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Abstract 
Using expert judgment data from the TU Delft's expert judgment data base, we 
compare the performance of different weighting schemes, namely equal weighting, 
performance based weighting from the classical model (Cooke, 1991), social network 
(SN) weighting and likelihood weighting.   The picture that emerges with regard to 
social network weights is rather mixed. SN theory does not provide an alternative to 
performance based combination of expert judgments, since the statistical accuracy of 
the SN decision maker is sometimes unacceptably low. On the other hand, it does 
outperform equal weighting in the majority of cases. The results here, though not 
overwhelmingly positive, do nonetheless motivate further research into social 
interaction methods for nominating and weighting experts. Indeed, a full expert 
judgment study with performance measurement requires an investment in time and 
effort, with a view to securing external validation. If high confidence in a comparable 
level of validation can be obtained by less intensive methods, this would be very 
welcome, and would facilitate the application of structured expert judgment in 
situations where the resources for a full study are not available.  Likelihood weights 
are just as resource intensive as performance based weights, and the evidence 
presented here suggests that they are inferior to performance based weights with 
regard to those scoring variables which are optimized in performance weights 
(calibration and information). Perhaps surprisingly, they are also inferior with regard 
to likelihood.  Their use is further discouraged by the fact that they constitute a 
strongly improper scoring rule. 
 
Introduction 
 
Using expert judgment data from the TU Delft's expert judgment data base, we 
compare the performance of different weighting schemes, namely equal weighting, 
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performance based weighting from the classical model (Cooke, 1991), social network 
weighting and likelihood weighting.   
 
The classical model and experience with applications to date is described in (Cooke 
and Goossens 2006). Over the range of applications, the classical model outpreforms 
equal weighting and best experts. However two issues with this model emerge from 
that discussion, namely 
 

(i) The classical model is more resource intensive than simple equal 
weighting; is it possible to capture the advantages of differential expert 
weighting in a less intensive manner? 

(ii) The classical model satisfies necessary conditions for rational consensus, 
but is not derived from first principles, and other weighting schemes may 
perform as well or better. Can other weighting schemes be implemented 
and evaluated using the data generated with the classical model? 

 
Social network theory was proposed as an expert rating scheme that might address 
issue (i) above. Social network theory has been implemented using weights that are 
based on experts' citations. Implementing these weights requires panels of experts 
who publish extensively.  Suitable data for comparing social network weights and 
performance-based weights comes from a large uncertainty analysis the European 
Union and US Nuclear Regulatory Commission (EU-USNRC) on accident 
consequence models for nuclear power plants. This large study involved ten panels of 
internationally reputed experts, of which 7 involved seed or calibration variables: 
variables for which the true values are known post hoc. The seed variables form the 
basis for performance based combinations of expert judgments and also afford the 
possibility of comparing various combination schemes, or "decision makers" (DM's).  
 
With regard to (ii), several suggestions have been made in recent literature, which 
may be tested using the classical model's data repository. One of these involves so-
called "likelihood weights" (Stiber et al 2004), in which  an expert's likelihood weight 
is proportional to the probability which s/he assigns to the observed outcomes.  While 
these are not less resource intensive, they devolve from different lines of reasoning 
and are therefore of interest. The classical model data repository involves expert 
elicitations involving either 5 (five studies) or 3 quantiles (forty studies). The 
likelihood weights are most amenable for cases where the experts assessed 5 
quantiles, and this motivates restricting the comparison to the five studies in which 
experts assessed five quantiles. 
 
The classical model is reviewed in some mathematic detail in (cite this volume).  For 
the purposes of this comparison, a very brief synopsis is presented in section 1. The 
second section reviews the EU-USNRC data used for this comparison. The third 
section outlines the application of social network theory to derive expert weights, and 
the fourth section presents the comparative results. Section 5 discusses likelihood 
weights and section 6 presents results with likelihood weights.  A final conclusion 
draws conclusions. An appendix contains more detailed out put from each panel 
showing the individual expert scores and the social network weights. 
 
The overall conclusion of these comparisons is that social network and likelihood 
weights exhibit a performance in terms of calibration (p-value) and information that is 
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intermediate between the performance based weights of the classical model and equal 
weighting. The larger conclusion is that extensive empirical data on expert 
assessments with observations of assessed quantities is available to test expert 
combination schemes. In (Kallen and Cooke 2002) this data was used to test the 
copula method of combining experts (Clemen and Jouini, 1996).  This data is 
available to researchers upon request from the first author. 
 
1. Structured Expert Judgment  
 
The goal of applying structured expert judgment, as understood here, is to enhance 
rational consensus. Note that this is not the same as maximizing the expected utility of 
a rational individual. Recalling that a group of rational agents is not itself a rational 
agent, rational consensus is not concerned with changing the beliefs of individuals but 
rather with finding a representation of uncertainty to be used in a group decision 
context.  
 
