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“When sorrows come, they come not single spies 

But in battalions.” 

King Claudius, Hamlet Prince of Denmark, Act 4 Scene 5 

 

Executive Summary  

Adapting to climate change will not only require responding to the physical effects of 

global warming, but will also require adapting the way we conceptualize, measure, and manage 

risks. Climate change is creating new risks, altering the risks we already face, and also, 

importantly, impacting the interdependencies between these risks. In this paper we focus on three 

particular phenomena of climate related risks that will require a change in our thinking about risk 

management: global micro-correlations, fat tails, and tail dependence. Consideration of these 

phenomena will be particularly important for natural disaster insurance, as they call into question 

traditional methods of securitization and diversification. 

Global micro-correlations between variables—such as investment products, insurance 

policies, or catastrophe bonds—obtain when all variables in a 

relevant class have small positive correlations that would be 

imperceptible if the variables were considered in isolation. 

When such variables are aggregated, the correlations of the 

aggregations will balloon. If micro-correlations are ignored 

when calculating reserves under a Value-at-Risk management 

regime, risks will be woefully underestimated, as seen in the 

figure to the left. A manager may think his residual risk is 

0.1%, when in reality it is much higher. Moreover, risk 

underestimation grows with the number of products 

securitized.  

Fat tailed loss distributions resulting from uncertainty in parameters of ‗thin tailed‘ 

distributions have recently captured the imagination of 

economists, thanks to the work of Martin Weitzman. 

Catastrophe modeling firms study the ways in which 

extreme events compound damages to create fat tails 

and damages from many extreme events have been 

shown to fit fat tailed distributions. Financial risk 

managers identify fat tails by ―mean excess‖ plots 

showing for each value x,  the expected amount by 

which damage variable X is worse than x, given that it is 
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at least x. Thin tailed distributions have non-increasing  mean excess, but fat tails push this 

excess ever upward. This increasing mean excess is seen in the figure here, which is based on 

flood claims in the United States between1980 and 2008. Fat tails increase the solvency risk, 

thus mooting the ‗actuarial fair price‘ of insurance. Tails may become fatter under aggregation, 

but they may not; and indeed aggregation is sometimes an effective abatement strategy.  

Tail dependence is distinct from simple correlation and tail fatness. It occurs when 

dependence concentrates in high values. Tail dependence may or may not cohere with tail 

obesity, and may or may not be aggravated by aggregation. Analyses of flood damages from the 

state of Florida reveal a tail dependence that is amplified by aggregation. The leftmost picture 

shows a percentile scatter plot of monthly flood damages for two randomly chosen aggregations 

of five distinct Florida 

counties (months without 

damage give the points on 

the axes). The right picture 

shows a similar plot for 30 

distinct counties. The 

amplification of tail 

dependence has obvious 

implications for 

securitization: aggregating 

policies and marketing 

tranches of the aggregations 

may be spreading this dependence over many unsuspecting investors, thereby conscripting a 

‗battalion of sorrows.‘  On the other hand, conditioning on the ‗southern quadrant‘ would allow 

private market securitization to function.  

 This preliminary project report introduces these three phenomena, provides examples 

and discusses the implications for estimating losses from extreme events, adaptation policy, and 

natural disaster insurance markets. We offer an initial foray into the mathematical properties of 

mirco-correlations, fat tails, and tail dependence; conduct an exploratory analysis of flood and 

crop insurance claims; and offer some tentative policy recommendations. 
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Challenges for Insurance, Adapatation, and Loss Estimation 

 

Carolyn Kousky  and Roger M. Cooke 

 
1. Introduction 

Adapting to climate change will not only require responding to the physical effects of 

global warming, but will also require adapting the way we conceptualize, measure, and manage 

risks. Climate change is creating new risks, altering the risks we already face, and also, 

importantly, impacting the interdependencies between these risks. In this paper we focus on three 

particular phenomena of climate related risks that will require a change in our thinking about risk 

management particularly vis-à-vis natural disaster insurance: global micro-correlations, fat tails, 

and tail dependence. 

Global micro-correlations are very small—even undetectable—correlations between 

variables, such as insurance policies. If unaccounted for, these micro-correlations can undermine 

common diversification strategies, as shown in sections three and four of this paper. Fat tailed 

damage distributions are those in which the probabilities of ever more serious damage decrease 

slowly relative to the extent of the damage. The implications for climate policy are now under 

active discussion. Less understood is tail dependence, or the possibility that bad events happen 

together. Research on these topics is needed on three distinct fronts. First, further mathematical 

research is needed on the properties of and relations between these three issues. Second, data 

analysis will be required to determine to what extent these three phenomena can be detected and 

measured in damage data. Finally, policy research on the design and implementation of new risk 

management approaches will be necessary based on the results of the first two research efforts. 

This paper offers initial forays into all three of these research areas.  

The next section of the paper provides some climate change related examples of mirco-

correlations, fat tails, and tail dependence. To motivate our interest in these issues, section three 

discusses the implications of these phenomena for loss estimation, adaptation policy, and 

particularly natural disaster insurance markets. Section four formally defines and discusses the 

mathematical properties of mirco-correlations, fat tails, and tail dependence. Section five 

analyzes US data on flood and crop insurance claims, demonstrating the presence of positive 

mirco-correlations in damages across counties, the fat-tailed nature of the distributions, and the 
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presence of tail dependence that grows as claims are aggregated. This initial empirical work 

suggests techniques for detecting the presence of these phenomena. Section 6 concludes with 

policy recommendations. A mathematical appendix shows how aggregation can amplify tail 

dependence in common deterioration models. 

 

2. Climate Change: Altering Tail Behavior and Dependencies 

As stated in the introduction, this paper is concerned with three particular phenomena of 

climate change related risks: global micro-correlations, fat tails, and tail dependence. Global 

micro-correlations are tiny, positive correlations between all variables under consideration. 

These correlations could be so small individually that they would mostly go undetected. Even 

correlations this tiny, however, can pose problems to risk managers, as discussed in the 

following two sections. This type of global correlation could arise when every variable is 

correlated with some latent variable. An example comes from El Niño, which induces correlation 

between climate events in various parts of the globe. In an El Niño year, precipitation is likely to 

be more extreme in California, leading to mudslides and floods; nutrient-poor water is likely to 

cause fish catch declines in Peru; and drier conditions are more likely in Australia, increasing the 

chance of bushfires. An increase in sea level rise worldwide or a change in the strength of 

hurricanes could also potentially introduce micro-correlations across losses in geographically 

diverse areas. 

 Alternatively, and more realistically, instead of there being a common, small, positive 

correlation among all the variables, each pair of variables may have a different correlation: small 

or large, positive or negative. If the average is positive, then similar problems arise. For the US 

flood and crop insurance data examined in section five, for instance, most correlations are 

statistically indistinguishable from zero, but their average is positive. In section four, we show 

that this is the typical situation; if average variances exist, then average covariances must be 

greater or equal to zero, and ―equals zero‖ is the limiting case. In large finite data sets we will 

typically see ―greater than zero.‖    

 The second concept we consider is fat tails. There is growing recognition among 

economists that, when it comes to climate change, ―the tails matter.‖  There is already evidence 

that damages from many disasters follow distributions with thicker tails (e.g., Malamud and 

Turcotte 2006). Some research suggests that climate change may be directly fattening the tails of 

the distributions of many extreme events (e.g., US Climate Change Science Program 2008). The 

uncertainty surrounding climate change impacts may also generate fat tails, as in Weitzman‘s 

(2008) analysis, where updating a non-informative prior yields a fat-tailed posterior damage 

distribution.  

Finally, it is not just thick tails that matter for climate change policy, but also tail 

dependence, or how likely bad outcomes are to occur together. This latter problem has received 

surprisingly little attention among climate policy scholars and practitioners. A simple example of 

tail dependence comes from considering the damage distributions associated with computer 

networks and some highly infectious tropical diseases, which are predicted to spread as the 

climate warms. Events in the tail of the damage distribution associated with potential computer 

network problems include network failure and malicious attacks. Events in the extreme tail of the 

tropical diseases damage distribution not only include rising infection and mortality rates, but 
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also mass quarantines. These negative outcomes, however, are not independent. If people are 

quarantined at home, the number of people telecommuting will increase dramatically, stressing 

computer networks and leading to failures and vulnerabilities that could be exploited. That is, if 

society is in the tail of disease impacts, it is also more likely to be in the tail of computer security 

damages.  

