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Abstract: We review the applications of structured expert judgment uncertainty quantification 
using the "classical model" developed at the Delft University of Technology over the last 17 
years (Cooke, 1991). These involve 45 expert panels, performed under contract with problem 
owners who reviewed and approved the results. With a few exceptions, all these applications 
involved the use of seed variables; that is, variables from the experts' area of expertise for which 
the true values are available post hoc. Seed variables are used to (1) measure expert performance, 
(2) enable performance based weighted combination of experts' distributions, and (3) evaluate 
and hopefully validate the resulting combination or "decision maker". This article reviews the 
classical model for structured expert judgment and the performance measures, reviews 
applications, comparing performance based decision makers with "equal weight" decision 
makers, and collects some lessons learned. 
 
Acknowledgement: The authors gratefully acknowledge the contributions of many people who 
cooperated in developing this database. Willy Aspinall, and Tim Bedford are independently 
responsible for a quarter of the studies. 
 
Introduction 
The pro’s and con’s of different weighting schemes remain a subject of research. The European 
Union contracted the TU Delft to review its applications both within EU projects, and elsewhere, 
in which experts assessed variables in their field of expertise for which the true values are 
known, in addition to variables of interest (Goossens et al 1996, 1998).  These are called seed, or 
calibration, variables. Since then, the TU Delft expert judgment data base has nearly doubled. 
We now have studies involving over 67,000 experts' subjective probability distributions. The 
main sectors and summary information are given in Table 1 below. 
  

Table 1 Summary of applications per sector 

Sector # of 
experts 

# of 
variables 

# of 
elicitations 

Nuclear applications 98 2,203 20,461 
Chemical ind. & gas industry 56 403 4,491 
Groundwater / water pollution / 
dike ring / barriers  

49 212 3,714 

Aerospace sector / space debris 
/aviation 

51 161 1,149 
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Occupational sector: ladders / 
buildings (thermal physics) 

13 70 800 

Health: bovine / chicken 
(Campylobacter) / SARS 

46 240 2,979 

Banking: options / rent / 
operational risk 

24 119 4,328 

Volcanoes / dams 231 673 29079 
Rest group 19 56 762 
In total 521 3688 67001 

 
The authors believe that this data base represents a unique source from which much can be 
learned regarding the application of structured expert judgment in quantitative decision support. 
The entire data, appropriately anonymized, may be obtained from the first author. It is hoped that 
others will use this data to further develop methods for using structured expert judgment. 
 
We assume that uncertainty is represented as subjective probability and concerns results of 
possible observations. For a discussion of foundational issues, the reader is referred to (Cooke 
2004). Section 1 discusses goals of a structured expert judgment study; section 2 provides an 
explanation of the concepts and methods underlying the Delft expert judgment method. Section 3 
gives an updated summary of the results, comparing equal weighting with performance based 
weighting and with the best expert. Section 4 discusses seed variables and robustness, and 
section 5  is devoted to lessons learned and anecdotal information,  common pitfalls and 
misconceptions. A concluding section identifies possible topics for future research.  Another 
article in this issue compares performance of social network weighted combinations, based on 
citations, and likelihood weighted combinations. One recent study from the Harvard Kuwait 
project is discussed in detail in another article in this issue.  
 
1.   Structured expert judgment  
 
Expert judgment is sought when substantial scientific uncertainty impacts on a decision process. 
Because there is uncertainty, the experts themselves are not certain and hence will typically not 
agree. Informally soliciting expert advice is not new. Structured expert judgment refers to an 
attempt to subject this process to transparent methodological rules, with the goal of treating expert 
judgments as scientific data in a formal decision process.  The process by which experts come to 
agree is the scientific method itself. Structured expert judgment cannot pre-empt this role and 
therefore cannot have expert agreement as its goal. We may broadly distinguish three different 
goals to which a structured judgment method may aspire: 
 

•  Census 
•  Political consensus 
•  Rational consensus 

 
A study aiming at census will simply try to survey the distribution of views across an expert 
community.  An illustration of this goal is found in the Nuclear Regulatory Commission’s 
Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use 
of Experts: 
 

“To represent the overall community, if we wish to treat the outlier’s 
opinion as equally credible to the other panelists, we might properly assign 
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a weight (in a panel of 5 experts) of 1/100 to his or her position, not 1/5” 
(NUREG/CR-6372,  p.36) 

 
The goal of "representing the overall community" may in this view lead to a differential 
weighting of experts' views according to how representative they are of other experts. A similar 
goal is articulated in (Winkler et al 1995). The philosophical underpinnings of this approach are 
elaborated in (Budnitz et al 1998). Expert agreement on the representation of the overall 
community is the weakest, and most accessible,  type of consensus to which a study may aspire., 
Agreement on a 'distribution to represent a group', agreement on a distribution and agreement on 
a number are the other types of consensus, in decreasing accessibility. 
  
Political consensus refers to a process in which experts are assigned weights according to the 
interests or stakeholders they represent. In practice, an equal number of experts from different 
stakeholder groups would be placed in an expert panel and given equal weight in this panel. In 
this ways the different groups are included equally in the resulting representation of uncertainty. 
This was the reasoning behind the selection of expert panels in the EU USNRC accident 
consequence studies with equal weighting (Goossens and Harper 1998). 
 
Rational consensus refers to a group decision process. The group agrees on a method according to 
which a representation of uncertainty will be generated for the purposes for which the panel was 
convened, without knowing the result of this method. It is not required that each individual 
member adopt this result as his/her personal degree of belief. This a form of  'agreement on a 
distribution to represent a group.  To be rational this method must comply with necessary 
conditions devolving from the general scientific method. Cooke (1991) formulates necessary 
conditions or principles which any method warranting the predicate "scientific" should satisfy: 
 

• Scrutability/accountability: All data, including experts' names and assessments, and all 
processing tools are open to peer review and results must be reproducible by competent 
reviewers.  

• Empirical control: Quantitative expert assessments are subjected to empirical quality 
controls. 

• Neutrality: The method for combining/evaluating expert opinion should encourage 
experts to state their true opinions, and must not bias results. 

• Fairness: Experts are not pre-judged, prior to processing the results of their assessments. 
 