 Necessary conditions for achieving this goal are laid down as methodological 
principles (see Cooke 1991): 

• Scrutability/accountability: All data, including experts' names and 
assessments, and all processing tools are open to peer review and results must 
be reproducible by competent reviewers.  

• Empirical control: Quantitative expert assessments are subjected to empirical 
quality controls. 

• Neutrality: The method for combining/evaluating expert opinion should 
encourage experts to state their true opinions, and must not bias results. 

• Fairness: Experts are not pre-judged, prior to processing the results of their 
assessments. 

 
We claim that these are necessary conditions for rational consensus, we do not claim 
that they are sufficient as well. Hence, a rational subject could accept these and yet 
reject a method, which implements them. In such a case, however, (s)he incurs a 
burden of proof to formulate additional conditions for rational consensus which the 
method putatively violates. 
 
The Classical Model 
The above principles have been operationalized in the so called Classical Model, a 
performance based linear pooling or weighted averaging model. The weights are 
derived from experts’ calibration and information scores, as measured on calibration or 
seed variables. These are variables from the experts' field whose values become known 
to the experts post hoc. Seed variables serve a threefold purpose:  

(i) to quantify experts’ performance as subjective probability assessors,  
(ii) to enable performance-optimized combinations of expert distributions, and  
(iii) to evaluate and hopefully validate the combination of expert judgments.  
 

The name “classical model” derives from an analogy between calibration measurement 
and classical statistical hypothesis testing. It contrasts with various Bayesian models.  
In the classical model calibration and information are combined to yield an overall or 
combined score with the following properties: 
1. Calibration dominates over information,  information serves to modulate between 

more or less equally well calibrated experts, 
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2. The score is a long run proper scoring rule, that is, an expert achieves his/her 
maximal expected score, in the long run, by and only by stating his/her true beliefs. 
Hence, the weighting scheme, regarded as a reward structure, does not bias the 
experts to give assessments at variance with their real beliefs, in compliance with 
the principle of neutrality. 

3. Calibration is scored as ‘statistical likelihood with a cut-off’. An expert is 
associated with a statistical hypothesis, and the seed variables enable us to measure 
the degree to which that hypothesis is supported by observed data. If this 
likelihood score is below a certain cut-off point, the expert is unweighted. The use 
of a cut-off is driven by property (2) above. Whereas the theory of proper scoring 
rules says that there must be such a cut off, it does not say what value the cut-off 
should be.  

4. The cut-off value for (un)weighting experts is determined by optimizing the 
calibration and information performance of the combination. 

 
A fundamental assumption of the Classical model (as well as Bayesian models) is that 
the future performance of experts can be judged on the basis of past performance, as 
reflected in the seed variables. Seed variables enable empirical control of any 
combination schemes, not just those that optimize performance on seed variables. 
Therefore, choosing good seed variables is of general interest, see Cooke Goossens 
and Kraan (1995) for background and detail. 
 
2. EU-USNRC Expert Judgment data 
 
The expert panels in the EU-USNRC study are summarized in Table 1 below. The 
panel for deposited material did not involve seed variables, mainly due to time and 
budget constraints. The countermeasure panel was deemed too location specific to 
support the generation of plausible seed variables. The late health panel involved seed 
variables that become known with the latest analysis of Hiroshima and Nagasaki 
survivor data. This data has recently become available, but its analysis has been 
complicated by an unanticipated change of protocol in the data format and is still 
ongoing. Hence, there are seven panels for which seed variables are presently 
available. 
 
Experts were nominated for these panels by a semi formal procedure taking account 
of  

• Scientific publications 
• Recommendations of a wide class of experts 
• Experience with previous studies 

 
The expert judgment protocol followed in this application entails that the names of 
experts are published together with their rationales, but the names are not associated 
with either rationales or assessments in the open literature. This association is 
preserved to enable a competent peer review if the problem owner so desires. These 
names were used in determining the social network weights, but the names are not 
associated with assessments or scores in this study. References are given where the 
expert names and rationales can be retrieved. 
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Table 1 Expert panels of the EC/USNRC joint project, including 
Countermeasures1

 

Expert panel Number 
of 

experts2

Year Reference 

Atmospheric dispersion 8 1993 Harper et al 1995 
Cooke et al 1995 

Deposition (wet and dry) 8 1993 Harper et al 1995 
Cooke et al 1995 

Behaviour of deposited material and its related 
doses 

10 1995 Goossens et al 1997

Foodchain on animal transfer and behaviour 7 1995 Brown et al 1997 

Foodchain on plant/soil transfer and processes 4 1995 Brown et al 1997 

Internal dosimetry 6 1996 Goossens et al 1998

Early health effects 7 1996 Haskin et al 1997 

Late health effects 10 1996 Little et al 1997 

Countermeasures 9 2000 Goossens et al 2001
 
Table 2 shows the number of variables (questions) elicited from the experts in each 
panel, and the number of seed variables. 
 
