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Updating Parameters of the Chicken Processing Line Model

Dorota Kurowicka,* Maarten Nauta,> Katarzyna Jozwiak,! and Roger Cooke'-?

A mathematical model of chicken processing that quantitatively describes the transmission
of Campylobacter on chicken carcasses from slaughter to chicken meat product has been de-
veloped in Nauta ez al. (2005). This model was quantified with expert judgment. Recent avail-
ability of data allows updating parameters of the model to better describe processes observed
in slaughterhouses. We propose Bayesian updating as a suitable technique to update expert
judgment with microbiological data. Berrang and Dickens’s data are used to demonstrate
performance of this method in updating parameters of the chicken processing line model.
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1. INTRODUCTION

Campylobacter is a leading cause of zoonotic
enteric infections in most developed and develop-
ing nations worldwide (WHO, 2000). Although it is
generally recognized that there are many sources of
Campylobacter, campylobacteriosis is predominantly
believed to be associated with the consumption of
poultry meat, especially fresh broiler meat.('?) As a
consequence, the control of Campylobacter in poul-
try meat is a priority for food safety managers in
many countries, and several quantitative microbio-
logical risk assessments (QMRAs) dealing with this
food-pathogen combination have been performed
worldwide.®

As part of a national QMRA in the Nether-
lands,® a mathematical model of broiler chicken
processing has been developed that quantitatively
describes the transmission of Campylobacter on
chicken carcasses from slaughter to chicken meat
product. The model has been published in two pa-
pers, one where the model is explained and the dy-
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namics are explored® and one where it is imple-
mented in the national Dutch QMRA.(® Whereas
in other models built for that purpose the changes
in concentration on carcasses are based on published
microbiological data,-® this model has a mechanis-
tic basis: the parameters in this model are transfer
coefficients of bacteria from the chickens’ skin and
intestines to the processing environment and from
the environment back to the chickens’ skin. This ap-
proach has the advantage that it is better suited to
predict the effects of risk management interventions
proposed for the control of Campylobacter.®) How-
ever, a disadvantage is that the available microbi-
ological data alone do not allow estimation of the
model parameter values. Therefore, to quantify the
model, structured expert judgment was used.”) Ex-
perts were asked to assess the uncertainty regarding
variables that can be predicted by the model. Their
distributions were combined and then pulled back
onto the parameter space of the model to obtain dis-
tributions of model parameters through probabilistic
inversion.(19)

A remaining drawback of this processing model
is that it does not take advantage of published mi-
crobiological data on the impact of the different pro-
cesses involved in broiler chicken processing on the
Campylobacter concentration. Such data are recently
accumulating, and may be used to improve the model
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parameter estimates or to adjust them to a typical
situation in a country or region in which those data
are obtained.

Here we show how the parameter estimates for
the industrial processing model of Nauta et al.® can
be updated by the use of Bayesian inference. As an
example we use the data of Berrang and Dickens,(!!)
who collected quantitative data on Campylobacter
during poultry processing and published the number
of colony forming units (cfu) before and after a pro-
cessing stage. Because these data do not fully report
the initial infection rates, we have made assumptions
based on Nauta et al.(®) The Bayesian updating con-
tains a new wrinkle, as the data give infection rates
per flock, whereas the model being updated is per
chicken.

This article is organized as follows. In Section 2,
we briefly discuss the chicken processing line model.
Section 3 presents Berrang’s data and a general for-
mulation of Bayesian updating, as well as an applica-
tion of Bayesian updating in finding new parameters
of the chicken processing line model. Performance of
the updated models is tested. A final section discusses
conclusions.

2. MODEL
2.1. Model Description

The chicken processing line starts with collect-
ing poultry flocks on the farm, placing them into
the truck, transporting them to the processing plant,
and processing, all on the same day. At the process-
ing plant, animals are hung upside down on a line
of shackles, stunned, and killed. In the Netherlands,
the process for the production of fresh meat then
typically consists of the following phases: low scald-
ing (transport through a warm water tank of 52 °C),
defeathering (removal of the feathers), evisceration
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(extraction of intestines), washing (spraying with wa-
ter), and air chilling.