Thus, a method is proposed which satisfies these conditions and to which the parties pre-commit. 
The method is applied and after the result of the method is obtained, parties wishing to withdraw 
from the consensus incur a burden of proof. They must demonstrate that some heretofore 
unmentioned necessary condition for rational consensus has been violated. Absent that, their 
dissent is not "rational". Of course any party may withdraw from the consensus because the result 
is hostile to his or her interests – this is not rational dissent and does not threaten rational 
consensus.  
 
The requirement of empirical control will strike some as peculiar in this context. How can there 
be empirical control with regard to expert subjective probabilities? To answer this question we 
must reflect on the question 'when is a problem an expert judgment problem?' We would not 
have recourse to expert judgment to determine the speed of light in a vacuum. This is physically 
measurable and has been measured to everyone's satisfaction. Any experts we queried would 
give the same answer. Neither do we consult expert judgment to determine the proclivities of a 
god. There are no experts in the operative sense of the word for this issue. A problem is 
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susceptible for expert judgment only if there is relevant scientific expertise. This entails that there 
are theories and measurements relevant to the issues at hand, but that the quantities of interest 
themselves cannot be measured in practice. For example, toxicity of a substance for humans is 
measurable in principle, but is not measured for obvious reasons. However, there are toxicity 
measurements for other species which might be relevant to the question of toxicity in humans.  
Other examples are given in section 4. If a problem is an expert judgment problem, then 
necessarily there will be relevant experiments or measurements. Questions regarding such 
experiments can be used to implement empirical control.  Studies indicate that performance on 
so-called almanac questions does not predict performance on variables in an expert's field of 
expertise. (Cooke, Mendel and Thijs, 1988). The key question regarding seed variables is this: Is 
performance on seed variables judged relevant for performance on the variables of interest?  For 
example, should an expert who gave very over-confident off-mark assessments on the variables 
for which we knew the true values be equally influential on the variables of interest as an expert 
who gave highly informative and statistically accurate assessments? That is indeed the choice 
that often confronts a problem owner after the results of an expert judgment study are in.  If seed 
variables in this sense cannot be found, then rational consensus is not a feasible goal and the 
analyst should fall back on one of the other goals. 
 
The above definition of “rational consensus" for group decision processes is evidently on a very 
high level of generality. Much work has gone into translating this into a workable procedure 
which gives good results in practice. This workable procedure is embodied in the "classical 
model" of (Cooke 1991) described in the following section.  
 
Before going into details it is appropriate to say something about Bayesian approaches. Since 
expert uncertainty concerns experts' subjective probabilities many people believe that expert 
judgment should be approached from the Bayesian paradigm. This paradigm, recall, is based on 
the representation of preference of a rational individual in terms of maximal expected utility.  If a 
Bayesian is given experts' assessments on variables of interest and on relevant seed variables, 
then (s)he may update his/her prior on the variables of interest by conditionalizing on the given 
information. This requires that the Bayesian formulates his/her joint distribution over  

•  the variables of interest 
•  the seed variables 
•  the experts' distributions over the seed variables and the variables of interest. 

Issues that arise in building such a model are discussed in Cooke (1991). Suffice to say here that a 
group or rational individuals is not itself a rational individual, and group decision problems are 
notoriously resistant to the Bayesian paradigm. 
 
 2.    The classical model 

 
The above principles have been operationalized in the so called “classical model”, a performance 
based linear pooling or weighted averaging model (Goossens and Cooke, 1989, Cooke 1991). The 
weights are derived from experts’ calibration and information scores, as measured on seed 
variables. Seed variables serve a threefold purpose:  
 

(i) to quantify experts’ performance as subjective probability assessors,  
(ii) to enable performance-optimized combinations of expert distributions, and  
(iii) to evaluate and hopefully validate the combination of expert judgments.  

 
The name “classical model” derives from an analogy between calibration measurement and 
classical statistical hypothesis testing. It contrasts with various Bayesian models.   
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The performance based weights use two quantitative measures of performance, calibration and 
information. Loosely, calibration measures the statistical likelihood that a set of experimental 
results correspond, in a statistical sense, with the expert’s assessments. Information measures the 
degree to which a distribution is concentrated. 
 
These measures can be implemented for both discrete and quantile elicitation formats. In the 
discrete format, experts are presented with uncertain events and perform their elicitation by 
assigning each event to one of several pre-defined probability bins, typically 10%, 20%,…90%. 
In the quantile format, experts are presented an uncertain quantity taking values in a continuous 
range, and they give pre-defined quantiles, or percentiles, of the subjective uncertainty 
distribution, typically 5%, 50% and 95%.  The quantile format has distinct advantages over the 
discrete format, and all the studies reported below use this format. In five studies the 25% and 
75% quantiles were also elicited. To simplify the exposition we assume that the 5%, 50% and 
95% values were elicited. 
 
Calibration 
For each quantity, each expert divides the range into 4 inter quantile intervals for which his/her 
probabilities are known, namely p1 = 0.05: less than or equal to the 5% value, p2 = 0.45: greater 
than the 5% value and less than or equal to the 50% value, etc. 
 
If N quantities are assessed, each expert may be regarded as a statistical hypothesis, namely that 
each realization falls in one of the four inter-quantile intervals with probability vector 
 
 p= (0.05, 0.45, 0.45, 0.05). 
 
Suppose we have realizations x1,…xN of these quantities. We may then form the sample 
distribution of the expert's inter quantile intervals as: 
 
 s1(e) = #{ i  |  xi  ≤ 5% quantile}/N  
 s2(e) = #{ i  | 5% quantile < xi ≤  50% quantile}/N 
 s3(e) = #{ i  | 50% quantile < xi ≤  95% quantile}/N 
 s4(e) = #{ i  | 95% quantile < xi }/N 
 s(e) = (s1,…s4) 
 
Note that the sample distribution depends on the expert e. If the realizations are indeed drawn 
independently from a distribution with quantiles as stated by the expert then the quantity 
 
 2NI(s(e) | p) = 2N ∑i=1..4 si ln(si / pi)        (1) 
 
is asymptotically distributed as a chi-square variable with 3 degrees of freedom.  This is the so-
called likelihood ratio statistic, and I(s | p) is the relative information of distribution s with respect 
to p. If we extract the leading term of the logarithm we obtain the familiar chi-square test statistic 
for goodness of fit. There are advantages in using the form in (1) (Cooke 1991).   
 