Table 2. Numbers of questions and seed variables questions of the expert panels of 
the EC/USNRC joint project, including Countermeasures 
 

Expert panel Number 
of 

questions 

Number 
of seeds 

Remarks  

Atmospheric dispersion 77 23  

Deposition (wet and dry) 87 19 14 for dry depos. 
 5 for wet depos. 

Behaviour of deposited material and its related 
doses 

505 0 No seed 
questions  

Foodchain on animal transfer and behaviour3 80 8  

                                                 
1 The Countermeasures panel was not part of the USNRC/CEC Project, but part of the CEC follow-up 
project on Uncertainty Analysis of the COSYMA software package 
2 The general goal of the panels was to have half of the experts coming from Europe and the other half 
coming from the USA. This has not been achieved in all panels for various reasons 
3 Since the practices of farming with respect to animals is different in Europe and in the USA the 
questionnaires were adapted for European and American experts (see Table 7) 
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Foodchain on plant/soil transfer and processes 244 31  

Internal dosimetry 332 55  

Early health effects 489 15  

Late health effects 111 8 Post hoc values 

Countermeasures 111 0 Country specific 
 
 

3. Social Network Theory 
The central idea of social network theory is that relations between agents in a network 
of social interactions are more indicative of importance/influence/value than attributes 
of individual agents. In the scientific domain, interaction, or connectedness, may be 
interpreted in many ways, for example: 
 

1. Telephone and/or email traffic with colleagues 
2. Visits, seminars, publications,  
3. Co-authorship 
4. Scientific citations  

 
To implement social network theory as a method for determining weights for 
combining expert judgments, we require an index of interaction, which is meaningful 
and easily measured. From this point of view, scientific citations possess clear 
advantages. 
 
Citation is nowadays widely recognized as the primary instrument for estimating the 
impact of scholarly work and is therefore chosen as our target relation in the experts’ 
network. The weights of the experts are determined by citations between the experts 
themselves, in the following manner. 
 
Citation searches are carried out through Thomson ISI Web of Knowledge [v3.0].  
The rules we follow when performing the searches are:  

1. The weight of an expert is determined by the number of papers by the other 
experts in the panel, which cite him.  If an expert in one paper cites 2 or more 
papers from another expert, we consider it as 1 citation. Thus we don’t need 
look into every paper from an expert to find his weights. 

2. If two experts co-author a paper and cite a 3rd expert, this paper is counted 
twice.  

3. Self-citation is excluded. In most cases the number of self-citations dominates 
citation from others in the expert panel.  

4. We do not distinguish the order (e.g. first author, second author, etc) of the 
author 

 
Of course there are some problems working with the citation index: 

1. Names may be misspelled, or initials may be incomplete.  
2. The same names may belong to different  scientists, esp. for common names 

like ‘J. Brown’, ‘P. Jacob’ 
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One advantage of considering citation only between experts in the panel is that it 
largely removes these otherwise formidable problems.  
 
One objection to citation-based weights is that it naturally favors older scientists, as 
they have more published work than scientists at the beginning of their careers.  It 
would be possible to address this by counting only citations from the last N years. Of 
course the choice of any particular N may drive the outcome and may be difficult to 
defend. We might consider a discounting procedure, but this would merely shift the 
discussion from the choice of N to the choice of a discount rate.  
 
Simply counting the number of times an expert is cited measures his connectedness  to 
the panel as a whole, it does not measure interactions between two given experts.  
Individual interactions between experts might also contain interesting information. A 
challenge for the future might be to find a way to integrate such information in the 
derivation of expert weights. The present implementation must be viewed as a first 
attempt to apply social network theory to the problem of expert combination. 
 
4. Results 
The results of scoring the combined experts (decision makers,  DMs) in the seven 
panels with seed variables are shown in Table 3 below.  It will be noted that in the 
Soil/plant panel, there was not good performance on any of the DM's. This situation is 
unique in the annals of expert judgment, and is included here to demonstrate that good 
performance is not a foregone conclusion. In this case, the conclusion was that the 
number of experts was too small to achieve a satisfactory performance for the  DM. 
The number beneath the panel name is the number of citations on which the analysis 
is based. 
 