During different processing stages, inactivation,
removal, and cross-contamination may change the
concentrations and prevalence of Campylobacter on
the carcasses of processed flocks. The mechanics
of these changes are described mathematically in
the chicken processing model developed by Nauta
et al.,® to which the reader is referred for a detailed
description. The main output variable of the model is
Next s(i), representing the number of colony forming
units (cfu) of Campylobacter on the exterior of car-
cass i at the end of processing stage S (scalding, de-
feathering, evisceration, washing, chilling). The input
variables are Nexinpur and Cpec, denoting the num-
ber of cfus on the exterior and in the feces of a
chicken prior to processing. The initial environmen-
tal contamination must also be specified. For each
processing stage S, transfer coefficients are defined.
A joint distribution expressing the uncertainty of the
values of these transfer coefficients was obtained via
probabilistic inversion from experts’ assessments of
Nex s in specific conditions that are predicted by the
model.-1?)

A brief description of probabilistic inversion is
as follows: a diffuse starting distribution of trans-
fer coefficients is chosen, and sampled N times. The
model is run on each sample (each vector of values
for all coefficients), thereby generating a distribution
of values of Nexs. The output is appended to the
input, creating a sample of N input-output values.
This sample is now reweighted in such a way that the
weighted sample distribution complies with the ex-
perts’ assessments (experts’ assessments are in form
of quantile information). Hence the joint distribution
of parameters of the model is available only in the
form of samples. Table I shows the means and me-
dians of parameters of the chicken processing line
model.

Table I. Means and Medians of Parameters of the Chicken Processing Line Model

Scalding Defeathering Evisceration Washing Chilling

Parameter Mean Median Mean Median Mean Median Mean Median Mean Median
dext 0.7645 0.8581 0.8652 0.9095 0.4631 0.4600 0.3421 0.3070 0.0901 0.0609
Cext 0.7098 0.7141 0.0511 0.0485 0.0416 0.0420 0.2121 0.2455 0.1948 0.0348
beny 8.1e—6 6.8e—6 0.0279 0.0010 1.1e-5 le-5 0.0060 0.0010 0.0080 0.0037
Cenv 0.0490 0.0355 0.1036 0.1145 0.0848 0.0850 0.0631 0.0619 0.0171 0.0153
1—agec 1.6e—6 1.4e—6 1.3e—5 le-5 0.0062 0.0027

Weec 1.8624 1.8440 1.7097 1.7330 1.7428 1.9560

Dfec 0.4840 0.4800 0.6955 0.7044 0.6573 0.6822

Note: For a description of the parameters, see Nauta et al.(®)
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Fig. 1. Log(Next) constant initial contamination and uncertain parameters.

2.2. Model Analysis

Nauta et al.® implemented the model as a Monte
Carlo simulation model, using the median values of
the parameters given in Table I as constants in the
baseline model.

The model requires specification of the initial
distributions for external (Nextmput), the fecal con-
tamination (C), and initial contamination of the
environment. It was observed in Reference 5 that
quite quickly (after 10 carcasses pass through), the
number of Campylobacter oscillates around an equi-
librium value in the environment. Hence, we assume
for further analysis that we start with clean line that
is not contaminated.

In contrast to Nauta et al.® we adopt here
the Bayesian approach assuming that parameters of
the model are not constant. Instead, we allow that
the values of the parameters may depend on spe-
cific features of each chicken-line interaction. Uncer-
tainty in parameter values is expressed in the form of
prior joint distribution of parameter values obtained

from experts with probabilistic inversion (we took
the same 500 samples for this distribution that were
used in Reference 6 to obtain medians of the parame-
ters). We then run the model for 10,000 chickens with
Monte Carlo by providing external and internal con-
taminations for each chicken and sampling a value of
parameters from their joint distribution.

In Fig. 1, we see the median, the mean, and 5th
and 95th percentile of log(Ney) in the case when
internal and external contaminations were assumed
constant equal to 6 and 7.2 log cfu per caress, respec-
tively. We see in Fig. 1 that even when we do not take
into account the uncertainty over initial contamina-
tion large variability of output contamination can be
expected due to the uncertainty in parameter values.