If after a few realizations the expert were to see that all realization fell outside his 90% central 
confidence intervals, he might conclude that these intervals were too narrow and might broaden 
them on subsequent assessments. This means that for this expert the uncertainty distributions are 
not independent, and he learns from the realizations. Expert learning is not a goal of an expert 
judgment study and his joint distribution is not elicited. Rather, the decision maker wants experts 
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who do not need to learn from the elicitation. Hence the decision maker scores expert e as the 
statistical likelihood of the hypothesis  
 
He: "the inter quantile interval containing the true value for each variable is drawn independently 
from probability vector p."   
 
A simple test for this hypothesis uses the test statistic (1), and the likelihood, or p-value, or 
calibration score of this hypothesis, is: 
 
 Calibration score(e) =  p-value = Prob{ 2NI(s(e) | p)≥  r | He} 
 
where r is the value of (1) based on the observed values x1,…xN. It is the probability under 
hypothesis He that a deviation at least as great as r should be observed on N realizations if He  
were true. Calibration scores are absolute and can be compared across studies. However, before 
doing so, it is appropriate to equalize the power of the different hypothesis tests by equalizing the 
effective number of realizations. To compare scores on two data sets with N and N’ realizations, 
we simply use the minimum of N and N' in (1), without changing the sample distribution s. In 
some cases involving multiple realizations of one and the same assessment, the effective number 
of seed variables is based on the number of assessments and not the number of realizations. 
 
Although the calibration score uses the language of simple hypothesis testing, it must be 
emphasized that we are not rejecting expert-hypotheses; rather we are using this language to 
measure the degree to which the data supports the hypothesis that the expert's probabilities are 
accurate. Low scores, near zero, mean that it is unlikely that the expert’s probabilities are correct. 
 
Information 
The second scoring variable is information. Loosely, the information in a distribution is the 
degree to which the distribution is concentrated. Information cannot be measured absolutely, but 
only with respect to a background measure. Being concentrated or "spread out" is measured 
relative to some other distribution. Commonly, the uniform and log-uniform background 
measures are used (other background measures are discussed in (Yunusov et al. 1999). 
 
Measuring information requires associating a density with each quantile assessment of each 
expert. To do this, we use the unique density that complies with the experts' quantiles and is 
minimally informative with respect to the background measure. This density can easily be found 
with the method of Lagrange multipliers. For a uniform background measure, the density is 
constant between the assessed quantiles, and is such that the total mass between the quantiles 
agrees with p.  The background measure is not elicited from experts as indeed it must be the same 
for all experts; instead it is chosen by the analyst. 
 
The uniform and log-uniform background measures require an intrinsic range on which these 
measures are concentrated. The classical model implements the so-called k% overshoot rule: for 
each item we consider the smallest interval I = [L, U] containing all the assessed quantiles of all 
experts and the realization, if known. This interval is extended to  
 
 I* = [L*, U*]; L* = L – k(U-L)/100;  U* = U + k(U-L)/100.   
 
The value of k is chosen by the analyst. A large value of k tends to make all experts look quite 
informative, and tends to suppress the relative differences in information scores. The information 
score of expert e on assessments for uncertain quantities 1…N is 
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Information Score(e) =Average Relative information wrt Background = (1/N) ∑i = 1..N I(fe,i | gi)  
 
where gi  is the background density for variable i  and fe,i is expert e's density for item i. This is 
proportional to the relative information of the expert's joint distribution given the background, 
under the assumption that the variables are independent. As with calibration, the assumption of 
independence here reflects a desideratum of the decision maker and not an elicited feature of the 
expert's joint distribution. The information score does not depend on the realizations. An expert 
can give himself a high information score by choosing his quantiles very close together.  
 
Evidently, the information score of e depends on the intrinsic range and on the assessments of the 
other experts. Hence, information scores cannot be compared across studies.  
 
Of course, other measures of concentrated-ness could be contemplated. The above information 
score is chosen because it is 

•  familiar 
•  tail insensitive 
•  scale invariant 
•  slow 

The latter property means that relative information is a slow function; large changes in the expert 
assessments produce only modest changes in the information score. This contrasts with the 
likelihood function in the calibration score, which is a very fast function. This causes the product 
of calibration and information to be driven by the calibration score. 
 
Decision maker 
A combination of expert assessments is called a "decision maker" (DM). All decision makers 
discussed here are examples of linear pooling. For a discussion of pro's and con's of the linear 
pool see (French, 1985, Genest and Zidek, 1986, Cooke 1991). The classical model is essentially 
a method for deriving weights in a linear pool. "Good expertise" corresponds to good calibration 
(high statistical likelihood, high p-value) and high information. We want weights which reward 
good expertise and which pass these virtues on to the decision maker.  
 
The reward aspect of weights is very important. We could simply solve the following 
optimization problem: find a set of weights such that the linear pool under these weights 
maximizes the product of calibration and information. Solving this problem on real data, we have 
found that the weights do not generally reflect the performance of the individual experts. An 
example of this is given in section 4. 
 
As we do not want an expert's influence on the decision maker to appear haphazard, and we do 
not want to encourage experts to game the system by tilting their assessments to achieve a desired 
outcome, we must impose a strictly scoring rule constraint on the weighing scheme.  Roughly, 
this means that an expert achieves his maximal expected weight by and only by stating 
assessments in conformity with his/her true beliefs. 
 
Consider the following score for expert e: 
 
 wα (e) = 1α(calibration score)×calibration score(e) × information score(e)  (2) 
 
where 1α(x) = 0 if x< α and 1α(x) = 1 otherwise. Cooke (1991) shows that (2) is an asymptotically 
strictly proper scoring rule for average probabilities. This means the following: suppose an expert 
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has given his quantile assessments for a large number of variables and subsequently learns that 
his judgments will be scored and combined according the classical model. If (s)he were then 
given the opportunity to change the quantile values (e.g. the numbers 5%, 50% or 95%) in order 
to maximize the expected weight, the expert would choose values corresponding to his/her true 
beliefs.  Note that this type of scoring rule scores a set of assessments on the basis of a set of 
realizations. Scoring rules for individual variables were found unsuitable for purposes of 
weighting, for which discussion we refer to (Cooke 1991). 
 