Another example of tail dependence is seen between property insurance claims and car 

insurance claims. For low levels of claims there is not much correlation between the two 

insurance lines. For very large storms, however, there is a dependency between the two 

variables. When there are many property claims, there tend to be many motor vehicle claims as 

well. This has been observed for insurance data covering over 700 storm events in France 

(Lescourret and Robert 2006).  What about the flood and crop claims we examine, might they be 

tail dependent? One can imagine extreme events that would create tail dependence between these 

losses; a Karkatoa sized volcano would lower global temperatures, acidify the upper atmosphere, 

and also potentially cause large tsunamis, leading to simultaneous extremes of crop damage and 

flood damage. The 29 years of US flood damage and crop loss analyzed in section six, however, 

show no signs of dependence.  

Tail dependence among distributions related to climate change could arise in two distinct 

ways. First, there could be a causal link between two variables, such that when one variable takes 

on an extreme value, it pushes the other variable to do so, as well. Pandemics and network 

security provide an example. For policy, it is important to note that this type of dependence will 

often be unidirectional. That is, a disease pandemic increases the likelihood of network failure, 

but not vice versa. Tail dependence can also arise because a third variable which is normally 

dormant or latent pushes both variables into extremes when activated. A very large volcano 

could correlate flood damage and crop failure, as just mentioned. 

In theory, there could be tail dependence across more than two variables, as suggested by 

the El Niño example. Another telling example of dependencies across multiple loss distributions 

as driven by climate change is the European heat wave in the summer of 2003. The temperatures 

for the summer were extremely far out in the tail of the temperature distribution (Schär, Vidale et 

al. 2004), leading to extreme losses across multiple sectors. The heat wave led to uninsured crop 

losses of nearly $12.3 billion, extensive fires across Europe burning 647,069 hectares, the 

shutting down of nuclear power plants in France from lack of river water for cooling, soaring 

electricity spot market prices, rockfalls from melting permafrost, decreased yields and lower 

quality harvests, excess deaths of between 22,000 and 35,000 across Europe, and excess 

mortality from higher ground-level ozone and particulate matter concentrations (De Bono, 

Giuliani et al. 2004; Schär and Jendritzky 2004; Stedman 2004). With more heat waves, events 

in the tail of the distributions related to mortality, crop yields, wildfires, and electricity pricing 

are more likely to occur together. 

The European heat wave and the multiple impacts of El Niño events demonstrate that the 

climate system is linked globally in ways that create multiple dependencies. As yet another 

example, there is a strong correlation between Atlantic tropical cyclone activity and atmospheric 

dust from the Saharan Air Layer (Evan, Dunion et al. 2006), as well as strong correlation 

between the landfall of intense hurricanes in the US and rainfall in the Western Sahel region of 

West Africa, potentially because both are driven by global oceanic thermohaline processes (Gray 
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1990). There are other dependencies that are not well understood, such as multiple events 

tending to occur together, sometimes referred to as ―clustering‖ (RMS 2008). Active hurricane 

seasons in 1995 and 2004-2005 are good examples, as are the two severe windstorms that caused 

damage in Europe in 1999 (Riker 2004). These intricate dependencies should make us cautious 

of simple or ad hoc consideration of climate related risks.  

 

3. Implications for Loss Estimation, Adaptation, and Insurance 

There are three areas where micro-correlations, fat tails, and tail dependence as 

introduced or heightened through climate change could have significant implications: loss 

estimations, adaptation policies, and of particular emphasis is in this paper, insurance for natural 

disasters.  

3.1. Loss Estimation 

Researchers and policymakers have sought estimates on the aggregate costs of climate 

change to use in considering various mitigation options, as well as estimates of regional or local 

climate change damages in order to improve planning. The costs of particular extreme events—

and how they may be altered under climate change—are also of interest, particularly to insurance 

companies. All these various exercises in estimating aggregate losses, whether for global 

changes in mean temperature or for individual extreme events, will be underestimates if fat-tailed 

distributions are not used when they are appropriate.   

If damage variable X is fat tailed, then for k larger than some threshold, mean values of X
k
 

will be infinite. On any finite sample there will always be a finite sample average, but this 

average increases without bound as sample size increases. The US flood loss data analyzed in 

section five appear to have a finite mean but infinite variance. The sample mean is an unbiased 

estimate of the true mean, but with infinite variance, no matter how many samples we draw, the 

estimate doesn‘t improve. To appreciate how unreliable the sample mean is in such situations, 

Table 1 shows five averages based on 100,000 samples of a fat tailed Pareto distribution (see 

section 4.2 for a discussion) with true mean = 10.  The five averages are generated with different 

random seeds. 

 

100,000 samples of Pareto 1/(1+x)
1.1

 

True mean = 10 

random seed 1 5.54 

random seed 2 6.26 

random seed 3 6.58 

random seed 4 6.20 

random seed 5 5.42 

Table 1: Five Sample Means of 100,000 Pareto Variables with Cumulative Distribution Function 1-1/(1+x)
1.1

 

 

Catastrophe modelers who dutifully report sample means and variances from Monte 

Carlo simulations without first verifying that the damage tails are sufficiently thin may be 
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deceiving themselves. The situation is worst for ‗super fat‘ tailed distributions, where the mean is 

infinite. In these cases, Monte Carlo damage estimates will always be infinitely wrong. 

Simulations that neglect dependencies can also be wrong. Too often, impact modeling for 

changes in climate is performed independently for various sectors of the economy, or specific 

ecological systems, and interactions between impacts are often ignored (Tol 2002). Similarly, 

analysis of different events is often done in isolation, without consideration of the correlations 

between events (Muir-Wood 2004). Many systems are coupled, however, and models of climate 

change impacts or the costs of disasters that do not address such interconnections, and the 

possible creation of new interdependencies as the planet warms, could significantly miss-

estimate impacts.  

For example, insurance companies rely on Monte Carlo catastrophe models, often run by 

private companies, to assess the expected losses in an area where they have exposure (Grossi, 

Kunreuther et al. 2005). Many of these models have neglected dependencies across loss 

distributions leading to an underestimate of losses. Hurricane Katrina estimates, for instance, 

were too low, in part because there was more damage from the secondary consequences than 

from the original event (RMS 2006). Catastrophe modelers are attempting to address this and to 

incorporate another type of tail dependence, event ―clustering,‖ whereby severe events occur in 

close succession (RMS 2006). These improvements in the models will aid companies in 

developing more accurate pricing and diversification strategies. 

3.2. Adaptation 

Consideration of tail dependence may suggest policies that could reduce vulnerability to 

changes in extreme events. Spatio-temporal tail dependence has been calculated for precipitation 

extremes (Kuhn, Khan et al. 2007). In some situations, though, tail dependencies are not simply a 

product of the global climate system but have been induced by human actions and it may be 

possible to mitigate these risks by identifying the underlying cause coupling the tails of the loss 

distributions.  

When we are aware of and understand the nature of the dependence between loss 

distributions, there will be times when adaptation policy might effectively de-couple risks. For 

example, take the 1906 earthquake in San Francisco. This event showed the tail dependence 

between earthquakes and fires; it was both an extreme earthquake and a severe fire that damaged 

the city. The fire burned for 3 days and devoured 28,000 buildings (Steinberg 2000). The cause 

of this dependence was gas and water pipes that could not withstand a high magnitude quake. If 

gas pipes break, fire is more likely, and if water pipes break, flames cannot be controlled, raising 

the likelihood of a conflagration. De-coupling the tails of these two risks involves the design and 

installation of pipes that can withstand extreme earthquakes. Surprisingly, there are still many 

water pipes in the Bay Area that have not been upgraded to withstand earthquakes, although 

retrofitting is currently ongoing.  

Thinking through the response of individuals and all sectors of the economy to an 

extreme event can also help us identify and understand tail dependencies. An example comes 

from Hurricane Katrina. Models of potential losses assumed that the pumps in New Orleans 

would keep flooding in the city to a minimum. However, the extreme nature of Katrina led to an 

evacuation of people, including pump managers, as well as a power outage, reducing pumping 
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capacity and leading to much more extensive flood damage in the city than was expected (RMS 

2005). This suggests that policies aimed at adapting to the potential increases in extreme weather 

events from climate change should consider adding redundancies in protective systems and 

thinking through the impact of not only loss of personnel and power, but damage to all critical 

infrastructure, including communications.   