Whereas Fig. 1 assumes that the initial contami-
nation is constant, Fig. 2 shows results when the in-
ternal and external contaminations of chickens in a
flock are uncertain with mean 6 and standard devia-
tion 0.73 for log(C..) and with mean 7.2 and standard
deviation 0.9 for log(N ext,lnput).(@ Distributions of the
internal and external contamination were assumed to
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Fig. 2. Log(Next) for internally and externally versus only externally contaminated chickens.

be independent. Although this may be questioned,
the present purpose is merely to illustrate the updat-
ing method, and this does not require modeling the
dependence of internal and external contamination.
Fig. 2 plots log(Nex) for both internally and exter-
nally contaminated chickens, and for chickens con-
taminated only externally. We see that the internal
contamination increases the predicted log(Nex) as
compared with only externally contaminated chick-
ens. The biggest contribution is observed during de-
feathering where fecal leakage is most prominent.

3. UPDATING

The chicken processing line model was quanti-
fied with structured expert judgment.”) Few stud-
ies collected a quantitative microbiological data on
Campylobacter during poultry processing. In this sec-
tion we show how the chicken processing line model
can be updated with data. We use for this purpose

data presented by Berrang and Dickens.(!") The data
are not reported per chicken, but only as means and
standard deviations of flocks of processed chickens.
This, together with the fact that our prior distribu-
tion is given only numerically, requires an adaptation
of the usual Bayesian updating schemes.

3.1. Data

Berrang’s data contain the mean concentrations
of cfu from the exterior of five chickens from six
different flocks from a poultry processing line in
the United States. Data are obtained from carcass
rinses and expressed as log cfu/mL rinsing fluid, from
300 mL rinse fluid per carcass. To obtain a mean
number of cfu per carcass, the published concentra-
tions are therefore adjusted by adding a value of
log(300), which gives the number of Campylobacter
on a carcass. Within flock standard deviations were
not reported, but are here assumed to be 0.5 log cfu
for each flock. In the first flock no positive results
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Table II. Means of Log cfu per Chicken for Flocks 2-6

Flock2 Flock3 Flock4 Flock5 Flock 6

Input 7.5 7.5 5.6 83 7.1
Scalding 4.5 4.2 4.9 4.9 4

Defeathering 5.7 7 5.6 6.6 6.2
Evisceration 5.7 6.2 5 6.5 6.2
Washing 4.6 5.8 4.5 4.1 52
Chilling 37 3.6 34 5.7 3.6

were obtained at two of the processing stages, so
this flock was excluded from our analysis, as a zero
standard deviation would lead to inconsistencies, and
positive standard deviation would lead to nonzero
mean values.

The mean values of external contamination for
five flocks are presented in Table II. We can observe
that after the first stage (scalding) the number of
Campylobacter decreases, but during the next phase
(defeathering) it grows rapidly. The three phases of
scalding, defeathering, and evisceration are the most
critical points for cross-contamination during pro-
cessing because the feces contaminated with Campy-
lobacter may leak from the carcass.(®) In Reference
13, we find that after defeathering this contamination
should have the highest value. For the last two stages,
washing and chilling, the intestines are already re-
moved from the carcass. Therefore, the internal in-
fection cannot influence external contamination of
the chicken and the number of cfu is decreasing. We
can observe this behavior in the data. The only excep-
tion is for Flock 4, where the number of cfu at the end
of the chicken processing line increases. For the first
flock, after defeathering and washing, the contami-
nation was below the detection limit and we do not
have any information about the contamination after
these phases.

Information about initial internal infection as
well as the contamination of the environment is not
available in Berrang’s data. Therefore, for the further
analysis we have made a few assumptions. We as-
sume that 10g(Nex, input) is normally distributed with
mean given by data (Table IT) and standard deviation
0.5 and that the log of the internal contamination is
normally distributed with mean 6 and standard devi-
ation 0.73, as used by Nauta et al.©®) based on Dutch
microbiological data. We also assume that the pro-
cess always starts with a clean environment.

Therefore, results presented here serve mainly to
illustrate how initial distributions of model parame-
ters can be updated with data.

Kurowicka ef al.

In Fig. 3, model prediction and data for Flock 2
are plotted. The initial contamination of chickens has
mean 7.5 and standard deviation 0.5. After scalding,
the model predicts the mean value of contamination
equal to about 6. Comparing to Berrang’s data, in
which the mean contamination after scalding is 4.5,
we see that the model overestimates log(N¢x¢ ). Other
processing stages are not bad as the observations are
contained between the 5th and 95th percentile of the
distribution of log(N.x) predicted by the model. We
must, however, realize that any change of predicted
contamination after scalding will influence results in
other phases. Moreover, the pattern produced by the
model is clearly different from what the data show.