The scoring rule constraint requires the term 1α(calibration score), but does not say what value of 
α we should choose. Therefore, we choose α so as to maximize the combined score of the 
resulting decision maker. Let DMα(i) be the result of linear pooling for item i with weights 
proportional to (2): 
 
DMα(i) = ∑e=1,..E wα(e) fe,i  / ∑e=1,..E wα(e)       (3) 
 
The global weight DM is DMα* where α* maximizes 
 
 calibration score(DMa) × information score(DMα).     (4) 
 
This weight is termed global because the information score is based on all the assessed seed items 
 
A variation on this scheme allows a different set of weights to be used for each time. This is 
accomplished by using information scores for each item rather than the average information 
score: 
 
wα (e,i) = 1α(calibration score)×calibration score(e) × I(fe,i | gi)     (5) 
 
For each α we define the Item weight DMα  for item i as 
 
IDMα(i) = ∑e=1,..E wα(e,i) fe,i  / ∑e=1,..E wα(e,i)      (6) 
 
 
The item weight DM is IDMα* where α* maximizes 
 
 calibration score(IDMa) × information score(IDMα).     (7) 
 
Item weights are potentially more attractive as they allow an expert to up- or down- weight 
him/herself for individual items according to how much (s)he feels (s)he knows about that item. 
"knowing less" means choosing quantiles further apart and lowering the information score for that 
item. Of course, good performance of item weights requires that experts can perform this up- 
down weighting successfully. Anecdotal evidence suggests that item weights improve over global 
weights as the experts receive more training in probabilistic assessment. Both item and global 
weights can be pithily described as optimal weights under a strictly proper scoring rule constraint. 
In both global and item weights calibration dominates over information, information serves to 
modulate between more or less equally well calibrated experts. 
   
Since any combination of expert distributions yields assessments for the seed variables, any 
combination can be evaluated on the seed variables. In particular, we can compute the calibration 
and the information of any proposed decision maker. We should hope that the decision maker 
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would perform better than the result of simple averaging, called the equal weight DM, and we 
should also hope that the proposed DM is not worse than the best expert in the panel.  
 
In the classical model calibration and information are combined to yield an overall or combined 
score with the following properties: 
 

1.   Individual expert assessments, realizations and scores are published. This enables any 
reviewer to check the application of the method, in compliance with the principle of 
accountability / scrutability. 

2. Performance is measured and hopefully validated, in compliance with the principle of 
empirical control. An expert's weight is determined by performance. 

3. The score is a long run proper scoring rule for average probabilities, in compliance 
with the principle of neutrality. 

4. Experts are treated equally, prior to the performance measurement, in compliance with 
the principle of fairness. 

 
Expert names and qualifications are part of the published documentation of every expert 
judgment study in the data base; however, they are not associated with assessments in the open 
literature. The experts reasoning is always recorded and sometimes published as expert rationales.  
 
There is no mathematical theorem that either item weights or global weights out-perform equal 
weighting or out-perform the best expert. It is not difficult to construct artificial examples where 
this is not the case. Performance of these weighting schemes is a matter of experience. In 
practice, global weights are used unless item weights perform markedly better. Of course there 
may be other ways of defining weights that perform better, and indeed there might be better 
performance measures. Good performance on one individual data set is not convincing.  What is 
convincing is good performance on a large diverse data set, such as the TU Delft expert judgment 
data base. In practice a method should be easy to apply, easy to explain, should do better than 
equal weighting and should never do something ridiculous.   
 
3. Applications of the classical model 
 
45 expert panels involving seed variables have been performed to date1. Because most of these 
studies were performed by or in collaboration with the TU Delft, it is possible to retrieve relevant 
details of these studies, and to compare performance of performance based and equal weight 
combination schemes.  For studies by (Ter Haar 1998), the data has not been retrieved.  
 
These are all studies performed under contract for a problem owner and reviewed and accepted by 
the contracting party. In most cases these have been published. Table 2 below lists these studies, 
references publications, and gives summary information. The number of variables and number of 
seed variables are shown, as is the number of effective seed variables. In general the effective 
number of seeds is equal to the least number of seeds assessed by some expert.  In this way each 
expert is scored with a test of the same power. In the Gas panel, the panel and the seed variables 
were split post hoc into corrosion and environmental panels.  
 
 

                                                 
1 These results are obtained with the EXCALIBUR software, available from 
http://delta.am.ewi.tudelft.nl/risk/. The windows version upgraded chi square and information 
computational routines, and this may cause differences with the older DOS version, particularly 
with regard to very low calibration scores.  
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Table 2 Expert judgment studies 

Case Name/Reference# 
  

# experts # variables 
/ # seeds

#effective 
seeds 

  

Perf. 
Measure Perform 

weights
equal 

weights 
best 

expert 
1 Dsm-1 10 14/8 8 calibr’n  0.66 0.53 0.54 

      inform’n 1.371 0.8064 1.549 Flange leak 11,22 

      combi’n 0.905 0.4274 0.836 
2 Dsm-2 8 39/12 11 calibr’n  0.84 0.5 0.005 

      inform’n 1.367 0.69 2.458 Crane risk  1 

      combi’n 1.148 0.345 0.012 
3 Estec-1 4 48/13 13 calibr’n  0.43 0.43 0.14 

      inform’n 1.72 1.421 2.952 Propulsion 11,22 

      combi’n 0.7398 0.611 0.413 
4 Estec-2 7 58/26 18 calibr’n  0.78 0.9 0.0001 

      inform’n 0.32 0.15 2.29 Space 
Debris 

37 

      combi’n 0.25 0.14 0.0002 
5 Estec-3 6 22/12 12 calibr’n  0.27 0.12 0.005 

      inform’n 1.442 0.929 2.549 Composite 
Materials 

39 

      combi’n 0.39 0.111 0.013 
6 AOT(daily) 9 38/38 6 calibr’n  0.95 0.95 0.95 

      inform’n 0.5043 0.2156 0.5043 Option trading 46 

      combi’n 0.4791 0.2048 0.4791 
7 AOT(risk) 5 11/11 11.00 calibr’n  0.8287 0.324 0.8287 