The performance based DM (either global or item weights depending on the study) 
outperforms the others in both statistical accuracy (p-value) and relative information 
with respect to the background measure (Rel.inf).  The Social network DM 
outperforms the equal weight DM on 4 of the 7 panels. In only the early Health panel 
is the SN DM significantly less accurate statistically than the equal weight DM. 
Figures 1 and 2 show the same information graphically. 
 
Table 3. Results for Social Network weights, Performance based weights, and 
equal weights 

  P-value Rel. inf  #seeds
Combined 
Score 

Early Health SocNet 0.002176 0.2181 15 0.000475 
130 Perf 0.3889 0.4345 15 0.169 
 Equal    0.09153 0.167 15 0.01528 
      
Internal 
Dose SocNet 0.07101 0.5997 55 0.04259 
180 Perf 0.8318 0.7745 55 0.6442 
 Equal    0.1125 0.5164 55 0.05812 
      
Soil/Plant SocNet 3.08E-07 0.2489 31 7.68E-08 
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78 Perf 4.22E-06 0.3317 31 1.40E-06 
 Equal    3.08E-07 0.2117 31 6.53E-08 
      
Animal SocNet 0.557 0.5123 8 0.2854 
202 Perf 0.7565 1.11 8 0.8396 
 Equal    0.557 0.3573 8 0.199 
      
Wet 
Deposition SocNet 0.1245 0.7048 19 0.08913 
37 Perf 0.2556 0.4024 19 0.1029 
 Equal    0.003239 0.6491 19 0.002103 
      
Dry 
Deposition SocNet 0.3992 0.1516 14 0.06051 
37 Perf 0.659 0.1789 14 0.1179 
 Equal    0.00169 0.1629 14 0.000275 
      
Dispersion SocNet 0.355 0.3483 23 0.1236 
62 Perf 0.8592 0.444 23 0.3815 
 Equal    0.2593 0.2467 23 0.06397 

 
 
Figure 1. Combined scores (calibration × information) for Social Network 
weights, Performance based weights, and equal weights 

EU-USNRC Expert Panels: Decision Maker Performance
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Figure 2. P-values and Information for Social Network weights, Performance 
based weights, and equal weights 
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Figure 3 compares the ranks of the SN weights and the combined performance scores. 
The Soil panel has been excluded owing to the poor performance and small number of 
experts. We see that in two cases (Dispersion, Animal) the ranks are in good 
agreement. In early Health they are anti-correlated, and the remaining cases are 
indeterminate. 
For four panels, we investigated the situation when the experts who weighted 0 
according to citations are removed from the expert pool. This concerns selection of 
experts before any elicitation. The result given in Table 4 does not encourage us to 
conduct elicitation only among those experts with nonzero SN weights. From the case 
Early Health Effects we see it might be very dangerous to do so.  
 
Figure 3. Experts' performance ranks and social network weight ranks 
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0 0,3889 0,09153 Early Health 
Effects 1 

0,002176 
0,02116 0,03462 

0 0,8592 0,2593 Dispersion 
 3 

0,355 
0,8592 0,1588 

0 0,659 0,00169 Dry 
Deposition 3 

0,3565 
0,659 0,00169 

0 0,2556 0,003239 Wet 
Deposition 3 

0,1245 
0,1701 0,05047 

 

5. Likelihood weights 
A natural  suggestion for weighting experts on the basis of observed outcomes is 
simply to assign a weight proportional to the assessed probability of the observed 
outcomes. These are termed "likelihood weights".  A recent suggestion of  likelihood 
weights for Bayesian belief nets is put forward in (Stiber et al, 2004 ).  Unlike Social 
Network weights, likelihood weights require seed variables, and in this sense they are 
no less resource intensive than the classical model's performance based weights. If 
likelihood weights delivered good performance with fewer seed variables, this would 
be a significant advantage. Such a claim has not been advanced, though it could be 
studied empirically with the methods used in the following section. 
 
Likelihood weights constitute an improper scoring rule, sometimes called the "direct 
rule"(Cooke 1991).  Indeed, let X be an uncertain quantity with continuous range, and 
suppose an expert believes density function g(x), and is asked to state an assessed 
density f(x). If value x is observed, the expert receives score K × f(x) for some 
constant K. The expert's expected score is thus 
 
 Expected score = K∫ f(x)g(x)dx. 
 
If the expert chooses f to maxmize his expected score he will evidently choose 
 
 f(x) = δ(x* - x) ;  
 
where x* = argmax g(x) and δ(x) is the Dirac function assigning unit mass to the point 
x. Hence, if an experts are rewarded in a manner proportional to the likelihood of  an 
observed outcome, an expert who wishes to maximize his/her expected reward is 
encouraged to give extremely overconfident assessments.  In the same vein, one can 
question whether likelhood scores are reasonable measures of performance. An expert 
who is poorly calibrated and uninformative may nonetheless have a higher likelihood 
score than a well calibrated informative expert.  The AOT-AEX case discussed in the 
next section provides an example.  
 