To see how the model predicts data for all flocks
we will run the model with initial contamination that
is averaged over all five flocks. We consider measure-
ments for each flock as a realization of the contami-
nation over the population of flocks. Hence the ini-
tial distribution of log(N¢x) has a mean that is equal
to the average mean for all flocks, which is 7.2, and
its variance is equal to the sum of variances of five
flocks, 2.5.

Fig. 4 confirms our findings that the model over-
estimates the number of cfu found after scalding.
We can see that the initial variability contains all
observations between the Sth and 95th percentiles.
This is in contrast to the model predictions af-
ter scalding. Means for log(N.x) after scalding re-
ported in Berrang’s data are much smaller than the
mean log(N.x) predicted by the model. Log(Nex) is
slightly underestimated after defeathering and evis-
ceration and overestimated after chilling.

In the next section, the Bayesian updating
method for the chicken processing line is explained
and applied. We use Berrang’s data to improve pa-
rameters of the chicken processing line model.

3.2. Bayesian Updating

We denote as M the chicken processing line
model. M takes as an input the number of cfu on
the exterior of a chicken, say x, and the number in
the feces, z, and returns the output y, which indi-
cates the number of cfu on this chicken after a pro-
cessing stage. The model M has the following pa-
rameters 6 = [aext’ Denv, @fec, Cenvs Wiee, Cexts pfec]
and may be therefore represented as a function y =
M(x, z; 0). To simplify the exposition and because
the Berrang’s data do not contain information about
the number of cfu in feces, we fix the distribution of
internal contamination as normal with mean 6 and
standard deviation 0.73 (as in previous sections) and
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Fig. 3. Model predictions and data for Flock 2.

drop z from the model formulation. The distribution
of 0, denoted as fy, is given in form of N samples
(we took 500 samples that were used in Reference 6)
obtained through probabilistic inversion from ex-
perts assessments on observable quantities predicted
by M. f, will be considered as the prior distribution
of 6.

Berrang’s data do not contain information about
the number of cfu on the same chicken before and af-
ter the processing stage. We know only that the num-
ber of cfu on the exterior of a random chicken from
a given flock before the processing stage is a realiza-
tion of a distribution, say f, and after the processing
stage the number of cfu is a realization of another
distribution, say g. Hence we can write the likelihood
function of the data D as follows:

L(D|9=t)=g(fo(x;9 =t)f(x)dx),

where D is a number taken from Table II, for a spe-
cific flock and specific processing phase. The like-

lihood represents the probability of observing the
number of cfu D on a random chicken drawn from
distribution f calculated by the model with parame-
ters @ = ¢ after the processing stage when the distri-
bution of the number of cfu is actually equal to g.

Hence the posterior distribution of # updated
with information about one flock can be obtained
with Bayes’s theorem as:

P'(6) = P(6 | D)

¢ ( [ Mz =150 dx) f(t)

[g </x M(x;6 = t)f(x)dx) fé(t)dt.

To combine data for all flocks together we
consider information about distributions of num-
ber of cfu on a random chicken before and after
the processing stage for the jth flock (f; and g;j,
where j=1,...,k) as independent observations from
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Fig. 4. Log(Next) predicted by the model with external initial contamination that is normally distributed with the mean 7.2 and variance 2.5

and Berrang’s data.

population of flocks. Then the likelihood function
becomes:

L(D|0=t)= ﬁgj (/x M(x;0 =t)fj(x)dx>.

Thus, the posterior distribution of 6 including all
flocks is proportional to:

k
P(0)=P@O|D)ox[]sg (/ M(x;6 = 1) fi(x) dx)fg(z).
j=1 *

We implemented the Bayesian updating first
only for Flock 2 to see how the procedure works and
then combined all data together.

We took 500 samples (x;,s =1,...,500) from the
input distribution of log(Ney) for Flock 2, which was
normal with mean 7.5 and standard deviation 0.5 (de-
noted as f ~ N(7.5,0.5%)). For each sample of param-
eters @ =t,,n = 1,...,N we obtained log(N¢) af-
ter scalding predicted by the model. The histogram

of log(Next) after scalding is shown in Fig. 6 (left
panel). We can see that the average log concentra-
tion predicted by the model in this case is about 6.
This is much higher than is observed in Berrang’s
data, which was 4.5. The distribution of log(Ney) af-
ter scalding in Berrang’s data is assumed to be nor-
mal with mean 4.5 and standard deviation 0.5 (dented
as g ~ N(4.5,0.5%)).