3.3 Natural Disaster Insurance 

Finally, neglect of micro-correlations, fat tails, and tail dependence could have the largest 

impact on the insurance market for natural disasters (for more on the insurance of natural 

disasters, seem for example: Woo 1999). The last several decades have seen a rise in the 

economic costs of disasters, and, of particular concern to the insurance industry, in insured losses 

(Zimmerli 2003; Wharton Risk Management and Decision Processes Center 2008). While much 

of the rise in disaster losses has been due to increased exposure in hazardous areas—more 

buildings and people in harm‘s way—several weather-related extreme events are predicted to 

increase in severity and/or frequency with climate change. There is increasing concern about 

what impact this will have on the insurability of natural disasters (e.g., Mills 2005; Kunreuther 

and Michel-Kerjan 2007; Charpentier 2008). If risk is increasing over time, such that insurers do 

not believe they can accurately estimate expected losses, premiums will be higher to compensate 

for the uncertainty (Kunreuther and Hogarth 1992). If the premiums necessary for insurers to 

cover a disaster in a climatically changed world are greater than homeowners and businesses are 

willing or able to pay, the private insurance market will collapse. The impact of climate induced 

micro-correlations, fat tails, and tail dependence across different lines of insurance or different 

regions of the world is a further consideration for insurance companies in assessing response 

strategies to climate change.  

Insurance and reinsurance markets rely on the law of large numbers. As independent risks 

are bundled, fluctuations around the mean die out. That is, for a sum of independent risks, the 

ratio of the standard deviation to the mean is dramatically smaller than for one risk. With 

positive dependence, the independence assumption of the law of large numbers is violated and 

the benefits from holding multiple policies are not necessarily obtained. Laymen don‘t always 

appreciate how aggressive such independence assumptions are; a simple numerical example 

makes this clear. A normal variable (i.e. the familiar bell-shaped type) with mean 10 and 

standard deviation 5 has a 0.023 chance of taking a negative value. The sum of 10 such variables 

has mean 100 and standard deviation 15.81, if the 10 variables are independent.  This sum has a 

1.3 × 10
-10

 chance of taking a negative value. The probability of a negative outcome went down 

by a factor of 179 million, just by adding ten independent copies together.  If you add 100 

copies, the probability drops to 2.8 x 10
-89

. This all happens because the mean goes up with the 

number summed, whereas the standard deviation goes up with the square root of that number. 

This is what makes insurance possible.  

When risks are correlated, however, the standard deviation relative to the mean does not 

fall as quickly; when they are perfectly correlated it does not fall at all. Suppose our 10 variables 

were completely correlated. In that case, the standard deviation of the sum goes up as fast as the 

mean; instead of 15.81 for the sum of 10 variables, it is 50, and the probability of a negative 

value remains 0.023. With perfect correlation, summing does not reduce the risk.  Perhaps 

counter intuitively, even a small correlation can prevent bundling from reducing risks.  When the 
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correlation between the variables is equal to the average between flood damages in different 

Florida counties (0.213; see section five),  the probability of a negative outcome with a sum of 

10 is not 1.3 × 10
-10

, but 1.07  10
-4

, larger by a factor of nearly one million. 

When a disaster hits one home, it will have also hit other homes in the area. Insurers deal 

with such local correlations by presuming that disasters in disparate regions are independent. If 

this is true, insurers can again put the law of large numbers to work and swap risk from different 

areas or purchase reinsurance. With the data analyzed in section five, correlations in US county 

flood claims are almost always statistically indistinguishable from zero. That doesn‘t mean they 

ARE zero; indeed they are not.  Bundling actually magnifies these small correlations and 

eventually defeats the attempt to reduce risk through securitization.  

We provide a stylized example to show how this could happen. Suppose an insurance 

company sells a one-year catastrophic flood insurance policy paying $10,000 in damages should 

a flood occur. Assume the historical probability of this event is 0.001 per year. The ‗actuarial fair 

price‘ for this policy would be $10 (probability times loss). The insurance company will, of 

course, add on administrative costs, a solvency premium, and a profit margin to the premium it 

charges; we ignore this here. Following the regulatory requirements for insurance companies in 

the EU, termed Solvency II,1 the firm‘s risk management regime stipulates that cash reserves 

must be capable of covering claims with a 99.9% probability.
2
  In this case, the company must 

keep $10,000 in reserve to guard against insolvency, since this is the loss that would occur with 

probability 1-.999.  This gives a ratio of actuarial fair premiums to required capital reserves of 

0.001.  

Now, suppose the company pools this policy with 10,000 other independent policies with 

identical probabilities and losses.  The company‘s ratio of actuarial fair premiums to required 

capital reserves jumps to 0.506 (see below).  If, however, these 10,000 policies had on average a 

correlation equal to that found in section five for flood claims across all US counties (0.041), this 

ratio sinks to 0.048.  Thus, if the company ignored the tiny average correlation between the 

policies—which is likely since most of the correlations being averaged are statistically 

insignificant—it would be undercapitalized by a factor 10.   

For another take on this phenomenon, consider a company that ―securitizes‖ their risk; 

that is, the company trades their flood policy for a 1/10,000-th share in a bundle of 10,000 

similar policies. If these other risks are independent, then the bundle is effectively normally 

distributed with mean 10,000 $10, and standard deviation √(10,000) stdev(one policy) 

=100 $10,000 √(0.001 0. 999) = $31,606.96. To cover all claims with 99.9% probability, the 

bundle holder must have a cash reserve of $197,672.90.3  The insurance company must 

                                                 
1 Solvency II outlines regulations for insurance companies operating in Europe and is intended to create one 

European insurance market. The three pillars of solvency II are: (1) quantitative requirements, such as the solvency 

probability, ultimately put at .005, (the earlier value used here, .001, was based on the Basel II protocol); (2) 

governance and supervision requirements, and (3) transparency and disclosure requirements.   

2 This is the so-called Value-at-Risk (VaR) risk management scheme.  

3 The formula for this calculation is presented in section 4.1. 
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contribute its share to this reserve, which is the total reserve divided by 10,000, or $19.77. 

Instead of $10,000, the insurance company needs to set aside only $19.77 ($10 / $19.77 = 0.506). 

Such are the apparent benefits of securitization. 

What might go wrong with this sanguine business plan? Of course, the historical 

probability of flooding might not apply in present circumstances subject to global warming. That 

is already receiving attention in the literature (e.g., Milly, Betancourt et al. 2008). We draw 

attention instead to the threat of global micro correlations which has so far escaped notice. If 

each of the 10,000 policies had a small correlation, say 0.01 with every other policy, and if the 

bundle holder receives $19.77 for each of the 10,000 policies, then the chance that the bundle 

holder is unable to pay claims is not 0.001, but in the neighborhood 0.38 (the calculation is in the 

next section). The risk is underestimated by a factor of 380.  

All of this is troubling for three reasons: (1) such small correlations would likely be 

ignored, unless one knew how to look for them (and we have not been looking), (2) ignoring 

these correlation leads to a large underestimation of the risk, and (3) climate change suggests 

these micro-correlations are quite plausible. Small global correlations would frustrate attempts to 

achieve diversification by spreading risks across the globe.    

Tail dependence could also be troubling for insurers of natural disaster risk. Risk 

Management Solutions (RMS), a catastrophe modeling firm, has been exploring notions similar 

to tail dependence relevant to insurers following Hurricane Katrina: ―loss amplification,‖ ―Super 

Cats,‖ and ―cat following cat‖ events (RMS 2005; Muir-Wood and Grossi 2008). Loss 

amplification refers to large losses that induce even larger losses. Specifically related to 

insurance company losses, amplification could be caused by increases in the costs of repair when 

demand for rebuilding overwhelms supply, damage that results when repair is delayed causing 

further deterioration, relaxation of assessment of claims in the frenzied claims processing after a 

disaster, or political pressure or litigation requiring expansion of coverage (Muir-Wood and 

Grossi 2008). Super Cats are those catastrophes that are so large that they trigger other hazards, 

creating ―cascading consequences,‖ and leading to losses across multiple lines of business (RMS 

2005)—in the language of this paper, this is the result of tail dependence.  So-called ‗cat-

following-cat‘ events refer to the unidirectional tail dependence discussed earlier, where one 

disaster of an extreme magnitude is likely to trigger another, such as the 1906 San Francisco 

earthquake triggering the massive fire.  