46       inform’n 1.212 0.7449 1.212 risk management 

        combi’n 1.003 0.2413 1.003 
8 Grond5 7 38/10 10 calibr’n  0.7 0.05 0.4 

      inform’n 3.008 3.16 3.966 Grndwater 
Transport 

9 

      combi’n 2.106 0.158 1.586 
9 Tuddispr 11 58/36 36 calibr’n  0.68 0.71 0.36 

      inform’n 0.827 0.715 1.532 Dispersion 
panel TUD 

12, 13 

      combi’n 0.562 0.508 0.552 
10 Tnodispr 7 58/36 36 calibr’n  0.69 0.32 0.53 

      inform’n 0.875 0.751 1.698 dispersion 
panel TNO 

13 

      combi’n 0.604 0.24 0.9002 
11 Tuddepos 4 56/24 22 calibr’n  0.45 0.34 0.45 

      inform’n 1.647 1.222 1.647 dry  
deposition 

12, 13 

      combi’n 0.741 0.415 0.741 
12 Acnexpts 7 43/10 10 calibr’n  0.24 0.28 0.24 

      inform’n 3.186 1.511 3.186 acrylo- 
nitrile 

23, 25, 28 

      combi’n 0.764 0.423 0.764 
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13 Nh3expts 6 31/10 10 calibr’n  0.11 0.28 0.06 
      inform’n 1.672 1.075 2.627 ammonia  

panel 
23, 25, 28 

      combi’n 0.184 0.301 0.158 
14 So3expts 4 28/7 7 calibr’n  0.14 0.14 0.02 

      inform’n 3.904 2.098 4.345 sulphur tri 
oxide 

23, 25, 28 

      combi’n 0.547 0.294 0.087 
15 Waterpol 11 21/11 10 calibr’n  0.35 0.35 0.16 

      inform’n 1.875 1.385 2.06 water 
pollution 

24  

      combi’n 0.6563 0.4847 0.3296 
16 Eunrcdis 8 77/23 23 calibr’n  0.9 0.15 0.13 

      inform’n 1.087 0.862 1.242 dispersion 
panel 

15, 29, 32 

      combi’n 0.9785 0.129 0.161 
17 Eunrcdd 8 87/14 14 calibr’n  0.52 0.001 0.52 

      inform’n 1.339 1.184 1.339 dry 
deposition 

15, 29, 32 

      combi’n 0.697 0.001 0.697 
18 Eunrca_s 7 80/8 6 calibr’n  0.75 0.55 0.75 

      inform’n 2.697 1.778 2.697 Rad. Transp. In 
animals 

15, 29, 7 

      combi’n 2.023 0.978 2.023 
19 Euncrwd 7 50/19 19 calibr’n  0.25 0.001 0.01 

      inform’n 0.451 0.726 0.593 Wet deposition 15, 29, 32 

      combi’n 0.113 0.00073 0.0059 
20 Eunrcint 8 332/55 28 calibr’n  0.85 0.11 0.73 

      inform’n 0.796 0.5598 0.822 Rad. Internal dose 15, 29, 31 

      combi’n 0.677 0.062 0.6001 
21 Eunrcear 9 489/15 15 calibr’n  0.23 0.07 0.0001 

      Inform’n 0.2156 0.1647 1.375 Rad. early health 
effects 

15, 29, 33 

      combi’n 0.0496 0.01153 0.00014
22 Euncrsoi 4 244/31 31 calibr’n  0.0001 0.0001 0.0001 

      Inform’n 1.024 0.973 2.376 Rad. Trans. Soil 15, 29, 7 

      combi’n 0.0001 9.7E-05 0.0002 
23 Gas95 15 106/28 17 calibr’n  0.93 0.11 0.06 

      Inform’n 1.628 1.274 2.411 environm. panel 14 

      combi’n 1.514 0.14 0.145 
24 Gas95 12 58/11 11 calibr’n  0.16 0.06 0.16 

      inform’n 2.762 1.304 2.762 Corrosion Panel 14 

      combi’n 0.4419 0.078 0.4419 
25 Mvblbarr   52/14 14 calibr’n  0.43 0.22 0.04 

      inform’n 1.243 0.57 1.711 Moveable Barriers 
floodrisk 

45 

      combi’n 0.535 0.125 0.068 
26 Realestr 5 45/31 31 calibr’n  0.82 0.005 0.82 

Real Estate Risk       inform’n 0.7648 0.1735 0.7678 
  

40 

      combi’n 0.6296 0.0009 0.6296 
27 Rivrchnl 6 14/8 8 calibr’n  0.53 0.64 0.53 
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      inform’n 0.843 0.289 0.843 River channel 48 

      combi’n 0.447 0.185 0.447 
28 Mont1 11 13/8 8 calibr’n  0.66 0.53 0.66 

      inform’n 1.906 0.8217 1.906 Montserrat 
Volcano 

2,3 

      combi’n 1.258 0.4355 1.258 
29 Thrmbld 6 48/48 10 calibr’n  0.3628 0.02485 0.3628 

      inform’n 0.5527 0.1424 0.5527 Thermal phys. 
Blds 

18 

      combi’n 0.2005 0.00354 0.2005 
30 Dikring 17 87/47 47 calibr’n  0.4 0.05 0.3 

      inform’n 0.614 0.7537 0.6462 Dike ring failure 16, 20 

      combi’n 0.2456 0.03768 0.1938 
31 Carma 12 98/10 10 calibr’n  0.828 0.4735 0.828 

      
inform’n 1.48 0.2038 1.48 Campylobacter NL 44 

      
combi’n 1.226 0.09648 1.226 

32 CARME-Greece 6 98/10 10 calibr’n  0.4925 0.5503 0.4925 
      inform’n 0.8611 0.3428 0.8611 Campy Greece  41 

      combi’n 0.4241 0.1886 0.4241 
33 Opriskbank 10 36/16 16 b 0.4301 0.338 0.1473 

      inform’n 0.7827 0.3219 0.903 Oper.Risk 5 
      combi’n 0.3263 0.1088 0.133 

34 infosec 13 32/10 10 calibr’n  0.7071 0.7971 0.3135 
Infosec  36       inform’n 1.721 1.012 2.232 

          combi’n 1.217 0.7159 0.6999 
35 PM25 6 24/12 12 calibr’n  0.578 0.6451 0.1195 

      inform’n 0.807 0.542 1.486 PM25   

      
combi’n 0.466 0.3497 0.1776 

36 Ladders 7 22/10 10 calibr’n  0.2441 0.3005 0.00131
      inform’n 0.975 0.4638 1.801 FallsLadders   
      combi’n 0.238 0.1394 0.00236

