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Chapter1
Introduction

1.1 Motivation and Outline

Savage [82] formulated axioms for rational preference of an individual, and sho-
wed that the preferences of a rational agent can be represented as expected utility,
where the individual’s subjective probability over possible states of the world is
unique and the utility function over consequences is affine unique. The repre-
sentation of a preference relation by a utility function implies that an individual
assigns higher expected utility to choice alternative a than to alternative b, if and
only if the individual prefers, selects or orders an alternative a above b.

Whereas the theory of subjective probability has flourished; it is fair to say
that the modeling of utility has lagged behind. Without reviewing the activity
in this area, suffice to say that, in our opinion, there are two major causes for
this. First, modeling techniques like multi attribute utility theory (MAUT), multi
criteria decision making (MCDM), etc. focus on capturing "the" utility function
over choice alternatives. If an individual’s utility function conformed to additio-
nal (rather severe) constraints1, such a representation might be possible at an
individual level. However, there is no reason to believe that "a" utility function
exists for groups of individuals; the search for such is a fool’s errand. Based on the
theory of rational decision, the proper goal of utility modeling should be to cap-
ture the distribution over utility functions characterizing a group. Second, and
perhaps not wholly unrelated, there has been a near total absence of attempts
to validate the utility models produced by these various methods. As such, the
field of applied utility theory remains parochial. There is a wealth of literature
demonstrating that stakeholders often violate the axioms of rational preference.
This does not threaten the normative status of the theory any more than the pre-

1A couple of these constraints are Additive Utility Independence, Utility Independence, Mutually Uti-
lity Independent, see Keeney and Raiffa [36], French [27]

1



2 CHAPTER 1. INTRODUCTION 1.1

valence of invalid inferences imperils logic. However, it does lend urgency to the
issue of validation.

The prospects for utility theory are brighter within the literature of discrete
choice and random utility theory. Thurstone [91] pioneered this field with his ce-
lebrated law of comparative judgment. Assuming that utilities are normally distri-
buted over a population of stakeholders, he fits the parameters of this distribution,
under various correlation assumptions, using discrete choice data from pairwise
comparisons. Luce [55] later derived a different random utility model called the
Logit model[6], [57] under one of the consequences of Luce’s choice axioms na-
mely the Independence of Irrelevant Alternatives(IIA). McFadden[60] also derived
the Logit model under the random utility maximization principle. The Logit mo-
dels assume that the error terms are generalized extreme value (GEV) distributed
with mean zero and some constrained covariance matrix. Unhappy with the IIA
assumption, McFadden and Train [64] picked up the thread of random utility
maximization and extended the standard version of the Logit and Probit model,
to deal with the limitations they pose. Whereas goodness of fit tests have been
developed for many random utility models, true out-of-sample validation is not
part of standard operating procedure.

The problem of inferring a distribution over utility functions from discrete
choice data is a problem of probabilistic inversion. Theory tells us that each (ra-
tional) stakeholder has a utility function; if we knew these utility functions for a
group of stakeholders we could predict the distribution of responses in discrete
choice situations. We observe the distribution of responses and wish to infer the
distribution over utility functions. Even more, we wish to model these utility
functions as functions of physical attributes of the choice alternatives, and we
wish to infer rather than impose dependence relations between utilities. This
program is quite feasible, albeit that the techniques for solving probabilistic in-
version problems are new to this field. A few applications are in press, or have
been published [71], [10], [90], [49]. This approach also allows us to capture
a distribution over utility functions non-strict preferences from the stakeholders,
see chapter 2. It also allows us to perform true out-of-sample validation.

To motivate the approach we consider the health state valuation problem [72].
Currently, health states are described and valued using EQ-5D2. EQ-5D is a stan-
dardized measure of health states developed by the EuroQol Group in order to
provide a simple, generic measure of health for clinical and economic appraisal.
Each health state is characterized by five criteria (mobility, self-care, usual acti-
vities, pain-discomfort, and anxiety-depression) which are measurable quantities
that increase in a monotonic scale taking values one, two, three. An extended
version (i.e. EQ-5D+C; see Table 5.2.1 in the Appendix) of the system was in-
troduced by Stouthard et al. [87], which we use. These different health states
are possible outcomes of therapeutic procedures, and their valuation is critical in
deciding which procedures to support and supply.

