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Abstract

Causes of uncertainties may be interrelated and may introduce dependencies. Ignoring these
dependencies may lead to large errors. A number of graphical models in probability theory such
as dependence trees, vines and (continuous) Bayesian Belief Nets ([1], [2], [3], [4], [5], [6]) have
been developed to capture dependencies between random variables. The input for these models are
various marginal distributions and dependence information, usually in the form of conditional rank
correlations. Often expert elicitation is required. This paper focuses on dependence representation,
and dependence elicitation. The techniques presented are illustrated with an application from
aviation safety.

1 Introduction

Graphical dependence models offer a compact and intuitive representation of high dimensional
probability distributions. This property has made them attractive for applications in artificial
intelligence, decision theory and uncertainty analysis. The models to be discussed in the present
setting are non-parametric Bayesian Belief Nets (BBNs) (section 3.2). The basic concepts and
definitions required for the study of the graphical models will be briefly presented in section 2.

These models contain nodes representing continuous random variables with invertible dis-
tribution functions and directed edges representing dependencies between the nodes, as uncon-
ditional and conditional rank correlations. Whenever possible, we retrieve these inputs from
data. However, in many applications, information about the marginal distribution might be
available but information about the joint distribution is not. We must then have recourse to
expert judgment. In the worst case, not even a marginal distribution might be retrieved from
data and expert judgment is used for this as well.

The issue of eliciting and combining experts’ opinions as marginal probabilities has been
widely discussed (see for example [7, 8]) and will not be reviewed here. The focus of this paper is
the elicitation of dependencies in the form of unconditional and conditional rank correlations;
the combination of experts’ dependence assessments is not an issue in this paper and hence
will not be discussed. The elicitation of unconditional rank correlations has been discussed
elsewhere ([9], [10], [11]). Here the emphasis is placed on the probabilistic approach. Conditional
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probabilities of exceedance in section 4.1 are extended in section 4.2 to elicit conditional rank
correlations.

In a project commissioned by the Dutch Ministry of Transport, Public Works and Water
Management for aviation safety, a model for “Missed Approach” was recently developed and
quantified with the methods described here. This application model will be presented in section
5. Section 6 presents conclusions and recommendations for future work.

2 Preliminary Concepts & Definitions

In this section we briefly present basic concepts and definitions used later on in the paper. The
product moment correlation of random variables X and Y with finite expectations F(X), E(Y)
and finite variances var(X), var(Y) is:

E(XY)—E(X)E(Y)

PXY = var(X)var(Y)

The rank correlation of random variables X, Y with cumulative distribution functions F'x
and Fy is:

_ E(Fx(X)Fy (Y))-E(Fx (X))E(Fy (Y))
Vvar(Fx (X))var(Fy (Y))

TX)Y = PFx(X),Fy(Y)

The rank correlation is the product moment correlation of the ranks of variables X and
Y, and measures strength of monotonic relationship between variables. The conditional rank
correlation of X and Y given 7 is:

TXylz =Txy

where (X,Y) has the distribution of (X,Y) given Z = z.

The (conditional) rank correlation is the dependence measure of interest because of its close
relationship with conditional copulas used in non-parametric BBNs. One disadvantage of this
measure however is that it fails to capture non-monotonic dependencies.

Rank correlations may be realized by copulas, hence the importance of these functions in
dependence modeling. A bivariate copula C is a distribution on the unit square [0, 1]? with
uniform marginal distributions on [0, 1]. Random variables X and Y are joined by copula C' if
their joint distribution can be written

Fxy(x,y) = C(Fx(z), Fy (y)).

We can always find a unique copula that corresponds to any given continuous joint distri-
bution. For example, if ®, is the bivariate standard normal cumulative distribution function
with correlation p and ®~! the inverse of the univariate standard normal distribution function
then

Coplu,v) = @, (@ (u),® ' (v));u,v € [0,1]

is called the normal copula. Notice that p is a parameter of the normal copula. The relationship
between the correlation of the normal copula r (the rank correlation of the normal variables)
and the parameter p (the product moment correlation of the normal variables) is known and
given by the following formula ([4]):

p = QSin(%r). (2.1)



(Conditional) Copulas provide a natural way of constructing multivariate distributions with
given marginals and given dependence structure. We will concentrate here on families of copula
that have the zero independence property; that is, the property that correlation zero entails
independence.!
The partial correlation can be computed recursively from correlations. The partial correla-
tion of Xy and X, with respect to X3, X4, ..., X, is ([13]):
P1,2:4,....n — P1,3:4,...,n " P2,3i4,...,n

P1,2;3,....n — 1 (22)
((1 - p%,3;4,...,n) : (1 - p§,3;4,...,n))2

In general partial correlation is not equal to conditional correlation, however, for the joint
normal distribution the partial and conditional correlations are equal. In the next section we
begin our presentation with a brief description of non-parametric continuous BBNs.