37 Dams 11 74 / 11 11 calibr’n  0.615 0.492 0.01088
      inform’n 1.248 0.6446 2.359 Dams  6 

      combi’n 0.7677 0.3171 0.02566
38 MVOseeds 77 5/5 5 calibr’n  0.6084 0.3946 0.6084 

      inform’n 3.116 1.147 3.116 MVOseeds 
Montserrat follup 

 3, 4 

      combi’n 1.896 0.4525 1.896 
39 Pilots 31 63/10 10 calibr’n  0.473 5 0.5503 0.1917 

      
inform’n 0.6903 0.5946 1.403 Pilots  2 

      
combi’n 0.3269 0.2777 0.2689 

40 setecidades 19 27/10 10 calibr’n  0.7901 0.1065 0.4281 
      inform’n 2.709 0.8409 2.474 Sete Cidades   

      combi’n 2.141 0.1713 1.059 
41   17 23/10 10 calibr’n  0.7069 0.1135 0.04706

TeideMay_05 TeideMay_05       inform’n 2.178 1.681 3.322 
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        combi’n 1.54 0.1907 0.1563 
42 VesuvioPisa21Mar05 14 79/10 10 calibr’n  0.6827 0.4735 0.4706 

        inform’n 2.43 1.485 3.622 Vesuvio 

        combi’n 1.659 0.7029 0.1705 
43 volcrisk 45 30/10 10 calibr’n  0.8283 0.1135 0.8283 

      
inform’n 0.7738 0.5571 0.7738 volcrisk   

      
combi’n 0.641 0.06322 0.641 

44 Sars 9 20/10 10 calibr’n  0.6827 0.4735 0.06083
        inform’n 1.34 0.6017 2.31 Sars 

        combi’n 0.9149 0.2849 0.1405 
45 Guadeloupe 9 57/10 10 calibr’n  0.4925 0.4735 0.0008 

        inform’n 2.158 1.176 3.649 Guadeloupe 

        combi’n 1.063 0.5567 0.00029
 
 
The combined scores of Equal weight DM, Performance-based DM and Best Expert are compared 
pair wise in Figure 1. Figure 2 compares the calibration (p-values) and information scores of the 
Equal weight DM, the Performance-based DM and the best expert. 
 
Figure 1. Combined scores of Equal weight DM, Performance-based DM and Best Expert 
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Figure 2 Calibration (p-values) and Information scores of Equal weight DM, Performance-based 
DM and best expert 
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In 15 of 45 cases the performance based DM was the best expert, that is, one expert received 
weight one. In 27 cases the combined score of the performance based DM was strictly better than 
both the equal weight DM and the best expert. In one case (13) the equal weight DM performed 
best, and in two cases (10, 22) the best expert out-performed both equal weights and performance 
based weights. 
 
The equal weight DM is better calibrated than the best expert in 25 of the 45 cases, but in only 2 
cases more informative. In 18 cases the combined score of the equal weight DM is better than that 
of the best expert.  In 12 of the 45 cases the calibration of the best expert is less than or equal to 
0.05; for the equal weight DM this happened in 7 cases (15%).   
 
The study on radiological transport in soil (22) was unusual in that all the experts and all decision 
makers performed badly. Both the seed variables and the experts were identified by the National 
Radiological Protection Board, and re-analysis of the seed variables and expert data did not yield 
any satisfactory explanation for the poor performance. We concluded that this was simply due to 
the small number of experts and bad luck. 
  
The motivation for performance based weighting above equal weighting speaks for itself from this 
data. Sometimes the difference is marginal but sometimes it is quite significant. Most often the 
equal weight DM is slightly less well calibrated and significantly less informative, but sometimes 
the calibration of the equal weight DM is quite poor (17, 26).  Finally we remark that the experts 
overwhelmingly have supported the idea of performance measurement. This sometimes comes as a 
surprise for people from the social sciences, but not for natural scientists.  The essential point is 
that the performance measures are objective and fully transparent. It is impossible to tweak these 
measures for extra-scientific expediency.   
 
4. Seed variables, variables of interest and robustness 
 
A recurring question is the degree to which performance on seed variables predicts performance 
on the variables of interest. Forecasting techniques always do better on data used to initialize the 
models than on fresh data. Might that not be the case here as well?  Obviously, we have recourse 
to expert judgment because we cannot observe the variables of interest, so this question is likely 
to be with us for some time. Experts’ information scores can be computed for the variables of 
interest and compared with the seed variables (see below). More difficult is the question whether 
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calibration differences in experts and DMs “persist” outside the set of seed variables.  Questions 
related to this are: 

1. Are the differences in experts’ calibration scores due to chance fluctuations? 
2. Is an expert’s ability to give informative and well calibrated assessments persistent in 

time, dependent on training, seniority, or related to other psycho-social variables, etc? 
There has been much published and speculated on these questions, and the issue cannot be 
reviewed, let alone resolved here, see however (Lin and Bier, this volume). If  differences in 
experts’ performance did not persist beyond the seed variables, then that would certainly cast a 
long shadow over performance based combination. If, on the other hand, there are real and 
reasonably persistent differences in expert performance, then it is not implausible that a 
performance based combination could systematically do ‘better than average’. It is hoped that the 
TU Delft database can contribute to a further analysis of these issues. 
 
Closely related is the question of robustness: to what extent would the results change if different 
experts or different seed variables had been used. This last question can be addressed, if not laid 
to rest, by removing seed variables and experts one at a time and re-computing the decision 
maker.  We discuss a few studies to illustrate good and poor choices of seed variables and, where 
possible, to compare with variables of interest. 
 
Real estate risk 
In this study the seed variables were prime office rent indices for large Dutch cities, published 
quarterly (variables 1 through 16). The variables of interest were rents of the actual properties 
managed by the investment firm. After one year, the realized rents were retrieved and compared 
with the predictions. The results for the equal and performance DM are shown below. 
 