When several outcomes are observed, we interpret the likelihood of the joint 
observation as the product of the likelihoods of the individual observations. We thus 
assume that each expert regards the variables as independent. In cases where no 
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information on dependence is assessed, there is no practical alternative but to proceed 
with the independence assumption. 
 
In spite of these features, the likelihood weights continue to have  an appeal, perhaps 
owing to the salient role of likelihood in Bayesian and classical statistics.  Without 
contesting the proper role of theoretical disquitions, the present study focuses on 
performance with real expert data.  
 

6. Results with likelihood weights 
The expert data from the TU Delft data base consists of quantile assessments from 
experts. We may implement likelihood weights  in two ways, according to how we 
define the likelihood of the observed values. For each expert, we may either (A) 
define the likelihood of the observation as the probability of the interquantile interval 
into which the observation falls, or (B) using the minimal information density fit to 
the expert's quantiles, define the likelihood as the density at the observed value. To 
illustrate the difference between these two alternatives,  suppose the value 15 is 
observed. Suppose  expert 1  assess his 5% quantile at 10 and his 25% quantile at 20, 
while expert 2 assesses his 5% quantile at 10 and his 25% quantile at 50. No 
intermediate quantiles are assessed. On alternative (A) both experts  assign the same 
likelihood to the observation, namely 0.2. Using a uniform background measure with 
alternative (B), the first expert assigns a likelihood of 0.2 / 10 = 0.02; while the 
second expert assigns likelihood 0.2 / 40 = 0.005. 
 
Alternative (B) is more in keeping with the spirit of likelihood weights, though it 
requires the uniform background measure. In the TU Delft data, this measure is 
supplied by the analyst and not assessed by experts. Alternative (A) has been analyzed 
in (Van Rooij 2005); which echoes the results found below. We proceed here with 
alternative (B). In either case, it is preferable if the experts assess a large number of 
quantiles. In most TU Delft studies, the experts assessed the  5%, 50% and 95% 
quantiles; however, in 5 studies the 25% and 75% quantiles were also assessed. These 
are (references to number in Table 2 of ( this volume )) 

1. Amsterdam Option Traders  AEX (AOT-AEX), next day opening price for the 
AEX index (6) 

2. Amsterdam Option Traders, risk analysts (AOT-Risk) (7) 
3. DSM ground water transport (8) 
4. Dike ring risk (30) 
5. Health effects of fine Particulate Matter PM2.5 (35) 

 
In all cases the uniform background measure was used. Table 5 below compares the 
decision makers based on likelihood weights, with the global (classical model) and 
equal weighting. In each case the calibration, average relative information and 
combined score (product of calibration and information scores) are shown. The full 
data including the expert weights are given in the appendix. To enable the comparison 
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with likelihood weights, the calculations are sometimes done differently than in Table 
2 of (Cooke and Goossens 2006)4 . 
 
In two of the five studies (AEX, DSM) the calibration of the likelihood weights is 
marginally acceptable. A similar remark holds for the equal weights (for DSM, Dike 
ring). In the Dike ring case, the likelihood and global weights are nearly identical, in 
the other cases  they are markedly different (see appendix). 
 
 
 
 
 
Table 5 Comparison of likelihood, performance based and equal weighting 
Study Expert Calibr'n 

(P-value) 
Ave. 
rel. 
Inf. 

# seeds Combined
Score 

L'hood  0.04488 0.3933 34 0.1842 AOT 
AEX Global  0.9652 0.5224 34 0.5042 

 equal  0.9769 0.2075 34 0.2027 
      

L'hood  0.8597 1.047 11 0.9005 AOT 
Risk Global  0.8272 1.212 11 1.003 

 equal  0.324 0.7449 11 0.2413 
      

L'hood  0.08694 3.419 10 0.2972 DSM 
grndwater Global  0.7562 2.787 10 2.107 

 equal  0.05891 2.895 10 0.1706 
      

Dikering L'hood  0.1322 0.6067 47 0.0802 
 Global  0.3955 0.6462 47 0.2555 
 equal  0.06979 0.7537 47 0.0526 
      

PM2.5 L'hood  0.645 0.2132 12 0.1375 
 Global  0.578 0.8065 12 0.4661 
 equal  0.645 0.5421 12 0.3497 

 
 
Figure 4 below shows the calibration or p-values and information scores in graphical 
format. The p-values are shown on the left vertical axis, the average relative 
information with respect to the background measure on the right axis.  