Hurricane Katrina created increased interest in dependencies across loss distributions 

since losses from the storm not only included wind and rain damage, but damage from breached 

levees and storm surge, power outages, fires that could not be put out, business interruptions, 

toxic spills, a rise in energy costs from damage to rigs and refineries, and increased costs of 

reconstruction (this latter effect is referred to as ―demand surge,‖ see: Hallegatte, Boissonnade et 

al. 2008). After Katrina, some lines of insurance that had not been heavily hit in other 

catastrophes  saw many claims; among them cargo, inland marine and recreational watercraft, 

floating casinos, onshore energy, automobile, worker‘s comp, health, and life insurance (RMS 

2005), demonstrating the tail dependence across these lines of business. While not as related to 

possible impacts of climate change, the 9/11 terrorist attacks also demonstrated that for extreme 

events, multiple lines become affected (Riker 2004). When these tail dependencies are not 

considered, the exposure of an insurance company can be underestimated.  
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Amplified losses from Katrina have led modelers to attempt to more fully incorporate the 

correlations across locations, business lines, coverages, and perils for Super Cats in the 

catastrophe models insurers use to estimate potential losses (RMS 2005; Muir-Wood and Grossi 

2008). These interactions can sometimes be surprising, such as the fact that the shortage of 

refined petroleum from Katrina led two already troubled airline companies in the US to file for 

bankruptcy since jet fuel prices rose after Katrina (RMS 2005). Another surprising example 

comes from the Kobe earthquake, which indirectly led to the collapse of Barings Bank as one of 

their traders had recklessly bet the Nikkei would recover quickly from the quake, but it did not. 

RMS is also examining whether there are points—phase transitions—where a system moves 

from roughly independent damages into the tail region of highly correlated damages. One 

example they give is a forced evacuation, since once evacuation occurs, properties deteriorate, 

there is a lack of personnel for response and operation of critical facilities, and rebuilding costs 

rise (RMS 2005). 

 Tail dependent risks could lead to catastrophic losses, which could threaten the solvency 

of insurers (for more on catastrophes and insurance see: Zeckhauser 1996). To cover losses in the 

tail, insurance companies may turn to reinsurance or to the financial markets through insurance 

linked securities, such as cat bonds. For holding the risk in the tails of distributions, investors 

would want a higher return or reinsurers would want higher premiums, potentially leading 

insurers to reduce coverage or charge higher premiums themselves (Kunreuther and Michel-

Kerjan 2007). If particularly extreme, there may not even be a market for these levels of losses. 

Tail dependence could thus be one of the causes of the low levels of reinsurance for high damage 

levels and the high prices for reinsurance and cat bonds that have been documented (Froot 2001; 

Froot 2008; Lane and Mahul 2008). (Froot examines other explanations such as the corporate 

form of reinsurance, moral hazard and adverse selection in the markets (2001).) It is possible, 

then, that private (re)insurance may fail to operate in the dependent and thus high-potential-loss 

region of the distribution, suggesting a possible role for government intervention. Events that 

stress (re)insurance markets worldwide have been termed cataclysms by Cutler and Zeckhauser 

(1999).  The authors suggest a need for financial markets or government involvement in these 

cases. This is discussed further in section six. 

Further complicating the operation of insurance for tail-dependent loss profiles is the 

likelihood that the existence or extent of the dependence will never be known with certainty. 

Insurers have been found to charge an ―ambiguity premium‖ to insure losses where the 

probabilities are uncertain or to fail to offer coverage at all (Kunreuther and Hogarth 1992). Until 

the relevant tail dependencies for insurance companies are understood, such aversion to 

ambiguity could cause low levels of supply in (re)insurance markets for catastrophes. 

Disturbingly for the market overall, tail dependence has been found between equity 

returns across insurance markets in different regions of the world. Slijkerman (2006) finds tail 

dependence between stock losses of insurers, potentially because their loss holdings are similar 

or due to similarities in investment risks. Sheremet and Lucas (2008) estimate that for Europe-

America and Europe-Australia/Asia, about 60% of the dependence between companies is due to 

correlated losses, as opposed to correlation in investment portfolios. The percentage is higher for 

America-Australia/Asia. The authors also find some evidence to suggest that this dependence is 

increasing over time, potentially from climate change. Interestingly, the authors find far less 

correlation between American and Australian-Asian markets, suggesting some areas where 
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diversification can occur (Sheremet and Lucas 2008). Even in these areas, however, 

diversification could be hindered by the fact that the insured portion of losses from natural 

hazards are concentrated in only a few countries worldwide (Zimmerli 2003). If large losses are 

tending to be correlated across the globe, this will fundamentally undermine the ability of 

(re)insurers to diversify natural disaster risk.  

 

4. Definitions and Properties 

This section formally introduces the mathematics of global micro-correlations, fat tails, 

and tail dependence. 

4.1 Global Micro-correlations 

As discussed in the previous section, it could be that climate change will begin to 

introduce small global correlations across some loss variables, such as disaster claims. A curious 

feature, first noticed in connection with aggregating automobile emissions (van Oorschot et al. 

2003) is that aggregations of many weakly correlated random variables become themselves 

strongly correlated. A small overlooked correlation, whether due to global warming or some 

other cause, could undermine the common risk diversification practices in the insurance and 

investment industries of securitizing risks.  In fact, this same conclusion holds if the average 

covariance is positive. This may be the result of many statistically insignificant correlations, but 

if the average is positive, then there is trouble. 

To see this, first consider variables X1,...XN that are independent with the same standard 

deviation given by  (assumed to exist).  In this case, the standard deviation of i=1…N Xi = N.  

If, however, there is actually a small correlation ρ(Xi,Xj) = ,then the standard deviation of the 

sum becomes: 

 

(1) .)1(1)(
...1

NNXStDev
Ni i  

 

The independence assumption underestimates the standard deviation by a factor (1 + (N 1) ). 

If the variables are not identical then we can replace (1) with a similar expression using average 

covariances and variances: 

 

(2)  

_ _
2 2

1... 1...
( ) cov( , ) ( 1) .i i i ji N i N i j

StDev X X X N N c  

where 
_

2 = 
Ni iN

...1

2)/1( ,  
ji ji XXNNc ),cov())1(/(1

_

. Since the standard deviation is 

always non negative, we must have 
_

> 
_

)1( cN ; if 
_

 is finite and this holds for all N, we 
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must have 
_

c  ≥ 0. Hence 
_

c  = 0 is a limiting case. 
__

2/c is approximately, but not exactly, equal to 

the average correlation i ≠ j (Xi, Xj) / (N(N-1)).  

Since catastrophe insurance claims for neighboring properties are correlated, insurance 

companies seek to hold multiple bundles of correlated policies where they believe the bundles 

are independent.  It is plausible, however, that climate change could induce global micro-

correlations.  Consider the two sums of policies from different regions: i=1…N Xi  and i=N+1…2N 

Xi. If there is actually a tiny, positive correlation between all of the variables due to climate 

change, the correlation of the two sums will be:  

 

(3)   

2

2 2

2

1... 1...2
, .

1 ( 1)( 1)
i ii N i N N

N N
X X

NN N N
 

 

Evidently, this goes to 1 as N → .  

To more fully appreciate the consequences of neglecting micro-correlations, consider the 

implications for a company‘s capital holdings, as discussed earlier.  If   is the mean of each Xi , 

then using the normal approximation and ignoring dependence, we would calculate the 

probability that  i=1…N Xi exceeds a threshold T as  

 

(4)     Pr(  

 

where  is the standard normal cumulative distribution function (  still assumed to be finite). 

With dependence, we cannot compute exceedence probabilities without knowing the whole joint 

distribution; however a back-of-the-envelope estimation would simply modify the independent 

estimate by substituting the standard deviation (1) into (4), giving:4 

 

(5)       

 

Using the back of the same envelope, we can compute the relative error in the exceedence 

risk by dividing (5) by (4). Figure 1 shows the results when using the values for T corresponding 

                                                 

4 This estimate is actually quite reasonable when  is small and the Xi‘s are almost independent, for the following 

reason. For relatively small values of N, the correlation given in (2) will be small and summing 2N variables will be 

like summing independent variables; the result will look normal. For large N, the correlation is almost one, and 

adding an additional sum of N is like multiplying the first sum of N by 2, which preserves the shape of the 

distribution.  
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to the 99.9 percentile under independence, and  = 0.01. The estimation error is large, even for 

modest values of N. Thus, the risk according to (5) for N = 500 is 0.1, a factor 100 higher than 

0.001. 

