/10,000 their weight will be 0.8/(0.5 x 10,000) and
after resampling we will see more mass concentrated

w2
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in the bottom right corner of the unit square; see
Fig. 1 (middle). For only one constraint it is easy
to see how weights have to change. In case more
constraints have to be imposed IPF will change
weights iteratively satisfying one constraint at a time.
Csiszar® proves that IPF converges to a solution if
the problem is feasible, that is, when a solution ex-
ists. Moreover, the limit is the minimally informative
distribution satisfying the constraints, relative to the
starting distribution. Fig. 1 (right) shows the scatter
plot of the distribution obtained with IPF when two
constraints were imposed, namely, P(X; > X,) =0.8
and P(X; > 1 - X,) = 0.8. We see now more mass
concentrated in the top right corner as well as the
bottom right corner of the unit square.

5. ANALYSIS

We begin by analyzing each group separately
and then combine groups 1-5. Combining all sce-
narios using all information provided by experts is
ill-advised because we would disable out-of-sample
validation, and because the number of constraints be-
comes intractable (each nonempty cell in columns 6
to 12 in Tables IV and V for groups 1-5 corresponds
to a possible constraint). Hence our goal is to first
see which constraints are sufficient to properly recon-
struct the experts’ preference percentages. We now
discuss in detail group 2.

There are 35 nonempty cells in the last seven
columns for the second group, which means that we
have at most 35 constraints to impose on the joint
distribution of scores. They are of the following type:
for the sixth scenario we have the chance that Sg is
the lowest ranked within the second group is 2/11, the
chance that Sy is second from the bottom is 4/11, etc.,
and finally the chance that S is ranked seventh (most
severe) is 1/11.

Fig. 1. Scatter plots in cases when P(X; > X3) = 0.5 (left), P(X1 > X2) = 0.8 (middle), and when P(X; > X) =0.8and P(X; > 1-X,) =

0.8 (right).
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Table VII. Mean and Variances of Coefficients of Equation (1)
Under Variant I for Group 2

Mean Variance
By 0.7208 0.0643
B, 0.5865 0.0761
B3 0.2211 0.0637
By 0.2885 0.0549
Bs 0.2300 0.0443
B¢ 0.3225 0.0453
B7 0.5955 0.0626
Bg 0.5040 0.0971
By 0.6055 0.0472

We first impose all 35 constraints to see what
the ordering of scenarios and their mean scores must
be and then we will consider a few strategies with
smaller numbers of constraints and compare their
performance. To judge the performance of each vari-
ant we choose the following statistics:

1. Error of scores represents the square root
of the mean square difference between mean
scores obtained when imposing all constraints
and scores calculated in a given variant. This
statistic shows how well the variant can re-
cover mean scores of the scenarios.

2. Error of fitting shows how well the model fits
the summary data shown in Tables IV and V.
It is calculated as the square root of the mean
square difference between the imposed and
obtained constraint probabilities.

3. Error of validation is computed as the square
root of the mean square differences between
the obtained probabilities while imposing all
constraints and the probabilities recovered in
a given variant.

After imposing all 35 constraints on the joint dis-
tribution of scores calculated with the linear model
(Equation (1)), we discovered that the linear model
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fits the information provided by experts. The prob-
lem that IPF had to solve was feasible (differences
between imposed and obtained probabilities were of
order of 107?). Means and variances of B;s obtained
in Variant I are shown in Table VII.

Means of scenario scores calculated with all con-
straints are shown in the second column in Table VIII
under variant L.