3 Vines and Non-parametric Continuous BBNs

Vines and BBNs represent a joint distribution specified by marginal distributions and condi-
tional bivariate dependence statements. One advantage of BBNs versus vines is that the former
preserve the intuitive representation of influence diagrams. This section describes vines and
Non-parametric BBNs.

3.1 Vines

A vine ([1], [3],[4]) is a graphical model for dependence modelling. The nodes of the vine
represent random variables with invertible distribution function and the edges may be used to
specify conditional bivariate dependencies. Formally, a vine on n variables is a nested set of
trees where the edges of the j* tree become the nodes of the (j + 1)** tree for j = 1,...,n — 1.
A regular vine on n variables is a vine in which two edges in tree j are joined by an edge in tree
j + 1 only if these edges share a common node. A D-Vine is a special case of a regular vine in
which each node in 77 has degree at most 2, hence each node in the first tree has at most two
neighbors (see figure 3.1).

Figure 3.1: D-Vine on 4 variables with (conditional) rank correlations assigned to its edges.

Each edge in the regular vine may be associated with a conditional rank correlation. In
general these conditional rank correlations may depend on the values of the conditioning nodes,
but in the present implementation, all conditional rank correlations are constant. All assign-
ments of rank correlations to edges of a vine are consistent and each one of these correlations
may be realized by a copula. The vine enables the construction of a joint distribution from

LFor a review on copulas, see [12].



bivariate and conditional bivariate distributions 2. If one chooses the normal copula to realize
the (conditional) rank correlations assigned to the edges of a vine and the marginal distributions
are standard normal, then we call such vine a standard normal vine. The standard normal vine
gives us a very convenient way of specifying standard joint normal distribution by specifying
() algebraically independent numbers from (—1,1). This is in contrast to the specification of
a correlation matrix that must satisfy the constraint of positive definiteness [3].

3.1.1 Example

Let us consider a standard normal D-vine on three standard normal variables and assume that
the following rank correlations were specified: 731,732 and 73 1)2. The correlation matrix of
the joint normal distribution corresponding to this normal vine can be calculated as follows:

o Let po 1, p32 and ps 1,2 be the product moment correlations obtained by applying equation
(2.1) to ra,1, r32 and r3 1) respectively.

e Since for the normal distribution partial correlation is equal to conditional correlation
p3,1)2 = p3,1;2, then from equation (2.2) we can compute ps 1 as:

1
p3a = p3z- ((1— P§,1)(1 - P%,Q)V + p2,103,2-

3.2 Non-parametric Continuous BBNs

Non-parametric BBNs and their relationship to vines were presented in [2] and extended in [5].
A non-parametric continuous BBN is a directed acyclic graph whose nodes represent continuous
univariate random variables and whose arcs are associated with parent-child (un)conditional
rank correlations. For each variable ¢ with parents i1, ) associate the arc i,(;)_j — @ with
the conditional rank correlation:

Tii (i)? E=0
{ ’ 1<k<p()—1 (3.1)

Tisip(iy—klip(iys o osin) —mi1?

"'77’p(i

The assignment is vacuous if {i1,...,i,;)} = 0. These assignments together with a copula
family indexed by correlation and with conditional independence statements embedded in the
graph structure of a BBN are sufficient to construct a unique joint distribution. Moreover, the
conditional rank correlations in 3.1 are algebraically independent, hence any number in (-1,1)
can be attached to the arcs of a non-parametric continuous BBN. In Figure 3.2 one sees that
variables 1, 2 and 3 are independent and their dependence with the variable 4 is described in
terms of three (conditional) rank correlations.

One can use the copula-vine approach sketched in the appendix to represent the multidimen-
sional joint distribution specified by a BBN ([2],[5]). D-Vines become an important instrument
as the sampling procedure for this BBN is based on the sampling procedure for the D-vine in
figure 3.1 (the sampling procedure is presented in the appendix).

Any copula with an invertible conditional cumulative distribution function® may be used as
long as the chosen copula possesses the zero independence property. In order to specify a joint

2The reader may see in the appendix how to sample a joint distribution represented by the vine in figure 3.1.
At this point the reader may also observe that a Markov-Dependence Tree is a special case of a vine where all
conditional rank correlations are set to zero. In other words, in a Markov-Dependence tree the random variables
that are not joined by an edge in the tree are conditionally independent given variables on the path between them.
The reader may see that vines relax the assumptions about conditional independence for Markov-Dependence
trees to allow for conditional dependence.

3A copula with an analytic form for the conditional and inverse conditional cumulative distribution function
accelerates the sampling procedure.



ERN BTN

Figure 3.2: A simple example of BBN on 4 Variables.

distribution for a BBN (or for a vine), marginal distributions and conditional rank correlations
must be specified. Next a procedure for eliciting conditional rank correlations for the BBN in
figure 3.2 will be discussed, generalizations to other BBNs and vines are possible and follow the
ideas presented in next section.