 
                                                 
4 The calibration scores in Table 5 are computed with all the seed items and without reducing the effective number of seeds (see 
other article this volume). The reason for this is that there is no straightforward way to perform this reduction with likelihood 
weights. AOT-AEX  involved 38 seed variables, and 9 experts, but 4 of the experts assessed less than 34 of the seed variables. 
These 4 experts are excluded in this comparison. Dike ring involved 47 seed variables. In cases with a large number of seeds, the 
calibration scores of the experts may be very low and in such cases the effective number of seeds is often reduced to 10 to enable 
comparisons with other studies. These considerations explain differences between the values in Table 5 and those in Table 2 of 
(Cooke and Goossens 2006).   
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Figure 4: Comparison of P-values, and relative information for  Likelihood, Global 
and Equal weights. 
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Although there is no theorem that global weights out perform equal weights in 
calibration and information,  global decision maker  does optimize for the product of 
calibration and information, and in practice almost always performs better. The same 
remark leads us to suspect better performance than likelihood weights, and this is 
indeed borne out in Figure 5. It is interesting to compare these three decision makers 
with regard to their likelihood scores. For each decision maker, we compute the 
likelihood of the realizations and, for graphical representation,  normalize so that the 
three likelihood scores sum to one. Figure 5 compares these likelihood scores for the 
three decision makers, and also shows the combined score from the classical model 
(calibration  × information). 
 
It is notable that the decision maker formed using likelihood weights does not 
generally have a higher likelihood score than the other decision makers. This is the 
case in only AOT-AEX and DSM ground water,  the two studies in which the 
likelihood weight decision maker's calibration is borderline. 
 
Figure 5 Comparison of Combined scores (calibration × information) and normalized 
likelihood scores for Likelihood, Global and Equal weights. 
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The overall picture is as follows. In terms of calibration and information,  likelihood 
weights'  performance is intermediate between that of the global and the equal weight 
decision maker.  In terms of likelihood scores, the performance of  likelihood weights 
is somewhat erratic. 
 

7.  Conclusions 
The picture that emerges with regard to social network weights is rather mixed. 
Clearly, SN theory does not provide an alternative to performance based combination 
of expert judgments. Indeed, the statistical accuracy of the SN decision maker is 
sometimes unacceptably low. On the other hand, it does outperform equal weighting 
in the majority of cases. In some cases the SN weights lead to a ranking of experts 
which is similar to their performance ranks, but this pattern is not consistent. 
 
It might be speculated that SN theory would provide an acceptable means for 
nominating experts. So far as we can judge from this data, such a conclusion would 
not be supported. 
 
Of course there are many caveats to these conclusions. This represents a first attempt 
to derive social network weights. There are doubtless other ways of constructing such 
weights, based on scientific citations. Some of these were mentioned above and 
include 

• Restricting references to the recent past 
• Alternative counts for references in multi-author papers 
• Using pair-wise expert interactions 

The results here, though not overwhelmingly positive, do nonetheless motivate further 
research into social interaction methods for nominating and weighting experts. 
Indeed, a full expert judgment study with performance measurement requires an 
investment in time and effort, with a view to securing external validation. If high 
confidence in a comparable level of validation can be obtained by less intensive 
methods, this would be very welcome, and would facilitate the application of 
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structured expert judgment in situations where the resources for a full study are not 
available. 
 
With regard to likelihood weights, the evidence presented here suggests that they do 
not out perform global weights either with regard to calibration and information, 
which are optimized in the global weights, nor indeed with regard to likelihood.  If, in 
spite of the theoretical drawbacks noted in section 4, one adhered to the idea that 
likelihood is a good measure of performance, then  this study suggest that such a 
person  could better default to equal weighting and spare himself trouble of 
developing seed variables. 
 

Appendix 
 
The following table gives the individual expert and DM scores for the EU-USNRC 
studies. The Combined Score is the product of the calibration score and the Mean 
Relative Information with respect to the background for seed variables. SN denotes 
the social network, the SN weights are the weights assigned to the individual experts 
by the social network theory discussed in section 4.  SNdm in column 1 denotes the 
decision maker resulting from combining the experts with the SN weights. 
 