 

 

The consequences of the elementary formula (1) are far reaching. Much of the insurance 

and investment sector runs on ―securitization,‖ that is, pooling small investment products, be 

they insurance policies, mortgages, loans, corporate bonds, etc. so as to reduce the fluctuations of 

the sum relative to the aggregate mean.5  This pooled product can then be cut into ―tranches‖ and 

re-sold. If the products are independent, then the pooling and cutting will yield products with 

very low risk. However, a small effectively unobservable global correlation means that beyond a 

certain point, sums of N objects are almost fully correlated, and securitization can no longer 

reduce risk. Ensuring that private markets will be able to diversify risks evidently requires 

learning more about micro-correlations. Ironically, upper tail dependence, discussed below, can 

actually help. If the correlations are in the extreme values of the distributions, then at lower 

values the variables may be nearly independent.  

4.2. Fat Tails 

Thanks largely to Weitzman (e.g., 2007), the phenomenon of leptokurtic distributions, 

commonly known as fat or thick tailed distributions, have captured the imagination of the 

climate change community. With thick tails, ‗extreme outcomes are more likely.‘ Roughly, a 

distribution is said to have a fat (right) tail if its density f(x) is asymptotically polynomial as x 

gets large.6 The most common example is the Pareto distribution with a density given by: 

                                                 
5 Recently, various authors express concerns about the limits of diversification, based on the sums of independent, 

super-fat tailed distributions for which the mean is infinite (Chavez-Demoulin, Embrechts et al. 2005; Ibragimov 

and Walden 2007). The concern voiced here is based on dependence, not super tail obesity. 

6 For a precise definition, see McNiel, Frey et al.(2005). 

Figure 1: Risk Underestimation Factor 
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(6)     p(x) = a /(a+x)
+1

 ,  > 0. 

 

The mean and variance of (1) are (see appendix): 

 

(7)      μ(X) = a/( -1),  > 1,  and 

 

(8)      σ
2
(X) = a

2
 / [( -1)

2
( -2)],  > 2.                        

 

The lower the parameter , the fatter the tail. For  ≤ 1, the expectation is infinite, for  ≤ 2, the 

variance is infinite. 

An intuitive diagnostic for assessing tail obesity is the mean excess, defined at point x as 

the mean of X-x, given that X > x. If the mean excess is constant, then the distribution has an 

exponentially decreasing right tail (McNiel, Frey et al. 2005). Upward sloping mean excess plots 

indicate a fat tail. For the Pareto distribution, the mean excess is linear in x with slope equal to 

1/(  -1), indicating a thick tail for  > 1.  

 The relationship between tail obesity and aggregation is not simple. In the appendix, the 

calculations with Lp symmetric processes show that summing positively correlated leptokurtic 

variables need not affect tail thickness. Other examples can be found in which independent sums 

of fat tailed distributions become more obese (Embrechts, Lambrigger et al. 2008). As shown in 

section five, flood claims and crop loss data have a pronounced fat tail. For crop loss the fatness 

is attenuated by aggregation, whereas for flood claims this does not appear to be the case. If the 

tails are not too fat, so that the variance is finite, then aggregation seems to thin the tails. The 

central limit theorem for sums of independent variables with finite variance says that the sums 

must approach a normal (thin tailed) distribution. If the variance is infinite, then all bets are off. 

4.3 Tail Dependence 

Tail dependence refers to the tendency of dependence between two random variables to 

concentrate in the extreme high values (known as upper tail dependence, UTD) or extreme low 

values (lower tail dependence, LTD). In this report, we shall always be concerned with high 

values or UTD. Technically, upper tail dependence of variables X and Y is defined as the limit (if 

it exists, which it may not):  

                                      

(9)      

    

               = Pr(X > r-percentile | Y > r-percentile). 
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If X and Y are independent, their tail dependence is zero. If their tail dependence is 

positive, then when one variable takes on an extreme value, it is more likely the other variable 

will as well. When thinking about climate change, we may be concerned about tail dependence 

among distributions of the magnitude of extreme events, such as storm intensity, or among 

distributions of impacts, such as dollars of damage from a storm event. If X and Y are leptokurtic, 

then extreme events could be quite large for either event, but high-loss draws are not necessarily 

more likely to occur simultaneously. If X and Y are tail dependent, they are more likely to take on 

extreme values together, even if their marginal distributions are thin-tailed.  

Note that UTD does not depend on the marginal distributions of X and Y. Thus, if we 

apply any 1-to-1 transformation to X, say X* = X
3
, then UTD(X*,Y) = UTD(X,Y). UTD has no 

simple relation to the standard Pearson correlation coefficient. For example, if (X,Y) are bivariate 

normal, with correlation ρ strictly between -1 and 1, the UTD(X,Y) = 0 (McNiel, Frey et al. 

2005). If (X,Y)i i = 1,…  are bivariate normal with correlation i, and if lim i  1 as i  , 

then: 

 

(10)    UTD(limi (XiYi) ) = 1           limi UTD(Xi,Yi) = 0.                      

 

Tail dependence is related to the correlation of extreme event occurrences. For any two 

events A and B, the indicator functions 1A, 1B, are functions which take the value 1 if A or B 

occurs respectively, and zero otherwise. The Pearson correlation of the indicator functions is: 

 

(11)   . 

   

Setting A = {X is above its r-percentile} and B = {Y is above its r-percentile}, and r*=r/100, then 

P(A) = (1-r*) and P(B) = (1-r*). After some manipulations: 

 

(12)     

The joint distribution of the percentiles of two random variables is called a ―copula,‖ and 

tail dependence is a property of the copula (for more information on copulae, see: Genest and 

MacKay 1986; Nelson 1999; Embrechts 2007). Copulae are useful tools for studying 

multivariate distributions, as they allow us to separate the representation of dependence from the 

representation of the univariate marginal distributions. Different marginal distributions can be 

combined in different dependence structures by choosing different copulae. The fact that tail 

dependence is a property of the copula immediately shows, as stated earlier, that there is no 

general relation between fat tails and tail dependence. We could transform the marginal 

distributions to thick or thin tailed distributions as we like without affecting the tail dependence. 

These are separate issues. Current research focuses on the relation between tail dependence and 



Resources for the Future Kousky and Cooke 

 

15 

multivariate extreme value copulae (Chavez-Demoulin, Embrechts et al. 2005; Joe, Li et al. 

2008). 

Just as correlations between sums grow with aggregation, under certain conditions, tail 

dependence can also grow. If the random variables are thought to be insurance policies, this 

ballooning of tail dependence will again put limits on diversification. As one simple example, 

consider a basic model of dependence in which a set of random variables X1…..Xn are 

symmetrically correlated with a ―latent variable.‖  If a tail independent copula is chosen, such as 

the normal copula, aggregation will not increase tail dependence. If a weakly tail dependent 

copula is chosen, however, then the tail dependence can balloon upon aggregation.  

One version of this is called the ―Lp symmetric process,‖ which is widely used in 

reservoir management, maintenance optimization, and deterioration modeling (van Noortwijk 

1996). In this case, the latent variable is the scale factor, and the Xi‘s are conditionally 

independent variables characterized by a fixed shape and a scale factor which is uncertain. Given 

a scale value, the variables are independent, but lack of knowledge of the scale factor induces a 

global correlation between the Xi‘s.  

A simple case of this model is treated in the appendix. The Xi’s are conditionally 

independent exponential variables, given the failure rate λ, whose distribution is in the Gamma 

family with shape factor  and scale factor a. In this case, the unconditional distribution of each 

Xi is the Pareto distribution. Any two of the Xi‘s have Pearson correlation 1/  and have upper tail 

dependence given by: 

 

(13)     

 

If we consider distinct sums of N such variables, the tail dependence expression becomes 

complicated, but grows with N. Moreover, the lower tail dependence tends toward zero, and the 

correlation in N-sums conditional on the sums being less than their means, grows very slowly. 

The thickness of the tails from aggregation does not change appreciably (see appendix). 

This model is interesting because it is widely applied and it is one of the few in which we 

can actually compute all relevant quantities. We can see tail dependence emerging from 

summing familiar random variables. In general, computations of sums of tail dependent variables 

are intractable; however simulation is rather easy. 

We choose the correlation (Xi, Latent) = 0.1; the correlation between Xi and Xj will 

depend on the copula chosen to realize this correlation, but will be on the order of 0.01. Figure 2 

shows four percentile scatter plots using a Gumble copula having weak upper tail dependence. 