4 Elicitation of Conditional and Unconditional Rank Cor-
relations

Previous studies ([9],[10]) indicate that information about dependencies such as rank correla-
tions may be used as input parameters in risk and decision models. [11] identifies three groups
of techniques for eliciting dependencies:

1. STATISTICAL APPROACHES: One option is to elicit from experts dependence statements
with a predefined scale. This scale should later be translated to a rank correlation by
the analyst. The informal translation of verbal qualifiers marks this method as a useful
starting point to help expert think about dependence between variables. An other option
is to let the expert directly assess a rank correlation, if indeed the expert is comfortable
with the notion of rank correlation.

2. PROBABILISTIC APPROACHES: Experts are queried probability statements such as a joint
probability, a conditional probability or a probability of concordance. By making as-
sumptions about the joint distribution the assessments can later be translated to a rank
correlation.

3. CONDITIONAL QUANTILE APPROACH: The expert is given the information that Y =y,
that corresponds to the A" quantile of Y, and is then queried about the expected quantile
of X given Y = y4. The relationship with rx y is determined from the non-parametric
regression representation E(Fx(z4)|Y = ya) = rx,y(Fy(ya) — 0.5) + 0.5, where Fx
and Fy are the cumulative distribution functions of X and Y respectively. [9] suggests to
have each expert make several conditional estimates and then use least squares to estimate
rX,y-

The methods briefly discussed above have been used in the elicitation of unconditional rank
correlations. In the non-parametric continuous BBN approach conditional rank correlations are
also required. In practice conditional probabilities are more frequently used than conditional
rank correlations. The conditional probability techniques used in previous studies can be nat-
urally extended to elicit higher order dependence in the form of conditional rank correlations.



However, there is as yet no empirical evidence on how well experts can estimate conditional rank
correlations directly as opposed to the elicitation of conditional rank correlation through con-
ditional probabilities. The next subsections elaborate in the conditional probability technique
for eliciting (un)conditional rank correlations.

4.1 Conditional Probabilities of Exceedance and Rank Correlations

In this subsection the conditional probability method for estimating rank correlations is pre-
sented in more detail. The BBN in figure 3.2 will be used as example. To elicit the rank
correlation ry 3, we ask the expert the following:

1. Suppose that the variable X3 was observed above its ¢ quantile. What is the probability
that also X4 will be observed above its ¢t quantile?

This question requires expert’s estimate of P, = P(Fx,(X4) > q|Fx,(X3) > q). Figures
4.1 and 4.2 show the relationship between P; and the rank correlation r4 3 for the normal and
minimum information copulas, ¢ = {0.5,0.7}.
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P(FX4(X4) Z O5|FX3(X3) Z 05) and P(FX4(X4) Z 07|FX3(X3) Z 07) and
r43 for normal and minimum information 743 for normal and minimum information
copula. copula.

For the minimum information copula 4, this relationship is determined using the simulation
program UNICORN? at discrete points and smoothed using a locally weighted scatter plot
smooth with least squares quadratic polynomial fitting.

For the normal copula we can use the relationship between the normal copula and the
normal distribution from section 2. To calculate the exceedance probability one can integrate
numerically the bivariate normal density ¢(xs, x4, pa,3) over the region corresponding to the
quantile’s exceedance region [®~1(g), 00)?, where @1 is the inverse standard normal cumulative
distribution function (see formula (4.1)). The analyst then finds the p which satisfies the expert’s

4With respect to the independent copula [14].
5For details see [4]



conditional probability assessment and transforms this to the corresponding rank correlation
using the inverse function of equation 2.1.

1 o0 o0
/ / ¢(x3, T4, pa,3)dz3drs (4.1)
1=¢Jo-1(g) Jo1(g)

Because of the zero independence property, zero correlation entails that for any ¢, P, = 1—q.
A conditional probability value in the interval [0, 1 — ¢) corresponds to negative correlation and
positive correlation is attained when P; > 1—g. Choosing a value for ¢ different than 0.5 makes
the resulting rank correlation more dependent on the choice of copula, as is evident by comparing
figures 4.1 and 4.2. In particular, P(Fx,(X4) > 0.5|Fx,(X3) > 0.5) may take any value in the
interval (0, 1) for both copulas which is not the case for P(Fx,(X4) > 0.7|Fx,(X3) > 0.7). The
choice of the copula has a strong impact on the conditional probability when ¢ # 0.5.

The conditional probability method has been extensively used together with structured
expert judgment elicitation techniques in an uncertainty analysis conducted jointly by the Eu-
ropean Union and the US Nuclear Regulatory Commission (see references in[11]). The approach
followed was the one described in this subsection with ¢ = 0.5 assuming the minimum infor-
mation copula realizing the rank correlations in the joint distribution. Assessing higher order
dependencies in the form of conditional rank correlations requires much more computational
effort and we will then opt to use the normal copula and ¢ = 0.5. In the next section a procedure
to elicit conditional rank correlations will be presented continuing with the BBN in figure 3.2.