Many variants with subsets of 35 constraints
could be considered. We present the results for four
such subsets with the short motivation behind each
subset choice.

o Variant 1. We denote as variant I the variant
with all 35 constraints.

o Variant II contains all constraints except the
ones concerning how many experts consid-
ered a given scenario as fourth in the order-
ing. Hence the constraints from the eighth
column in Tables IV and V are not taken into
account. For the sixth scenario the number of
constraints in this variant is the same as in vari-
ant [ as none of the experts considered this sce-
nario as fourth.

o In Variant 111 only information on how many
experts considered the rank of a given scenario
as the lowest, the second lowest, the highest,
and the second highest is included. For the
sixth scenario, four constraints will be used.
The probability that Sg is the lowest is 2/11, sec-
ond lowest 4/11, highest 1/11, and second high-
est also 1/11.

o Variant IV contains constraints concerned only
with the lowest and the highest ranks. For the
sixth scenario only the probability that S¢ is the
lowest 2/11 and highest 1/11 must be imposed.
We can call this variant “smallest and highest.”

o Variant V contains only those constraints on
which at least three experts agreed that a given
scenario should be ranked at a given position.

Table VIII. Scores and Orderings of Scenarios in Group 2 for Different Variants

Variants

Group 2 I I 111 v \'%

Ordered Scenarios & Scores S10=1.529 S10 = 1.541 S10=1.524 S10=1.556 So =1.474
S9 =1.503 S9 =1.538 S9 =1.523 S9 = 1.536 Si0 = 1.464
S1p =1.435 S11 =1.436 S11 = 1.409 S11=1473 S11 = 1.409
S11 =1.434 Se = 1.370 S = 1.356 S = 1.448 S, =1.397
Se = 1.390 S1, =1.345 S1, =1.350 S, =1.391 Se = 1.381
Sg = 1.366 S7=1.318 Sg =1.312 S7=1.372 S7=1314
S7=1.326 Sg =1.298 S7 =1.304 Sg =1.301 Sg = 1.286




Priority Setting of Emerging Zoonoses

Table IX. Errors in Group 2
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Table X. Mean and Variances of Coefficients of Equation (1)
Under Variant V for Groups I-V

Group 2 Number of Error of Error of Error of
Variant Constraints Scores Fitting Validation Mean Variance
I 35 0 0.2226 0 By 0.5570 0.0930
I 30 0.4848 0.9154 0.9298 B; 0.2210 0.0295
III 20 0.4950 2.0323 2.1003 B3 0.2988 0.0474
v 9 0.5581 3.5302 3.6110 By 0.2965 0.0608
A% 10 0.5371 1.6301 1.6914 Bs 0.3394 0.0608
Bg 0.1521 0.0261
B 0.5159 0.1027
Bg 0.6207 0.0883
By 0.2004 0.0546

In this variant, for scenario S¢ only one con-
straint will be imposed, namely, the probability
that Sg is second lowest is 4/11. We will refer to
this variant as “at least 3.”

Variants II, III, and IV are easily motivated as we
are mainly concerned with separating the most from
the least threatening scenarios. As long as the most
severe and the least severe scenarios are recognized
it is not so bad if orderings of scenarios ranked in the
middle of the group are changed in the model. Vari-
ant V, “at least 3,” is of different type. We adopted
here an idea that only strong signals coming from
experts have to be seriously taken into account. All
other constraints can be treated as noise.

The analysis was done using the same 100,000
initial samples in each variant. In Table VIII mean
scores are shown. We can see that scores don’t
change much between different variants. Moreover,
orderings of scenarios remain similar recovering sce-
narios 9 and 10 as the most severe and scenarios 7
and 8 as the least severe in this group.

To decide which variant is the most appropri-
ate for the further analysis we compare three statis-
tics introduced above: Error of scores, Error of fit,
and Error of validation. They are presented together
with number of constraints in Table IX. Variant V,
“at least 3,” has the best performance in terms of all
three statistics. Moreover, it requires only 10 con-
straints to be imposed on the joint distribution of
scores. This is one more than in variant IV, “lowest
and highest,” but the performance of variant IV in
terms of fitting and validation error is much worse.

Similar conclusions have been drawn for other
groups. We noticed that for all groups (except the
sixth one, which was removed from the analysis) the
linear model for scores was appropriate. We have
observed that when fitted separately quite different
distributions of parameters of the linear model were
obtained. This could suggest that different models
should be used for more severe and less severe sce-

narios. The best performing variant was variant V,
“at least 3.” Hence, we used this variant to combine
all scenarios together. The relatively low validation
errors for variants II-V indicate that a fitting based
on a relatively small subset of constraints enables
reasonable predictions of the expert response rates
for the out-of-sample constraints, and provides out-
of-sample validation for the linear model in general.