Figure 2a is simply between X1 and X2, and the correlation 0.02 is imperceptible. 2b shows the 

scatter plot of distinct sums of 10 variables. The correlation between them of 0.14 is scarcely 

visible, but we do see some darkening of the upper right corner. In Figure 2c and 2d we see the 

scatter plots of sums of 20 and 40 variables respectively. Now the upper tail dependence 

becomes quite evident. These plots suggest that the way to detect micro-correlations and tail 
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dependence is to look at disjunct sums, an idea we will exploit in studying flood and crop 

insurance data in the next section. 

 

(a) X1  X2 : Gumble;  = 0.02             (b) Σ
10 

Xi   Σ
10 

Xj: Gumble;  = 0.14 

 

(c) Σ
20 

Xi   Σ
20 

Xj: Gumble;  = 0.25        (d) Σ
40 

Xi  Σ
40 

Xj: Gumble;  = 0.40  

 
Figure 2: Tail Dependence, Gumble Copula 

 

To illustrate how the aggregate tail dependence depends on the copula, Figure 3 shows 

the same model as in Figure 2, but with the elliptical copula7 in 3a and the Normal copula in 3b. 

In both of these, there is no discernable tail dependence. 

 

  

                                                 
7 The elliptical copula concentrates on an elliptical surface to induce the required correlation, see Kurowicka and 

Cooke (2006). It is of interest mainly because it is analytically tractable, is related to the normal copula, yet has 

markedly different properties.  
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(a) Σ
40 

Xi   Σ
40 

Xj: Elliptical;  = 0.40               (b) Σ
40 

X  , Σ
40 

Xj: Normal;  = 0.31 

 
Figure 3: Elliptical and Normal Copulae; No Tail Dependence 

 

The presence of upper tail dependence is very important for two reasons; first, it warns us 

that our ―sorrows come in battalions,‖ and second it tells us that in spite of ballooning 

correlation, the lower values may remain relatively uncorrelated. Policy implications of this for 

insurance are discussed in section six.  

 

5. Tails and Dependencies: Disaster Insurance Claims  

5.1 Flood Insurance Claims  

Flood insurance is available in the US through the National Flood Insurance Program 

(NFIP), run by the Federal Emergency Management Agency (FEMA). The NFIP was enacted in 

1968, partly in response to the concern by private insurers that flood peril was uninsurable.  

We start by examining the claims for the all US counties over the years 1980 to 2008.  

There are 26,604 county-year observations in our data.  To first look at whether the data is fat-

tailed, we look at the mean excess plot as discussed in Section 3.1.  This is shown in Figure 4, 

where all the data has been pooled.  The upward sloping plot suggests that flood insurance 

claims are indeed fat-tailed.   

 

Figure 4: Mean Excess Plot for US Flood Claims 

 



Resources for the Future Kousky and Cooke 

 

18 

Over the 29 years we examine, exposure in most counties increased considerably. This 

had the effect of causing an increase in damages over time even after correcting damages for 

inflation.  To remove the effect of growing exposure, we normalize all claims by dividing the 

claims per county per year by with personal income per county per year available from the 

Bureau of Economic Accounts (BEA).8  When examining claims normalized in this way, the 

distribution is still fat-tailed as show in Figure 5 (left). The slope is not constant but is roughly 

4.1 and the Pareto approximation would have a parameter of 1.2, characteristic of infinite 

variance.  Aggregation does not thin the tail as seen in Figure 5 (right), which shows the mean 

excess for random aggregations of 50 counties. For the rest of our analyses, we continue to work 

with this data corrected for exposure growth. 

 

 

Figure 5: Mean Excess Plot for US Flood Claims with and without Aggregation 

 

We would presume that losses in neighboring counties are correlated.  When just 

randomly drawing any two counties for the entire country, however, we might presume they are 

more likely to be independent. Figure 6 shows a histogram of the correlation in flood claims in a 

given year between any two counties randomly drawn 500 times.  As predicted, the majority of 

correlations are around zero, with many correlations actually negative.   

                                                 
8 This data goes from 1980 to 2006, the last two years are dropped from the flood claims data. Income data was not 

avilable for Guam, Puerto Rico, or St. Croix, so these are dropped from our dataset.  Further, the income data for 

some counties in Virigina was for aggregations of counties.  These are also dropped as they cannot match cleanly 

with our flood claims data. 
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Figure 6: Correlations in Flood Claims between Randomly Selected Counties 

 

Using a simple test based on the sampling distribution of the empirical correlation of the 

normal distribution with 29 observations, 454 of the 500 correlations of randomly chosen 

counties would be judged not significantly different from zero. The average correlation in Figure 

1 is 0.041, which, by itself, would not be judged significantly different from zero. However, it is 

not by itself, it is the average over all 2,528 counties with flood losses in this period. That makes 

the number 0.041 significant. To appreciate this fact, it suffices to aggregate the data into groups 

and look at the correlations between the aggregations.  We randomly drew aggregations of 5, 10, 

20, 50, 100, 500, and 1,000 counties.  Results are shown in Table 2.  The correlations are 

monotonically increasing in aggregation size.  If flood claims were independent, the averages in 

Table 2 should fluctuate around zero.  This is clearly not the case.  Figure 7 shows the 

histograms for 500 random observations of correlations at different levels of aggregation are 

plotted.  By aggregations of one-thousand, the correlation is approaching 1. 

 

 Aggregation Size 1 5 10 20 50 100 500 1000 

Average Correlation 0.041 0.055 0.063 0.082 0.17 0.23 0.76 0.92 

Standard Deviation 0.23 0.23 0.22 0.22 0.28 0.30 0.30 0.15 

Table 2: Correlations of Aggregations for US County Flood Insurance Claims 
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Figure 7: Correlations in Flood Claims at Different Levels of Aggregation 

 

To study tail dependence, 29 observations are not sufficient.  Therefore, we turn to the 

Florida data.  Here we examine recorded property damages in each of the 66 counties for each 

month between 1977 and 2006.  This gives 348 observations for each county.  As seen in the 

national data in Table 1, the average correlation rises as counties are aggregated in Florida 

(shown in Table 3). The correlations are higher, since there is more correlation between the 

individual counties. The tail dependence also increases, as shown in Table 4 and Figure 8. Table 

4 shows that the probability of one correlate exceeding its 90
th

 percentile given that the other 

exceeds its 90
th

 percentile, UTD(90), increases with aggregation.  In Figure 8, the left graph 

shows a percentile scatter plot of monthly flood damages for two randomly chosen aggregations 

of 5 Florida counties (the points on the axes are months with no claims filed.)  The right picture 

shows a similar plot, but for aggregations of 30 counties. The increase in tail dependence is 

striking.  

 
Aggregation 

size 
1 5 10 15 20 25 30 

Average 

correlation 

0.213 0.321 0.401 0.444 0.507 0.551 0.612 

Standard 

deviation of  

correlations 

0.277 0.300 0.286 0.260 0.240 0.216 0.184 

Table 3: Florida, correlations of random aggregations, 500 iterations 
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Aggregation 

size 
1 5 10 15 20 25 30 

Average 

UTD(90) 

0.183 0.430 0.498 0.546 0.588 0.626 0.654 

Table 4: Florida,  UTD(90), 500 iterations 

 

 

Figure 8: Tail Dependence among Florida Counties, with Random Aggregations of 5 (left) and 30 (right) 

5.2 National Crop Insurance Data 

 

The US Department of Agriculture maintains data on crop insurance claim payments by 

county over the years 1979 – 2008. The first year had many rogue entries; useful data exists from 

1980-2008 for 2,898 counties across the country. Pooling all the data and considering only those 

county losses above $10
6
 gives 1,172 county loss events. Pooling all these events produces the 

mean excess plot in Figure 9, (left). The slope is 0.66 and is not constant, but the Pareto 

approximation would have parameter 2.51, which is fairly fat tailed. Aggregating by 10 (Figure 

6, right) shows that the fatness is greatly reduced, the Pareto parameter is now 11.32, effectively 

wiping out the tail obesity. 