4.2 Conditional Probabilities of Exceedance and Conditional Rank
Correlations

In this subsection we extend the elicitation procedure from unconditional to conditional rank
correlations. As already mentioned we will use the 50 percentile while eliciting exceedance
probabilities and the normal copula to find the relationship between the probability of ex-
ceedance and the (conditional) rank correlation.

The elicitation of the rank correlation r4 3 was described in subsection 4.1. We will consider
two situations when P; is equal to 0.25 and 0.75. We can read from figure 4.1 that these as-
sessments correspond to rank correlations of -0.7 and 0.7 respectively. To assess the conditional
correlation r4 513 we will ask the expert the following question:

2. Suppose that not only variable X3 but also Xo were observed above their medians. What
18 now your probability that also X4 will be observed above its median value?

An answer to this question is equivalent to an estimate of P, = P(Fx,(X4) > 0.5|Fx,(X3) >
0.5, Fix,(X2) > 0.5). The probability that the expert can provide in this situation will depend
on the estimate given in question 1 (subsection 4.1). The reader may see this by observing
that if the expert regards variables Xs and X, as independent given X3, then the answer to
question 2 is identical to the answer to question 1. If the expert regards variables X3 and X, as
completely positively (negatively) correlated then he/she would have answered P = 1 (P; = 0)
and question 2 would not have been necessary at all, as X4 would be completely explained
by Xs. Any answer for P; different than 0, 0.5 or 1 means that the expert believes that X3
explains at least in part X4 and hence X5 can only explain part of the dependence that was
not explained already by Xs.

In our example, to determine the possible values for P, and its relationship with the condi-
tional correlation r4 53 we consider a normal D-vine on variables Xy, X3 and X3. As mentioned
earlier, the rank correlation 74 3 has been already calculated using expert’s assessment in ques-
tion 1 (subsection 4.1). In the particular case of the BBN in figure 3.2, variables X5 and X, are



independent, hence 739 is equal to zero. Since all rank correlations specified on the BBN are
algebraically independent, r4 o3 can take any value in (—1,1). The correlation matrix of the
joint normal distribution corresponding to this normal vine can be found as in example 3.1.1
and should have the form of equation (4.2).

P4 P13 Pa2 1 pa3z pap
Y432=| pa3 p33 p32 | =| pa3 1 0 (4.2)
Pa2 P32 P22 pa2 O 1

We denote the density function of the normal distribution with the correlation matrix ¥4 5 2
calculated from the normal vine specification as ¢(z4, x3, T2, pa,3, ,04’2‘3). Hence, given the value
for 743 a relationship between P, and ry 32 can be determined by transforming to py 32 using
formula (2.1) and computing the triple integral (4.3):

1 o0 oo o0
0505 /0 /0 /0 (w4, 23, T2, pa,3, Pa,23)drsdr3drs

Figure 4.3 shows the relationship between P> and 7423 when the expert’s previous estimate
for P; was 0.25 and 0.75. One can see that the probability of exceedance is constrained by
the expert’s previous estimate. If P, = 0.25 then P is constrained to the interval (0,0.51); if
Py = 0.75 then P, is constrained to the interval (0.49,1). In both cases conditional independence
corresponds to the expert not modifying his/her previous estimate (0.25 and 0.75 respectively).
Suppose the expert’s assessments were Py = 0.75 (ry3 = 0.7 from figure 4.1) and P, = 0.65
(7“4’2|3 = —0.4 from figure 4.3), to assess the last conditional correlation r4 1|3, we will ask the
expert the following question:

(4.3)
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P(Fx,(X4) > 0.5|Fx,(X3) > 0.5, Fx,(X2) >
0.5) and the Rank Correlation Coefficient
ry32 for the tri-variate standard normal
distribution.

P(Fx,(X4) > 0.5|Fx,(X3) > 0.5, Fx,(X2) >
0.5, Fx,(X1) > 0.5) and the Rank Correla-
tion Coefficient 7432 for the four variate
standard normal distribution.

3. Suppose that not only variable X3 but also Xo and X1 were observed above their medians.
What is now your probability that also X4 will be observed above its median value?



Question 3 is equivalent to estimating Ps = P(Fx,(X4) > 0.5|Fx,(X3) > 0.5, Fx,(X32) >
0.5, Fx,(X1) > 0.5). As before, the rank correlations r43 and rs2 have been specified in
questions 1 and 2 respectively. Again from figure 3.2 it is observed that 731 and 731 are both
zero, hence the correlation matrix of the joint normal distribution corresponding to the D-vine
on X1, Xo, X3 and X, should look as in equation (4.4). The density of this four variate standard
normal distribution will be denoted as ¢(x4, 23, T2, 21, P43, P42, P1,13,2)-

Pa4  Pa3 Pa2 P41 1 pa3z pa2 paa
P43 P33 P32 P31 paz 1 0 0
b — ) ) ) ) — ) 4.4
L2l Pa2 P32 P22 P21 pa2 0 1 0 (44)
P41 P31 P21 P11 par 0 0 1