To build one model for all 27 scenarios from
groups 1, 2, 3, 4, and 5 using variant V we had to im-
pose 53 constraints on the joint distribution of their
scores. Because of this high number of constraints
and attendant computational restrictions, some in-
feasibility was observed. The differences in imposed
and obtained probabilities were sometimes of order
of 0.2. In Table X means and standard deviations
of parameters of the linear model of scores are pre-
sented.

The best fitting joint distribution over (Bj...By)
correlates these values. The correlation matrix is
shown in Table XI. Several coefficients exhibit mod-
erate correlations. This table indicates, for example,
that coefficients B3 and B, are correlated at 0.4664.
The model thus predicts that high valuations of B;
tend to appear with high values of B;. If a new sce-
nario with new attribute scores is constructed, the
valuation of this scenario by a randomly drawn ex-
pert from the modeled population of experts would
be given by using the mean values in Table X. This
of course is the great advantage of the linear model
(Equation (1)). Had the linear model proved inad-
equate, then we should have to contemplate adding
interaction and/or higher order terms.

We can notice that the probability of introduc-
tion (attribute 1) and the mortality (attribute 7), as
well as economic damage related to human popula-
tion (attribute 8), described in Table I, will have the
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Table XI. Correlation Matrix
B; B, B; By Bs B B; Bg By
B 1
B, —0.1806 1
B3 —0.3992 0.4664 1
By -0.0172 —0.1096 —0.0915 1
Bs —0.0730 —0.2143 0.0387 —0.1256 1
B¢ —0.2817 —0.2089 0.0256 —0.2352 —0.0525 1
By —0.1100 —0.3034 —0.4929 0.0481 0.2031 0.2415 1
Bg —0.1316 —0.4633 —0.2265 0.1229 0.4128 0.1135 0.3864 1
By 0.2597 0.2486 —0.0322 —0.0118 —0.3785 —0.0201 0.0849 —-0.0721 1

highest weight in the severity score of a pathogen. It
is a bit surprising that economic damage has such sig-
nificance in determining the score, but this might be
explained by relatively high positive correlations of
this attribute with mortality (attribute 7) and speed
of spread between humans (attribute 5).

6. DISCUSSION AND CONCLUSIONS

This study deploys a new method for mod-
eling expert stakeholder preferences based on
probabilistic inversion of expert ordinal rankings.
This offers several advantages above traditional
MCA approaches. First and foremost, experts are
required only to rank observable scenarios with re-
spect to severity. They do not rank or evaluate impor-
tance of attributes directly. Since attribute weights
are multiplied with scores on physically measurable
attributes, direct valuation of attribute weights would
require experts to take account of the physical di-
mensions of all the attributes. Thus, if speed of
spread among animals (attribute 2) were measured
in weeks instead of days, the coefficient for attribute
2 would have to be adjusted accordingly. Second, the
linear model (Equation (1)) can be validated by pre-
dicting percentage expert rankings for out-of-sample
constraints. Such validation is not readily available
for traditional MCA methods. Finally, the probabilis-
tic inversion yields more information than those tra-
ditional methods. The best fitting distribution over
(Bi...By) yields not only mean values for the at-
tribute weights, but also gives variances and correla-
tions. These advantages come at a price. Probabilis-
tic inversion is a sophisticated mathematical tool. In
spite of compliant software to support this task, it
does place demands on the analyst to explain the re-
sults to lay problem owners. Finally, the probabilistic
inversion with the simple linear model (Equation (1))

may not work. There may be no joint distribution
over (Bj...By) that adequately reproduces the expert
rankings. If this were to arise, the analyst would have
to contemplate more complex models or may have
to search for additional “hidden” attributes. This last
point is inherent in any method that strives for exter-
nal validation: the validation may not be forthcom-
ing. Fortunately, this was not the case in the present
study.
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