 

    

Figure 9: Mean Excess Plots of US Crop Insurance Claims, Without Aggregation (Left) and Counties 

Aggregated by 10 (Right) 
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The county-to-county correlations are noisy.  Table 5 gives the distribution of 500 

correlations between pairs of random aggregations of counties. Aggregation size 1 corresponds 

to individual county correlations. The mean correlation was 0.13. There are a fair number of 

negative correlations—this means that there are pairs of counties where ‗one does well when the 

other does badly.‘ 

 
500 iterations 

Aggregation Size 1 5 10 20 50 100 500 

Average Correlation 0.131 0.378 0.499 0.622 0.790 0.882 0.972 

Standard Deviation 0.282 0.240 0.202 0.154 0.0956 0.050 0.010 

Table 5:  Correlations of random aggregations of county crop losses 

 

Using a simple test based on the sampling distribution of the empirical correlation of the 

normal distribution with 28 observations, 394 of the 500 correlations of randomly chosen 

counties would be judged not significantly different from zero. Even for the 500 correlations of 

random aggregations of 5 counties, 244 would be judged not significantly different from zero. At 

aggregation level 20, only 39 would be judged insignificant. This demonstrates the power of 

aggregation in discerning micro correlations. If the correlations were indeed zero, then all the 

average correlations in the table above would be fluctuating about zero, and not increasing 

monotonically. Figure 10 depicts the distributions of the 500 random aggregations, of size 1, 10 

and 50. 

 

 

Figure 10: Correlations of Crop Losses of Random Aggregations of 1, 10, and 50 US Counties 
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It is interesting to examine the correlations of crop losses and flood claims. Here the 

normalization of exposure is important. If we do not normalize the flood claims, then a 

correlation of 0.47 between crop loss and flood claims is found. After normalization this 

becomes 0.087. 

It is useful to compare these analyses with a dataset of variables that are sampled 

independently. Table 6 shows correlations of aggregations from 500 independent uniform 

variables, each sampled 100 times. The aggregations are sampled 500 times.  With these 

numbers, the individual correlations can vary between -0.3 and 0.3, but the average over all pairs 

of 500 variables is very small. Even this small sample correlation will balloon when taking 

aggregations, but the effect is quite small; the correlation of distinct sums of 250 variables 

produces an average correlation of 0.096.  This indicates that average correlations of 

aggregations is indeed a useful tool for detecting micro correlations.  

 

aggregationn size 1 10 20 50 100 250 

av corel 0.000186 0.006413 0.006611 0.018513 0.042434 0.096888 

stdev corr 0.099566 0.099455 0.098267 0.102091 0.096133 0.071649 

Table 6: Average Correlations Based on 100 Samples from 500 Independent Uniform Variables 

 

6. Policy Implications 

The first thing to note is that more research on these topics is clearly needed. 

Mathematical tools from extreme value theory, financial risk management, and dependence 

analysis should be developed and brought to bear on these issues.  Further analysis of other large 

loss data sets could teach us more about micro-correlations, fat tails, as tail dependence, beyond 

our initial findings from the insurance data. Larger, more diverse data sets may reveal properties 

under random aggregation that are not visible otherwise. Hopefully, features brought to light can 

be aligned with more physical analyses into phase transitions, Super Cats, and the clustering of 

catastrophes. Based the mathematical and empirical results, more thought will need to be put into 

developing robust risk management strategies as the climate changes.  

The policy implications from our initial work here are very preliminary and will be 

elaborated as our research in this area proceeds. Still, while that is ongoing, an initial discussion 

is warranted. We begin with four issues that stand out for the insurance of natural disaster risk: 

(1) Limits to Securitization. In the presence of micro-correlations, a point is reached 

beyond which further securitization is unhelpful and can actually hurt us. Strategies for 

identifying potential micro-correlations are needed, as are approaches for identifying and 

implementing limits to aggregation. What is the role of private markets, what is the role of 

government oversight, and what are the rights of the public for disclosure?  Until such questions 

are resolved, the results presented here suggest that caution in securitization would be prudent.  

(2)  Conditional Indemnity. If indeed correlation is found to concentrate at high damage 

levels, it may well be that conditionalizing on small to modest damage levels could define 

markets in which diversification is viable. That is, in theory, a cap could be indentified under 

which tail dependence is at a minimum and private markets could function. This cap may be akin 



Resources for the Future Kousky and Cooke 

 

24 

to the phase transition explored by RMS modelers. A possible role for government could be in 

covering losses above the cap. Instead of simply assuming the losses, the government could offer 

potentially subsidized excess-of-loss reinsurance for the higher levels of loss (Cutler and 

Zeckhauser 1999). This could be a multi-line contract, where losses would have to exceed a 

trigger in multiple insurance lines (Lescourret and Robert 2006). Such a contract could be similar 

to the excess-of-loss contracts proposed by Lewis and Murdoch (1996). Catastrophe bonds could 

also potentially be designed to cover tail dependent risks. For instance, in April 2007, Swiss Re 

structured a cat bond covering flood risk in the UK that is triggered if there is flooding in at least 

four of fifty reference locations (Swiss Re 2008). In theory, a cat bond that is triggered by losses 

in multiple lines of coverage or multiple locations could be designed for tail dependent losses. 

Research on the modeling of extreme dependence that could guide the pricing of such cat bonds 

or reinsurance is ongoing.  

(3)  A Role for Mitigation.  Damage distributions, like the insurance claims we examine 

here, are a function of both a natural hazard and human exposure to that hazard. Addressing 

exposure, through location decisions, or through mitigation policies, can reduce damages from 

extreme events. Adherence to strict hurricane building codes, for example, can thin the tail of the 

damage distribution. With losses lower, insurance supply may increase and prices may fall.  

Kunreuther has discussed reasons individuals may not invest in mitigation measures, such as 

myopia, underestimation of losses, and high up-front costs (2006).  Mitigation does not just 

reduce private losses, but also reduces societal losses. As Kunreuther as noted, if I fail to secure 

my roof, for instance, it could blow off and damage my neighbors‘ home.  But the 

interconnections are deeper than just spillover property damage. For instance, if someone looses 

their home and must leave work for an extended period of time, it hurts the local economy. If 

mitigation has aspects of a public good, it is likely to be underprovided by the private market. 

Government could ensure provision through strict building codes, tax incentives, and/or public of 

mitigation projects. 

(4)  Affordability and Equity. It has been shown that the traditional methods of 

calculating risk exposure may significantly underestimate risk. As with any realization that 

exposure is greater than previously thought, insurance companies have three response options. 

They can: reduce exposure, increase the amount of capital they are holding in reserve, or 

purchase protection from reinsurers or the financial markets (Kunreuther 1998). Any of these 

options will drive up insurance prices. If prices rise higher than insureds are willing to pay, then 

the private (re)insurance market may break down, and a broader socio-political discussion of 

how to manage catastrophe risk will ensue. Florida provides one example of how a collapse in 

private insurance markets can be poorly handled if the trade-offs are not fully considered. After a 

series of hurricanes, Florida denied the rate increases private insurers deemed necessary to write 

policies in an area at such high risk for hurricanes. The state created a residual market 

mechanism to write property insurance policies to homeowners who could not find a policy in 

the private market. It has grown to be the largest insurer in the state. The state also has a 

government reinsurance fund, the Florida Hurricane Catastrophe Fund. To repay debt, it can 

assess private insurers to recoup costs (certain lines are exempted, such as health and workers‘ 

compensation, for example), which would be passed on to all those with an insurance policy 

from companies operating in Florida (for more on the situation in Florida, see: Grace and Klein 

2009). A truly disastrous hit could bankrupt the state, absent a federal bailout. There is concern 
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that this arrangement is discouraging mitigation; encouraging development in risky areas; 

subsidizing not just those who need help affording insurance, but also high-income property 

owners; and distributing the costs of a catastrophe inequitably (Kunreuther and Michel-Kerjan 

2009). When catastrophic losses are possible, private insurance may be unable to effectively 

operate and the question of how society should then manage this risk and how the costs of a 

disaster should be distributed needs to be carefully discussed.  

The line of research we have initiated here also has implications for climate policy 

beyond insurance markets. Our work has shown that unless risks are properly accounted for, 

estimates of the costs of single events or of aggregate damages from climate change could 

significantly underestimate potential losses. Also, as shown in some of the examples, tail 

dependence between different loss distributions is sometimes created by human activity, 

suggesting it can also be broken. This was indicated by the example of installing water and gas 

pipes that can withstand earthquakes. Identifying areas such as this where risks can be reduced 

will undoubtedly be difficult and potentially incredibly location specific. Still, the work RMS 

and others are doing in catastrophe modeling will likely continue to shed light on areas for 

improved disaster response and adaptation policy. This work will also increase our 

understanding of how high magnitude events trigger further losses, such as the relation between 

quarantines and network failure, which may otherwise be neglected. 
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Appendix: Lp Symmetric Measures 

An atomless Lp symmetric measure on R
n
 is one whose density at (x1,…xn) depends only 

on the Lp norm [ |xi|
p
]
1/p

. Berman (1980) proved that  Lp symmetric measures on R  
 
can be 

uniquely represented as condititionally independent gamma transforms. For L1 measures, we 

have conditionally independent exponentials given the failure rate.  