The relationship between P3 and ry )32 will be determined by transforming to the corre-
sponding py 1)3,2 with formula 2.1 and computing the four dimensional integral 4.5:

1 o0 o0 o0 oo
T S— dzsdrsdrad 4.5
0.5_0.5.0.5/0 /0 /0 /0 (T4, 23,72, 21, 4,3, P4,2, Pa,1)3,2)dTadr3dTodT) (4.5)

Figure 4.4 shows the relationship between P3 and 74 1|32 for the case under study (P = 0.75
and P, = 0.65). In this case, conditional independence corresponds to 0.65 (corresponding
to the expert’s conditional probability assessment for question 2). The expert’s assessment is
constrained to the interval (0.365,0.945). If the expert’s assessment in question 3 were P; = 0.55
we would have 74 132 = —0.4. Observe that compared to the previous step, the upper and lower
bounds for the conditional probability required from the expert are smaller. In general these
bounds depend on the expert’s previous assessments and must be computed on-line in a real
elicitation to help experts avoid inconsistencies when providing the conditional probability that
will be translated to a conditional rank correlation. In the next section an example of an
elicitation recently conducted using the approach of conditional probabilities exposed here is
presented.

5 The Missed Approach Model

In recent years, the Federal Aviation Authority and the Dutch Ministry of Transport have used
causal modelling techniques to investigate integrated safety in air traffic. For this purpose in [15]
discrete Bayesian Belief Networks (BBN) were fully quantified for the cases of Missed approach
and Flight crew alertness. However, two disadvantages with discrete BBNs were encountered:

e When variables were discretized into a number of values considered representive, the size of
the conditional probability tables exploded. As a result a drastic two-valued discretization
(usually OK / Not OK) was forced;

e For many variables there was extensive data from the field. When using discrete BBN’s,
only the source nodes could be quantified with field data; other nodes have their marginal
distributions determined by the conditional probability tables. Finding conditional prob-
ability tables that were compatible with the existing marginal information was a daunting,
sometimes hopeless task.

Because of these problems, there was interest in finding a suitable alternative to discrete
BBN’s.

Here we will concentrate on the model for Missed Approach. A missed approach should be
initiated when a situation arises that would make the continuation of the approach and landing



unsafe. The purpose of a missed approach is to abort a landing in unsafe circumstances to
allow the crew to carry out a new approach and landing under safer circumstances. According
to [15] “the most common primal causal factor [of approach and landing accidents] was judged
to be the omission of action/inapropriate action”. Hence, the missed approach model tries to
capture the idea of a Failure to execute a missed approach when conditions are present.

Missed approach
execution (7)

Mean cross wind
8

Auto-flight Flight and
Speed deviation Vishilit 2
Instruments @ F"g;;l;owﬂ‘;m‘ atS0f 4 fsbifty 2)

Figure 5.1: Original BBN of the Missed Ap-Figure 5.2: Continuous Version of the BBN for
proach Model. the Missed Approach Model.

Figure 5.1 presents the original discrete model for missed approach. All nodes in this model
have two states. The top events are:

e CONDITION FOR MISSED APPROACH that measures whether there is a condition during
the approach or landing phase that requires a missed approach according to the operator’s
Aircraft Operating Manual, Basic Operating Manual, and/or (inter)national regulations.
The states for this node are ‘yes’ or ‘no’. This node is a deterministic node: an unfavorable
condition of either one of its parents, alone or in combination will result in a condition
for missed approach.

e MISSED APPROACH EXECUTION that describes whether the crew executes or does not
execute a missed approach under certain circumstances (states ‘yes’ and ‘no’). Compared
to the Condition for missed approach, this node has an extra parent. The In-flight crew
alertness node reflects the fact that the final decision to execute a missed approach is
taken by the flight crew.

These two nodes are parents to the node Fuilure to execute a missed approach when condi-
tions are present in further modelling which takes into account a possible accident situation.
As stated before, some of the variables in figure 5.1 are more naturally modelled as continuous
quantities for example: visibility, wind speed, fuel state, separation in air, etc. The variables
are listed below according to their labelling in figure 5.2. The variables were quantified using
field data.

1. FUEL WEIGHT: Measured in kilograms and is the remaining fuel at arrival based on data
for 172 flights of a Boeing 737 at Schiphol airport.

2. VISIBILITY: Measured in meters and is based on a sample of 27 million observations over
Europe.

10



3. CREW ALERTNESS: Measured by the Stanford Sleepiness Scale in an increasing scale from
1 to 7, where 1 signifies “feeling active and vital; wide awake” and 7 stands for “almost in
reverie; sleep onset soon; struggle to remain awake” the distribution used for this study
comes from field studies by the Aviation Medicine Group of TNO Human Factors in 1,295
flights.