Study 

Dispersion 

Calibr'n 
(P-
value) 

Mean 
Rel 
Inf 
(seeds) 

# 
seeds

Combined 
Score 

SN 
Weights 

Exp.1 5.23E-05 0.6418 23 3.36E-05 0 
Exp.2 7.57E-08 0.7848 23 5.94E-08 0 
Exp.3 0.001498 0.6519 23 0.000976 0 
Exp.4 0.1358 0.5574 23 0.0757 0.645 
Exp.5 0.034 0.961 23 0.03268 0.0323 
Exp.6 0.009073 0.8812 23 0.007995 0.0161 
Exp.7 0.01447 0.8404 23 0.01216 0.0161 
Exp.8 0.02151 0.6411 23 0.01379 0.2905 

SN dm       0.355 0.3483 23 0.1236          
item dm    0.8592 0.444 23 0.3815          

global dm  0.5187 0.5254 23 0.2725          
equal   dm 0.2593 0.2467 23 0.06397          

      
Dry Deposition      

Exp.1 3.06E-05 0.7044 14 2.16E-05 0.081 
Exp.2 0.5274 0.1661 14 0.08759 0.405 
Exp.3 0.00169 0.41 14 0.000693 0 
Exp.4 0.00169 0.7231 14 0.001222 0 
Exp.5 2.06E-08 0.7201 14 1.48E-08 0.189 
Exp.6 0.002202 1.341 14 0.002953 0.243 
Exp.7 0.00169 0.7826 14 0.001323 0.081 
Exp.8 0.000877 0.5431 14 0.000476 0.001 

SN dm       0.3992 0.1516 14 0.06051          
item dm    0.659 0.1789 14 0.1179          

global dm  0.5274 0.1812 14 0.09557          
equal   dm 0.00169 0.1629 14 0.000275          
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Wet Deposition      

Exp.1 3.85E-10 2.254 19 8.69E-10 0.16 
Exp.2 0.01293 0.5595 19 0.007233 0 
Exp.3 0.003239 1.096 19 0.00355 0 
Exp.4 1.29E-06 1.672 19 2.15E-06 0.37 
Exp.5 0.00387 0.9804 19 0.003794 0.32 
Exp.6 0.000251 1.683 19 0.000423 0.15 
Exp.7 0.00025 1.737 19 0.000435 0 

SN dm       0.1245 0.7161 19 0.08913          
item dm    0.2556 0.4024 19 0.1029          

global dm  0.2556 0.393 19 0.1005          
equal   dm 0.003239 0.6491 19 0.002103          

      
Foodchain 

Animal      
Exp.1 0.002442 1.118 8 0.002732 0.025 
Exp.2 0.001995 1.15 8 0.002293 0.196 
Exp.3 0.09031 0.1564 8 0.01412 0.082 
Exp.4 0.7565 1.11 8 0.8396 0.228 
Exp.5 0.01391 1.314 6 0.01829 0.177 
Exp.6 0.6497 1.302 8 0.8461 0.247 
Exp.7 0.02528 1.272 7 0.03215 0.045 

SN dm       0.557 0.5123 8 0.2854          
item dm    0.7565 1.11 8 0.8396          

global dm  0.7565 1.11 8 0.8396          
equal   dm 0.557 0.3573 8 0.199          

      
Foodchain 
soil/plant      

Exp.1 0 1.591 31 0 0.321 
Exp.2 4.96E-16 0.5205 31 2.58E-16 0.143 
Exp.3 1.06E-07 0.5318 31 5.63E-08 0.321 
Exp.4 1.34E-08 0.7998 31 1.07E-08 0.215 

SN dm       3.08E-07 0.2489 31 7.68E-08          
item dm    9.53E-07 0.3972 31 3.79E-07          

global dm  4.22E-06 0.3317 31 1.40E-06          
equal   dm 3.08E-07 0.2117 31 6.53E-08          

      
Internal 

dosimetry      
Exp.1 0.003235 1.66 39 0.00537 0.1875 
Exp.2 0.7346 0.8151 55 0.5988 0.25 
Exp.3 1.70E-10 1.947 50 3.31E-10 0.025 
Exp.4 8.39E-17 2.363 39 1.98E-16 0.275 
Exp.5 4.55E-06 1.182 39 5.38E-06 0.0375 
Exp.6 0.009419 0.8617 28 0.008116 0.225 

SN dm       0.07101 0.5997 55 0.04259          
item dm    0.7346 0.8151 55 0.5988          

global dm  0.8318 0.7745 55 0.6442          
equal   dm 0.1125 0.5164 55 0.05812          

      
Early Health      

Exp.1 0.000185 0.8381 15 0.000155 0.234 
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Exp.2 0.000284 1.381 15 0.000393 0 
Exp.3 2.44E-06 1.016 15 2.48E-06 0.298 
Exp.4 0.000356 0.9652 15 0.000343 0.053 
Exp.5 1.69E-12 1.123 15 1.89E-12 0.021 
Exp.6 4.46E-05 0.5796 15 2.58E-05 0.053 
Exp.7 0.000319 0.4182 15 0.000133 0.341 

SN dm       0.002176 0.2181 15 0.000475          
Item dm    0.3889 0.4345 15 0.169          

global dm  0.3889 0.3872 15 0.1506          
equal   dm 0.09153 0.167 15 0.01528          

 
 

# 
seeds

Expert Calibr'n 
(P-

value) 

Ave. 
rel. Inf. 