Real Estate Risk: Equal weight DM

200

300

400

500

600

1 11 21 31

vbls 1-16 =  seed; vbls 17-31 = vbls of 
interest

5%
50%
95%
realiz

Real Estate Risk: Performance based DM

200

300

400

500

600

1 11 21 31

vbls 1-16 =seed; vbls 17-31 =  vbls. of 
interest

5%
50%
95%
realiz

 
 
The robustness analyses in this case are also revealing. First we examine the five experts’ (3 
portfolio managers and 2 risk analysts) and DM’s scores, and the relative information of each of 
the experts to the equal weight combination of their distributions (Table 3). This gives a 
benchmark for how well the experts agree among themselves. The experts’ densities are 
constructed relative to a background measure, so these comparisons also depend on the 
background measure. The relatively weak calibration performance of the equal weight DM is due 
to the fact that only 4 of the 16 seed variables were above the median assessment2. At the same 
time, the Equal DM’s medians are actually a bit closer to the realizations. Distance between 
median and realization is an example of a scoring variable which is not taken into account by the 

                                                 
2 The values cited in Table 3 are based on 31 seed variables, using also the variables of interest 
which became available a year later. 
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Performance based DM3. Note also that the pattern of informativeness on seed variables is 
comparable to that on all variables; Portfolio manager 3 is least informative and Risk analyst 1 is 
most informative. Note also that low informativeness does not translate automatically into better 
calibration. 

Id Calibr. 
Mean 
rel.Inf 

Mean 
rel.Inf Numb UnNormalized

Rel. Inf to Eq. wgt 
DM 

  total Seed vbls Real weight All vbls seed vbls 
Portfol1 0.3303 0.7932 0.8572 16 0.2832 0.5004 0.6241 
Portfol2 0.1473 1.02 0.9554 16 0 0.7764 0.6545 
Portfol3 0.02012 0.2492 0.1556 16 0 0.3633 0.2931 
Riskan1  6.06E-05 1.334 1.536 16 0 0.9575 1.21 
Riskan2  0.004167 0.5848 0.6126 16 0 0.4579 0.4402 
Perf DM  0.3303 0.7932 0.8572 16 0.2832   
Equal DM 0.05608 0.1853 0.179 16 0.01004   
Table 3 Real estate risk, relative information of the five experts to the equal weight combination for all variables and 
for variables with realizations 
 
Next we remove the 16 seed variables one at a time and re-compute the performance based DM 
(Table 4): 

excluded item Rel.info/b Rel.info/b Calibr.    
Rel.info/orig 
DM 

Rel.info/orig 
DM 

  total      seeds              total    Seeds 
Q1Rent Amster. 0.5875 0.6234 0.3578 0.3539 0.37 
Q2Rent Amster. 0.5974 0.6341 0.3578 0.4402 0.4421 
Q3Rent Amster. 0.7921 0.8583 0.5435 0 0 
Q4Rent Amster. 0.7859 0.8401 0.5435 0 0 
Q1Rent Rotter. 0.5871 0.6047 0.3578 0.4438 0.4565 
Q2Rent Rotter. 0.5857 0.6004 0.3578 0.4491 0.4708 
Q3Rent Rotter. 0.8009 0.8841 0.387 0 0 
Q4Rent Rotter. 0.5872 0.6222 0.3578 0.3505 0.3575 
Q1Rent Denhaag 0.7886 0.8478 0.387 0 0 
Q2Rent Denhaag 0.7861 0.8406 0.387 0 0 
Q3Rent Denhaag 0.784 0.8345 0.387 0 0 
Q4Rent DenHaag 0.7845 0.8358 0.387 0 0 
Q1Rent Utrecht 0.6034 0.6396 0.288 0.4589 0.4353 
Q2Rent Utrecht 0.6069 0.6517 0.288 0.4663 0.4644 
Q3Rent Utrecht 0.6013 0.6356 0.288 0.4656 0.464 
Q4Rent Utrecht 0.794 0.8638 0.387 0 0 
Original Perf DM    0.7932 0.8572 0.3303   
Table 4  Real estate risk; robustness analysis on seed variables 
 
The scores don’t change much, but the relative information of the “perturbed DM” with respect 
to the original DM is rather large for 8 of the variables, comparable to the differences between 
the experts themselves. The explanation can be found by examining the robustness on experts. 
 
 
 
 
 

                                                 
3 The reason is that distance is scale dependent. In this case the scales of all variables are the 
same, so such a scoring variable could be used. Of course such a rule may not be proper. 
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excluded Rel.info/b Rel.info/b Calibr.    
Rel.info/orig
DM 

Rel.info/orig
DM 

expert  total     seeds             total     Seeds 
Portfol1 1.006 0.9484 0.1473 1.144 1.058 
Portfol2 0.637 0.6899 0.7377 0.2916 0.3328 
Portfol3 0.5297 0.4825 0.3303 0 0 
Riskan1  0.7921 0.8572 0.3303 0 0 
Riskan2  0.7079 0.8195 0.3303 0 0 
Original Perf DM 0.7932 0.8572 0.3303 0 0 
Table 5  Real estate risk; robustness analysis on experts 
 
If we remove portfolio manager 1, the effect on the DM is large, comparable to the largest 
relative information between a single expert and the equal weight combination. This is not 
surprising as portfolio manager 1 coincides with the performance based DM. Interestingly, we 
get a significant change by removing portfolio manager 2. This is because the combination of 
portfolio managers 1 and 3 would give a higher score than portfolio manager 1 alone, or 1 and 2. 
alone. We should have to give portfolio manager 2 weight zero and portfolio manager 3 positive 
weight, even though the latter’s calibration score is worse than that of the former. The proper 
scoring rule constraint prevents this from happening. This underscores the difference noted in 
section 2 between optimization under the proper scoring rule constraint, and unconstrained 
optimization. In the latter case a better calibrated expert can have less weight than a poorly 
calibrated expert. The non-robustness in Table 4 is caused by the fact that the removal of some 
seed variables cause the calibration of portfolio manager 2 to dip below that of portfolio manager 
3. 
 
AEX 
In this case, the seed variables were the variables of interest, namely the opening price of the 
Amsterdam Stock Exchange, as estimated at closing the previous day. Note that some of the 
experts anticipated a large drop on the day corresponding to variable 20. This was not reflected in 
the performance based DM, nor in the realization. Other than that, the pattern across seed 
variables does not look erratic. In spite of the excellent performance of the experts in this case, 
they were not able to predict the opening price better than the ‘historical average predictor’. In 
other words, any information the experts might have had at closing time was already reflected in 
the closing price.  
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Dry Deposition:  
The seed variables were measured deposition velocities, though not configured according to the 
requirements of the study (per species, windspeed, particle diameter and surface).  
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Here again, the poor statistical performance of the Equal weight DM is due to the fact that all but 
one of the 14 seed variables fall above the median.   
 