4. SPEED DEVIATION AT 500 FT: Deviation from bug speed® at 500 ft. The data comes
from 13,753 approaches of a major European airline.

5. MEAN Cross WIND: Usually expressed as a combination of speed (in knots) and direction
(compass course) of the wind at any direction not favorable for the aircraft, the cross wind
distribution comes from 380,000 takeoffs and landings conducted on three large European
airports.

6. SEPARATION IN AIR: Longitudinal distance (in nautical miles) between the landing air-
craft and the preceding aircraft in the approach path. The distribution was retrieved from
a sample size of 2,382 landings at Schiphol airport.

7. MI1SSED APPROACH EXECUTION: Number of missed Approach Executions per 100,000
flights at Schiphol airport. The expectation of this variable would be an estimate of the
unconditional probability of executing a missed approach maneuver.

Information about the marginal distributions was available from different sources and the
unconditional and conditional rank correlations where elicited with the procedure from sections
4.1 and 4.2 from a single expert at the Dutch National Aerospace Laboratory (NLR) on De-
cember 20", 2005 in a 2.5 hours elicitation. The expert is a pilot for a major European airline
and researcher at NLR, in total the expert answered 7 questions.

One marginal distribution for Missed Approach Execution per 100,000 Flights, one uncondi-
tional rank correlation r7 ¢ and the 5 conditional rank correlations from figure 5.2 were elicited.
For the marginal distribution the expert was asked:

1. Consider 100,000 thousand randomly chosen flights at Schiphol airport under the current
conditions. On how many of these flights will @ MISSED APPROACH be executed? (To
capture your uncertainty please provide the 5t, 25th 50" 75th and 95" percentiles of
your uncertainty distribution.)

A minimal informative distribution with respect to a log uniform background measure was
fit with the data provided by the expert. Next, the dependence information was queried starting
with the rank correlation r7 ¢ as follows”:

2. If 50,000 of the flights from the previous question were selected at random, then the num-
ber of flights that execute a missed approach should be approximately % of your median
estimate from previous question. Suppose that instead of selecting those 50,000 flights at
random, you select those where SEPARATION IN AIR is above its median value. What is
your probability that, in this situation, the number of MISSED APPROACH executions will
be larger than % of your 50°" percentile estimate provided in the previous question?

6The bug speed is the target reference speed for the approach (calculated by the aircraft crew) plus allowance
for conditions such as crosswind.

"The specification of the rank correlations required in the model presented in figure 5.2 is not unique (see
equation 3.1). For example instead of eliciting the (un)conditional rank correlations presented figure 5.2, one
could also specify {r7 5, 7765, ---}. In this case the order in which the variables entered the model was provided
by the expert.
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The assessment from question 2 is equivalent to an estimate of P, = P(Fx,(X7) > 0.5|Fx,(X¢) >
0.5). The expert’s assessment for this question was P; = 0.15 that from figure 4.1 corresponds
to 776 = —0.88. The conditional rank correlation r7 5 was elicited as follows:

3. If 50,000 of the flights from question 1 were selected at random, then the number of
flights that execute a missed approach should be approrimately % of your median estimate
from question 1. Suppose that instead of selecting those 50,000 flights at random you
select those where both SEPARATION IN AIR and MEAN CROSS WIND are both above their
median values. What is your probability that, in this situation, the number of MISSED
APPROACH ezecutions will be larger than % of your 50" percentile estimate provided in
question 1?7 (bearing in mind that your new assessment should be € (0,0.3))

The expert’s assessment for question 3 is equivalent to an estimate of Py = P(Fx,(X7) >
0.5|Fx, (X6) > 0.5, Fx,(X5) > 0.5). The expert’s answer to question 3 was P, = 0.18, and,
with the methods described in 4.2 the corresponding value for r; 55 = 0.20 was found. The
upper and lower bounds provided in question 3 , i.e the interval (0,0.3) where also computed
on-line with the methods described in section 4.2.

Conditional | Bounds for Correlation
Probability P ¢

P 0.15 (0,1) 7.6 -0.88
PQ 0.18 (O, 03) T7,5\6 0.20
Ps 0.20 0.01,0.35) | 77.456,5 0.12

(
Py | 024 | (0.02,0.38) | Trs654 0.23
P5 0.22 (004,045) T7,2\6,5,4,3 -0.11
Ps | 024 | (0.03,0.40) | 77165432 | 0.11

%Each P;, ¢ = {1,...,6} sequentially adds vari-
ables to the model, for instance Py = P(Fx,(X7) >
O.S‘FXG(XG) > 0.5)7 Py = P(FX7(X7) > 0-5|FX6(X6) >
0.5, Fx;(Xs5) > 0.5), P3 = P(Fx,(X7) > 0.5|Fx(Xe) >
0.5, Fx,(X5) > 0.5, Fx, (X4) > 0.5), and so on.