Recall the gamma integral: 

 

(14)     x>0 x
-1

 e
- x

 dx  = ( )/ ; α>0,   > 0; ( ) = ( -1)! .                            

 

and the incomplete gamma integral with integer shape  (Abramowitz and Stegun 1965): 

 

(15)     (1/ ( )) x>r  x
-1

α  e
- x

 dx =  e
- r

 (1 + r + ( r)
2
/2! +…( r)

-1
/( -1)!);   N+  

 

The gamma density with shape  and scale α is f(x) = α
 
x

-1
 e

-αx
 / ( ), with mean /α and 

variance /α
2
. (X1,..) have a L1 symmetric distribution with gamma prior if, for any n,  the n-

dimensional marginal density is given by: 

 

(16)     p(x1,…xn) =  ( e
-λΣxi

 ) 
-1

a  e
-a

 (1/ ( )) d . 

 

Setting n = 1 and integrating over λ, one finds the univariate density and survivor 

functions 

 

(17)     p(x) = a  / (a+x)
+1

; S(x) = (a/(a+x))  

 

which are Pareto thick tailed (leptokurtic) (Takahasi 1965, Harris 1968). Conditional on , the 

variables in (16) are independent exponentials, and the sum of n such variables is a gamma 

variable with shape n and scale . The density of the sum of the n variables in (16) is therefore 

 

(18)     p(Σi=1..n Xi = r) =  (1/ (n))
n
r
n-1

e
- r

 
-1

a e
-a

(1/ ( ))d  

 

     = r
n-1

a ( +n) / ( (n) ( )(a+r)
+n

). 

 

The sums are slightly less leptokurtic, and their tail behavior does not depend on n. 



Resources for the Future Kousky and Cooke 

 

27 

Multiply (15) by x and integrate first over x, then over λ; the result is the mean of X. The 

variance, covariance and product moment correlation may be obtained in the same way, giving: 

  

(19)     μ(X) = a/( -1);  σ
2
(X) = a

2
 / [( -1)

2
( -2)] 

 

(20)     COV(X1X2) = a
2
/  [( -1)

2
( -2)]; ρ(X1`, X2) = 1/                              

 

(21)     Var(X1+…Xn) = 
2
(X)(n+ n(n-1)/ ). 

 

Note that the mean exists only if >1, and the variance, and covariance require   > 2. 

 

Tail Dependence for sums of L1 measures 

Computations of tail dependence for sums of L1 measures are tractable. For variables 

X,Y with the same distribution, the (upper) tail dependence of X and Y is: 

 

(22)     TD(X,Y) = limr  P(X>r  Y>r) / P(X>r). 

 

X Y says that X and Y are independent. If X Y then TD(X,Y) = 0 but not conversely. A 

bivariate normal with 
2 
< 1 has TD = 0. Tail dependence is invariant under a monotone 

transformation of X and Y, hence it is a property of the copula joining X and Y. In financial 

mathematics there is great interest in TD>0, and hence great interest in  modeling dependence 

with copulae which show positive TD. This note shows how TD can arise from L1 symmetric 

variables. 

Let Σ( )Xi denote sums of independent versions of the Xi and Σ(L1) Xi denote sums of 

the L1 versions of the Xi. Using (15) ad (18) we have:  

 

(23)     P(Σi=1…N( ) Xi > r) = e
- r

(1 + r + …( r)
N-1

 / (N-1)! ) 

 

After some math,  

 

(24)     P(Σi=1…N(L1) Xi > r) = K  [ Σk=0..N-1 ( +k)/(k! (v))   (r/(a+r))
k
] 

 

where  K = / ( +r) . As r → , the bracketed term goes to: 
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(25)     k=0..N-1
 

( +k) / [k! ( )] .      
 

 

Note,  

 

(26)     P(X1 +... XN > r  XN+1 + …X2N > r ) =  

 

 e
-λ2r

 [(1 + λr + (λr)
2
/2! +…(λr)

N-1
/(N-1)!)]

2
   

-1
a  e

-a
(1/ ( )) d . 

 

= (a/(a+2r))  k,j=0..N-1 ( +k+j)r
k+j 

/ [ ( )k!j! (a+2r)
k+j

]. 

 

Letting  r → , the sum becomes: 

 

(27)     k,j=0..N-1 (1/2)
j+k

( +k+j)
 
/ [ ( )k!j!].           

 

The tail dependence of sums of N L1 variables therefore is  

 

(28)      . 

 

The following table gives some values, comparing the number n of disjunct variables 

summed. We see that the tail dependence grows in n, and decreases in the shape factor . 
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    Upper tail dependence of disjunct sums of n: n = 

Shape Corr(1,2) 1 3 5 10 50 

1   5.00E-01 6.88E-01 7.54E-01 8.24E-01 9.20E-01 

2   2.50E-01 4.53E-01 5.49E-01 6.64E-01 8.42E-01 

3 3.33E-01 1.25E-01 2.89E-01 3.88E-01 5.23E-01 7.67E-01 

4 2.50E-01 6.25E-02 1.80E-01 2.67E-01 4.05E-01 6.94E-01 

5 2.00E-01 3.13E-02 1.09E-01 1.80E-01 3.07E-01 6.24E-01 

6 1.67E-01 1.56E-02 6.54E-02 1.18E-01 2.30E-01 5.58E-01 

7 1.43E-01 7.81E-03 3.86E-02 7.68E-02 1.69E-01 4.97E-01 

8 1.25E-01 3.91E-03 2.25E-02 4.90E-02 1.22E-01 4.39E-01 

9 1.11E-01 1.95E-03 1.29E-02 3.09E-02 8.72E-02 3.87E-01 

10 1.00E-01 9.77E-04 7.39E-03 1.92E-02 6.14E-02 3.38E-01 

11 9.09E-02 4.88E-04 4.18E-03 1.18E-02 4.28E-02 2.94E-01 

12 8.33E-02 2.44E-04 2.35E-03 7.20E-03 2.94E-02 2.55E-01 

13 7.69E-02 1.22E-04 1.31E-03 4.34E-03 2.01E-02 2.19E-01 

14 7.14E-02 6.10E-05 7.29E-04 2.60E-03 1.35E-02 1.88E-01 

15 6.67E-02 3.05E-05 4.02E-04 1.54E-03 9.04E-03 1.60E-01 

16 6.25E-02 1.53E-05 2.21E-04 9.11E-04 5.99E-03 1.35E-01 

17 5.88E-02 7.63E-06 1.21E-04 5.34E-04 3.93E-03 1.14E-01 

18 5.56E-02 3.81E-06 6.60E-05 3.11E-04 2.56E-03 9.57E-02 

19 5.26E-02 1.91E-06 3.59E-05 1.80E-04 1.66E-03 7.98E-02 

20 5.00E-02 9.54E-07 1.94E-05 1.04E-04 1.07E-03 6.63E-02 

Table 1: Upper tail dependence 

 

The three figures following show rank scatter plots for sums of L1 measures with shape 

( ) = 3. The first shows two variables, the second two sums of 10 variables, and the third shows 

two sums of 50 variables. 

  

 
Figure 7: Scatter plots of sums with indicated correlation 
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Lower Tail Dependence 

We may suspect that as the upper tail dependence gets stronger, the lower tail 

dependence gets weaker. The formulas for calculating this are complex and the limiting formula 

cannot be derived as easily as for upper tail dependence. Further, the calculations for small 

values of r with large values of N, encounter numerical problems. The trend, however, can be 

seen in the table below.   

 

PROB(Z1,Z2 <r) / Prob(Z1<r) 

Zi = sum of n; a=3, v=3 

r= mean * fraction: 

n
n 

0.5 0.25 0.1 0.01 

1
1 

0.56 0.36 0.17 0.020 

4
4 

0.57 0.27 0.048 2.66E-05 

8
8 

0.63 0.31 0.0371 3.31E-06 

Table 6: Lower tail dependence 

 

The fact that correlation is concentrated in the upper tail means that by conditioning on lower 

values of each variable, the dependence can be restricted. Such lower quadrant conditioning is 

comparable to liability indemnity of insurance policies.  
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