Dyke Ring 
The seed variables were ratio's of predicted versus measured water levels at different, at water 
levels around 2 m above the baseline. Variables of interest were the same, but at water levels 
above 3.5 m above the baseline. In this case we had several realizations of this ratio from each of 
several measuring stations. That explains the step pattern of the quantiles; these are actually the 
same assessment with several realizations.  
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Although all 47 seed variables were used in the analysis, for purposes of comparing expert 
performance with that in other studies, the effective number of seeds was reduced to 10. This 
accounts for dependence in the experts’ assessments and corresponds to the number most often 
used for such comparisons.  
 
Space debris 
The seed variables were numbers of tracked space debris particles injected into orbit between the 
years 1961 and 1986. Variables of interest characterized the debris flux for ten years into the 
future. It turned out that the experts did not possess year-by-year knowledge of the debris particles, 
and gave generic assessments assuming that the number was growing, where in fact the number 
appears to be quite random. This is a case in which the choice of seed variables was unsuccessful; 
the experts did not really have relevant knowledge to apply to the task4.   

                                                 
4 In this early study, the effective number of seed variables was chosen to optimize the DM’s 
performance, a procedure which is no longer followed. The DOS version of the software used a 
table of the Chi square distribution and had problems with very low calibration scores. These 
problems came to the fore when the number of seed variables is high, as in this case.  
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5. Lessons learned from elicitations 
 
A detailed description of the design of an expert judgment study is given in (Cooke and Goossens 
2000). Suffice to say here that a typical study involves a dry run with one expert to finalize the 
elicitation questions. This is followed by  a plenary meeting of all experts in which the issues are 
discussed, the study  design is explained, and a short  elicitation exercise is done. This involves a 
small number of seed variables, typically 5. Experts are shown how the scoring and combining 
works. Afterwards, the experts are elicited individually. An elicitation session should not exceed a 
half day. Fatigue sets in after two hours. 
 
When experts are dispersed it may be difficult and expensive to bring them together. In such cases 
the training is given to each expert in abbreviated form. The EU-USNRC studies made the most 
intensive investment in training. In general, it is not advisable to configure the exercise such that 
the presence of all experts at one time and place is essential to the study, as this makes the study 
vulnerable to last minute disruptions.  
 
The following are some practical guidelines for responding to typical comments: 
 
From an expert: I don't know that 
 
Response: No one knows, if someone knew we would not need to do an expert judgment exercise. 
We are tying to capture your uncertainty about this variable. If you are very uncertain then you 
should choose very wide confidence bounds.  
 
From an expert: I can't assess that unless you give me more information. 
 
Response:  The information given corresponds with the assumptions of the study. We are trying to 
get your uncertainty conditional on the assumptions of the study. If you prefer to think of 
uncertainty conditional on other factors, then you must try to unconditionalize and fold the 
uncertainty over these other factors into your assessment. 
 
From an expert: I am not the best expert for that. 
 
Response: We don't know who are the best experts. Sometimes the people with the most detailed 
knowledge are not the best at quantifying their uncertainty. 
 
From an expert: Does that answer look OK? 
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Response: You are the expert, not me.  
 
From the problem owner: So you are going to score these experts like school children? 
 
Response: If this is not a serious matter for you, then forget it. If it is serious, then we must take the 
quantification of uncertainty seriously. Without scoring we can never validate our experts or the 
combination of their assessments.  
 
From the problem owner: The experts will never stand for it. 
 
Response We've done it many times, the experts actually like it. 
 
From the problem owner: Expert number 4 gave crazy assessments, who was that guy? 
 
Response: You are paying for the study, you own the data, and if you really want to know I will tell 
you. But you don't need to know, and knowing will not make things easier for you.  Reflect first 
whether you really want to know this.  
 
From the problem owner: How can I give an expert weight zero? 
 
Response: Zero weight does not mean zero value. It simply means that this expert's knowledge was 
already contributed by other experts and adding this expert would only add a bit of noise. The 
value of unweighted experts is seen in the robustness of our answers against loss of experts. 
Everyone understands this when it is properly explained. 
 
From the problem owner: How can I give weight one to a single expert? 
 
Response:  By giving all the others weight zero, see previous response. 
 
From the problem owner: I prefer to use the equal weight combination. 
 
Response: So long as the calibration of the equal weight combination is acceptable, there is no 
scientific objection to doing this. Our jobas analyst is to indicate the best combination, according 
to the performance criteria, and to say what other combinations are scientifically acceptable.  
 
 
5.  Conclusion        
Given the body of experience with structured expert judgment, the scientific approach to 
uncertainty quantification is well established. This does not mean the discussion on expert 
judgment method is closed. 
 
First of all, we may note that a full expert judgment study is not cheap. Most of the studies 
mentioned above involved one to three man months. This cost could be reduced somewhat if we 
did not need to develop seed variables. However, simply using equal weights does not seem to be a 
convincing alternative. Other methods of measuring and verifying performance would be 
welcome, especially if they are less resource intensive. 
 
The classical model is based on the two performance measures, calibration and information in 
conjunction with the theory of proper scoring rules. It satisfies necessary conditions for rational 
consensus, but is not derived from those conditions. Other weighting schemes could surely be 
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developed with do as well or better in this regard, and other performance measures could be 
proposed and explored. 
 
Once we acknowledge that our models must by quantified with uncertainty distributions, rather 
than ‘nominal values' of  undetermined pedigree,  many new challenges confront modelers, 
analysts and decision makers.  
 
Experts can quantify their uncertainty about potentially observable phenomena with which they 
have some familiarity. The requirements of the study at hand may go beyond that. For example, in 
quantifying the uncertainty of models for transport of radiation through soils, plants and animals, it 
emerged that the institutes which built and maintained these models could not supply any experts 
who were able to quantify uncertainty on the transfer coefficients in these models. Experts could 
quantify uncertainty with regard to quantities which can be expressed as functions of the transport 
models themselves. Processing data of this sort required development of sophisticated techniques 
of probabilistic inversion (Kraan and Bedford, 2005, Chou et al 2006).    
 
Perhaps the greatest outstanding problems concern the elicitation of, representation of, and 
computation with dependence.  Everyone knows that the ubiquitous assumption of independence 
in uncertainty analysis is usually wrong, and sometimes seriously wrong.  This is a subject that 
must receive more attention in the future (Kurowicka and Cooke, 2006). 
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