 

Combined
score 

Likelihood
weights 

Global 
weights 

AOT-
AEX       

Exp.  1  0.8686 0.39 34 0.3388 2.283E-06 0 
Exp.  2  0.8377 0.2166 34 0.1815 8.349E-04 0 
Exp.  3  0.5538 0.4177 34 0.2313 1.261E-08 0 
Exp.  4  0.9652 0.5224 34 0.5042 6.427E-01 1 
Exp.  5  0.9403 0.5776 34 0.5431 3.565E-01 0 
L'hood  0.04488 0.3933 34 0.1842            
Global  0.9652 0.5224 34 0.5042            
Equal  0.9769 0.2075 34 0.2027            

       
AOT-
Risk      

Exp.  1  0.281 1.273 11 0.3577 6.74E-01 0 
Exp.  2  0.8272 1.212 11 1.003 2.45E-01 1 
Exp.  3  0.1609 1.446 11 0.2327 6.41E-05 0 
Exp.  4  0.08609 1.063 11 0.09155 2.08E-03 0 
Exp.  5  0.4949 1.451 11 0.718 7.88E-02 0 
L'hood  0.8597 1.047 11 0.9005            
Global  0.8272 1.212 11 1.003            
Equal  0.324 0.7449 11 0.2413            

       
DSM gr       
Exp.  1  0.000139 4.445 10 0.0006161 3.253E-14 0 
Exp.  2  0.000697 3.905 10 0.002721 1.191E-02 0 
Exp.  3  0.44 3.802 10 1.673 9.020E-02 0.74 
Exp.  4  1.27E-11 6.217 10 7.87E-11 7.165E-28 0 
Exp.  5  0.1466 1.704 10 0.2498 1.952E-04 0.11 
Exp.  6  0.007621 4.831 10 0.03681 9.561E-06 0 
Exp.  7  0.08694 3.797 10 0.3301 8.977E-01 0.15 
L'hood  0.08694 3.419 10 0.2972            
Global  0.7562 2.787 10 2.107            
Equal  0.05891 2.895 10 0.1706            

       
Dikering       
Exp.  1  1.47E-05 1.093 47 1.61E-05 3.519E-06 0 
Exp.  2  1.30E-05 1.254 47 1.63E-05 9.079E-10 0 
Exp.  3  0.000144 0.8015 47 0.0001153 9.690E-02 0 
Exp.  4  1.56E-08 1.46 47 2.28E-08 8.754E-19 0 
Exp.  5  2.04E-11 1.572 47 3.21E-11 1.200E-18 0 
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Exp.  6  0.0341 0.4371 47 0.0149 1.111E-09 0 
Exp.  7  5.28E-15 0.9633 47 5.09E-15 1.412E-28 0 
Exp.  8 4.81E-05 1.061 47 5.10E-05 3.389E-12 0 
Exp.  9 3.83E-11 1.403 47 5.38E-11 8.047E-14 0 

Exp.  10 0.3955 0.6462 47 0.2555 9.031E-01 1 
Exp.  11 3.09E-18 2.133 47 6.59E-18 2.965E-24 0 
Exp.  12 3.25E-19 2.471 47 8.04E-19 7.753E-27 0 
Exp.  13 6.78E-08 1.531 47 1.04E-07 4.953E-12 0 
Exp.  14 0 2.065 47 0 3.793E-35 0 
Exp.  15 6.49E-08 1.24 47 8.05E-08 1.864E-11 0 
Exp.  16 0.001114 0.8198 47 0.000913 1.086E-09 0 
Exp.  17 3.27E-09 1.111 47 3.64E-09 2.757E-12 0 
L'hood  0.1322 0.6067 47 0.0802            
Global  0.3955 0.6462 47 0.2555            
Equal  0.06979 0.7537 47 0.0526            

       
PM2.5       
Exp.  1  0.000508 1.68 12 0.0008531 3.02E-06  
Exp.  2  0.1195 1.486 12 0.1776 9.94E-02 0.9 
Exp.  3  0.08127 0.8755 12 0.07115 7.77E-02  
Exp.  4  0.08554 0.2331 12 0.01994 7.24E-01 0.1 
Exp.  5  2.90E-05 2.673 12 7.74E-05 7.46E-02  
Exp.  6  0.000634 1.244 12 0.0007879 2.45E-02  
L'hood  0.645 0.2132 12 0.1375            
Global  0.578 0.8065 12 0.4661            
Equal  0.645 0.5421 12 0.3497            
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