Table 1: Results from Expert’s Elicitation of Conditional Rank Correlations

The rest of the conditional rank correlations where elicited in a similar way by sequentially
adding information about the variables entering the conditioning set. The expert was provided
with the upper and lower bounds for P; (i = 1,...,6) at each step in the elicitation only after
he had provided his estimates to check for consistency. This way of assessing conditional rank
correlations helped the expert understand the meaning of dependence and increased his “buy
in” in the method. The results of the elicitation for the 6 arcs in the BBN for missed approach
are summarized in table 1.

In [5] techniques to efficiently deal with the joint distribution when evidence becomes avail-
able (updating the BBN) are discussed. The two possibilities are:

e THE HYBRID METHOD. To work with this method the information from table 1 together
with the marginal distributions for each variable were used to create a large sample file
by means of the normal copula. A discrete version of the model can be built in order to
take advantage of commercial software to perform fast updating each time a new policy
is evaluated.

e THE NORMAL COPULA VINE APPROACH. Since according to the methods described in
sections 3 and 4.2 all calculations are performed on a joint normal vine, the conditional
distribution can be computed analytically.

12



To illustrate the Hybrid Method the professional software Netica® will be used. For the
normal copula vine approach the recently developed software application UniNet® will be used.
Figures 5.3 and 5.4 show the representation of the BBN for missed approach execution in Netica
and UniNet respectively. The rank correlations are included to stress the fact that both versions
of the model introduced in figure 5.2 preserve the dependence structure elicited from the expert.
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Figure 5.3: Discretized BBN of the Missed Approach Model with
continuous quantities in Netica.

X7
e a8 1794102
oy U

\ LY 1
756
17165432
174165
5.8342.75 2943 2342107
X5 X4 X2

6.4744.64 2.7243.09 1.67e449.64e3 3.15e341.23e3

I73654

Figure 5.4: Continuous BBN of the Missed Approach Model with con-
tinuous quantities in UniNet.

If instead of eliciting the 6 quantities in table 1, the expert would have been asked to fill
in the conditional probability table for X7 missed approach execution per 100,000 flights with

8UniNet has been developed for the Project commissioned by the Dutch Ministry of Transport. Currently
UniNet supports both the Hybrid Method with the support of Netica and the analytical updating. The software
is still under development.



the discretization of its parent variables as in figure 5.3, then the expert would have had to
provide over 1.2 million conditional probabilities that need to be consistent with the marginal
distribution from figure 5.3 and still reflect the correct dependence information.
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Figure 5.6: Conditional Distribution of Missed
Approach Executions per 100,000 flights given
X¢ =2 Nm and X5 =20 Kt .

Figure 5.5: Conditional Distribution of Missed
Approach Executions per 100,000 flights given
X6 € (0,2) Nm and X5 € (17.5,20) Kt.

Figure 5.5 presents the distribution of Missed approach executions per 100,000 flights given
separation in air € (0,2) Nm and the mean cross wind € (17.5,20) Kt from Netica. The
reader may compare this distribution with the unconditional distribution in figure 5.3. The
unconditional mean is 200 Missed Approach executions per 100,000 flights (standard deviation
of 170), while the mean of (X7|Xs € (0,2), X5 € (17.5,20)) is 470 Missed Approach executions
per 100,000 flights (standard deviation 290).

Figure 5.6 presents the same conditional distribution as figure 5.5 computed analytically
in UniNet. The unconditional distribution of X7 is shown in grey behind the black histogram
representing the conditional distribution of X7|Xg = 2, X5 = 20. In this case the conditional
mean is 379 with standard deviation 47.7 missed approaches per 100,000 flights. While in
Netica (figure 5.5) one can only condition in discretized states of each variable, UniNet allows
for conditioning in point values. This is the usual way in which evidence becomes available in
real situations.

500,000 samples from the joint distribution represented by figures 5.4 and 5.6 were obtained
with UniNet. The cumulative distribution function of X; and X7|Xg = 2, X5 = 20 were
obtained and shown in figure 5.7. Observe that both Netica and UniNet show that P(X7; >
350) =~ 8%. In the conditional distribution computed with Netica this probability increases to
~ 57% while the analytical approach from UniNet shows that this value is as big as ~ 75%. To
finalize, in next section final comments and conclusions are presented.

6 Final Comments and Conclusions

This paper reviewed the elicitation of (conditional) rank correlations from conditional probabil-
ities as inputs for continuous non-parametric BBNs. The conditional probability is a measure
that has been elicited successfully in the past ([11]) and translated to rank correlations by
assuming the minimum information copula realizing the joint distribution. This is the recom-
mended way to elicit rank correlations from domain experts. The median value provides an
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Figure 5.7: Cumulative Distribution function of X7 and X7|Xs = 2 Nm and X5 = 20 Kt.

intuitive choice for ¢ and the normal copula presents computational advantages with respect to
the minimum information copula. This motivates the choice of P(Fx(X) > 0.5|Fy(Y) > 0.5)

as the measure to be elicited and later translated to rank correlations.