The updating is performed as follows: for each
sample of § = t,, n = 1,..., N, we found the weight
proportional to the likelihood of observing amount
of log(Next) predicted by the model under distribu-
tion g. Hence weights w,, are proportional to p, =
g(ﬁ Zfiol M(x,,0 =t,)). They are equal to w, =

ﬁé’”—p. After resampling with these weights, the pos-
i=1 i
terior sampling distribution of € is found. Fig. 5 shows

how the distribution of the parameter a.y in scalding

has changed after updating with data for Flock 2.
With updated parameters we can find the pos-

terior predictive distribution log(Ney). Comparing
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Fig. 6. Histogram of log(Ney;) after scalding before (left) and after update (right) with data for Flock 2.

histograms in Fig. 6, we see the distribution of after scalding predicted by the model. Moreover,
log(Next) after update is significantly different from we observe lower overall contamination. Notice also
the one before updating; it is shifted significantly to that after update with one flock, the uncertainty of
the left. log(Next) has been slightly reduced.

Similarly, parameters for all processing stages Bayesian updating for all flocks leads to the sig-
have been updated with information for Flock 2. nificant reduction of uncertainty of the model (see
Fig. 7 shows how model predictions have changed af- Fig. 8). We observe significant changes of median
ter updating. contamination in scalding, washing, and chilling.

As expected after update log(Ney) after scald- We see that the model has been calibrated so that
ing is reduced. We see that the observation now the uptick in cfu at the defeathering stage apparent in

lies in the 90% confidence bound of concentration the data is now captured.
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Fig. 7. Log(Next) after Bayesian updating for Flock 2.

Table III shows means of parameters of the
chicken processing line model before and after
Bayesian update. The biggest changes can be ob-
served for the parameter a.y;, Which is the percentage
of cfu transferred from the exterior of a chicken to
the environment.

4. DISCUSSIONS AND CONCLUSIONS

We showed that with Bayesian updating one of
the disadvantages of the mechanistic model of Nauta
et al.® can be overcome. The model predictions can
be fitted to data, which is important when new data
become available, or data for a specific country or re-
gion are to be used. The model retains the advantages
of a mechanistic approach.

For the example given in this article it should be
noted that these are U.S. data, which may not be rep-
resentative for the Dutch situation, as Campylobacter
levels and poultry processing methods may be differ-

ent. The result should therefore not be interpreted
as an update of the Dutch model, but merely as an
example of the applicability of the methodology.

An important assumption in the example has
been that the internal concentrations of Campy-
lobacter in the feces leaking from the carcasses can
be described by one and the same distribution for all
flocks, as derived from a Dutch data set. Not only
may values in the United States be different, these
distributions will also be different per flock. As the
distribution of Cy has a large impact on the dynam-
ics, this assumption must have a large impact on the
resulting parameter estimates as well.

To apply the method described in this article
for a specific country or region, microbiological data
should be available for a set of flocks, giving the con-
centrations on carcass exteriors at all stages of pro-
cessing from the entrance into the processing plant
until chilling. Also, for the same flocks, data on con-
centrations in the leaking feces should be collected.
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Table III. Means of Parameters of the Chicken Processing Line Model Before and After Bayesian Update

Scalding Defeathering Evisceration Washing Chilling

Parameter Before After Before After Before After Before After Before After

Aext 0.7645 0.9335 0.8652 0.8403 0.4631 0.3728 0.3421 0.8099 0.0901 0.1823

Cext 0.7098 0.8139 0.0511 0.0500 0.0416 0.0419 0.2121 0.2487 0.1948 0.7698

beny 8.1e—6 7.6e—6 0.0279 0.0751 1.1e-5 le—5 0.0060 0.0019 0.0080 0.0054

Ceny 0.0490 0.0266 0.1036 0.0797 0.0848 0.0843 0.0631 0.0752 0.0171 0.0196
1—agec 1.6e—6 le—6 1.3e-5 1.1e-5 0.0062 0.0061
Wfec 1.8624 1.4263 1.7097 1.4541 1.7428 1.7148
Pfec 0.4840 0.4533 0.6955 0.7031 0.6573 0.6600
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