The conditional probability technique for eliciting rank correlations is extended to allow the
The nested constraints on successive conditional

elicitation of conditional rank correlations.
probability assessments give insight into the meaning of the dependence relations. To compute

these constraints efficiently, so as to support the elicitation, the normal copula is a clear choice.
The application to Missed Approach demonstrates that it is possible to elicit unconditional
and conditional rank correlations with intuitively meaningful conditional probabilities of ex-
ceedance. The results motivate the choice of the analytical updating (UniNet) vs. the hybrid
method with Netica. Future research should be devoted to the issue of combining opinions of
more than one expert and developing professional software tools for efficient implementation of

the elicitation techniques herewith discussed.
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Appendix

In this section a brief presentation of the techniques available to sample the joint distribution
specified by the vine in Figure 3.1 is presented. For a more detailed description of sampling
techniques for regular vines the reader is referred to [4]. Assuming that random variables in
the vine in Figure 3.1 are uniform on (0,1) the density of the distribution satisfying the above
dependence vine specification is [3]:

f(l’l,l'g,xg, £U4) = Crig (1’1, xQ)CTzs (x27x3)c7“3,4 (LC37£L'4)CT4‘5 ($4,$5)
Cry,3)2 (FT1,2;I2 (1‘1)7 FT3,2;932 (‘r3))c7”2,4|3 (FT2,3;13 (xQ)v FT3,4;9L’3 (LL'4))
Crya2,3 (FT1,3‘2;F7‘112;12 (1) (FT2,3;932 ($3))’ Fr2,4\3;Fr2‘3;13(12) (FT3,4;933 (1‘4)))
(A1)

Where c,, ; denotes a copula density with correlation r; ; and Fy, .., (7;) denotes the con-
ditional cumulative distribution function of X; given X; from the bivariate copula with rank
correlation 7; ;.

The joint distribution specified by the (conditional) rank correlations on a vine with a given
copula can be sampled on the fly. The algorithm involves sampling five independent uniform
(0,1) variables Uy, ..., Us. We assume that the variables X7, ..., X5 in figure 3.1 are also uniform,
then the sampling procedure can be sated as:

r1 = Ui

Ty = F’r’:)lg;zl (u2)

r3 = Fr_z,ls;wz (FTZLB;FTLQ;W(M) (u3))

Ty = Fr;}4;x3 (Fr_z,lz;\B;Frm;m?,(rz) (Fr_l,lzuw;FT'1,3|2?F7'2,3"”2(w“”)(FTl‘?;z?(ml))(M)))

where F., ... (x;) is, as above, the conditional cumulative distribution function of X; given X;

from the bivariate copula with correlation r; ; and F~! denotes its inverse.

References
[1] Cooke R.M. Markov and entropy properties of tree and vine-dependent variables. In Proceedings
of the ASA Section on Bayesian Statistical Science,, 1997.

[2] Kurowicka D. and Cooke R.M. Distribution-free continuous bayesian belief nets. In Proceedings
Mathematical Methods in Reliability Conference, 2004.

[3] Bedford T.J. and Cooke R.M. Vines - a new graphical model for dependent random variables.
Ann. of Stat., 30(4):1031-1068, 2002.

[4] Kurowicka D and Cooke R.M. Uncertainty Analysis with High Dimensional Dependence Modelling.
Wiley, 2006.

[5] Hanea A.M. et al. Hybrid methods for quantifying and analyzing bayesian belief nets. In Proceed-
ings of the 2005 ENBIS5 Conference, 2005.

[6] R. D. Shachter and C. R. Kenley. Gaussian influence diagrams. Management Science, 35(5), May
1998.

[7] Cooke R.M. Ezperts in uncertainty. Oxford University Press, 1991.

16



8]

9]
[10]
[11]
[12]
[13]
[14]

(15]

Cooke R.M. and Goossens L.H.J. Tu delft expert judgment database. Decision Analysis, this
issue, 2006.

Clemen G. W. et al. Correlations and copulas for decision and risk analysis. Management Science,
45:208-224, 1999.

Clemen G. W. et al. Assesing dependencies: Some experimental results. Management Science
2000 Informs, 46(8):1100-1115, August 2000.

Kraan B.C.P. Probabilistic Inversion in Uncertainty Analysis and Related Topics. PhD thesis,
Delft University of Technology, 2002.

Nelsen R. B. An Introductin to Copulas. Number 139 in Lecture Notes in Statistics. Springer,
1998.

Yule G. and Kendall M. An introduction to the theory of statistics. Charles Griffin & Co., Belmont,
California., 14" edition, 1965.

Meeuwissen A. M. H. and Bedford T. J. Minimally informative distributions with given rank
correlation for use in uncertainty analysis. J. Statist. Comput. Simulation, (57):143-175, 1997.

Roelen A.L.C. et al. Causal modelling of air safety. demonstration model. Technical Report
NLR-CR~2002-662, National Aerospace Laboratory, December 2002.

17