2Further information can be found in http://www.euroqol.org

2



1.1 1.1. MOTIVATION AND OUTLINE 3

With 6 criteria taking 3 possible values, there are 36 = 729 possible health
states. The most direct approach would be to ask a group of stakeholders ran-
domly chosen from the target population, to state their utility values for each
health state. To estimate the distribution of utility functions, each stakeholder
should apply a standardized utility scale with common zero and unit. The assess-
ment burden for the stakeholders would be forbidding.

Although the distribution over utilities of these health states is the immediate
goal; we want also to model the utility of health states in terms of the attribute
scores. Existing approaches will often ask stakeholders to value the attributes and
the attribute scores. This however is problematic for a number of reasons: (1)
Whereas we choose health states in choosing a therapeutic procedure, we don’t
choose attributes as such. (2) The value attached to one attribute (eg "mobility")
will depend on the whole set of attributes, as we must know what exactly falls un-
der "usual activities" and "self care" to avoid double counting. Of course, valuing
mobility score 3 versus mobility score 2 assumes that these values are unaffected
by the values of other attributes. (3) It is unclear how the resulting distribution
over health state utilities would be validated.

By adopting a simple model of the utility of a health state in terms of its at-
tribute scores, we can simultaneously lighten the assessment burden and enable
validation of the model. The score (utility) of health state i for subject s is mode-
led as:

us(ai) =

6∑
j=1

ωs,j × ci,j ;
6∑
j=1

ωs,j = 1; ωs,j > 0, (1.1.1)

where ωs,j is the weight for attribute j for subject s and ci,j is the score of health
state i on attribute j. If this model is adequate, the distribution of utility func-
tions over the set of stakeholders may be captured as a distribution over attribute
weights (ω1, . . . , ω6). If the model is not adequate, a better model must be sought.
Instead of asking each stakeholder for his/her weight vector, we will ask them to
rank order subsets of the 729 health states, and look for a distribution over weight
vectors which recovers the pattern of rankings. Given a single ranking of a set of
health states, we could in principle recover the set of weight vectors which would
yield this ranking under model (1.1.1). For a set of rankings we could take the
union of the corresponding sets of weight vectors. The uniform distribution over
this set could be taken as our distribution over utility functions. Although this is a
feasible approach, it is not the one we adopt. To understand why, we must discuss
the discrete choice format.

729 health states is much too many for stakeholders to rank order. A discrete
choice format is needed render the assessment burden bearable. Best practice
suggests that stakeholders can rank at most 7 items at a time. The most popular
discrete choice format is simple pairwise comparisons: subjects are presented
with all pairs of choice alternatives and asked to choose one of the two offered.
This is obviously infeasible for 729 alternatives, as there are 265,356 pairs. An

3



4 CHAPTER 1. INTRODUCTION 1.1

economical discrete choice format is acceptable if it enables validation of the
model on which it is based. For the present study we selected 17 non-dominated
health states3. These 17 health states are broken into 5 overlapping groups of
5, where stakeholders then rank the health states in each group. The overlap
structure is shown in Figure (1.1.1)

Figure 1.1.1: Overlap structure

Some pairs of states occur in two groups of 5, which enables us to screen sta-
keholders for consistency. A stakeholder who ranks health state i above health
state j in group k is called inconsistent if he ranks health state j above health
state i in group k + 1. With this discrete choice format we gather data which we
then use to infer a distribution over the utility values. One of the goals in choosing
a discrete choice format is to enable the analyst to identify inconsistent respon-
dents. Removing inconsistent experts can produce better results. Depending on
the format, it may be unrealistic to expect perfect consistency. In pairwise com-
parisons, for example, it is usually sufficient that the number of inconsistencies
(circular triads) is small enough to reject the hypothesis that a subject is choosing
his/her preferences at random. Thus a solution strategy for finding a distribu-
tion over utility vectors must be able to deal with inconsistency: even if there
is no distribution over utility vectors which exactly reproduces the stakeholders’
responses, it may be possible to minimize the lack of fit and thus arrive at a reaso-
nably well validated model. Choosing a discrete choice format mixes science and
craft, and as this approach to utility quantification is relatively recent, the craft is
still evolving.

The necessity of dealing with inconsistencies drives our choice of solution
technique. If the problem is feasible, the solution algorithm should converge
to a unique solution, if the problem is not feasible, then it should converge to a
unique distribution which minimizes lack of fit in some appropriate sense. We
proceed as follows. For each group we define a square preference ranking matrix
whose i, j−th entry gives the proportion of stakeholders who ranked health state
i in the j − th position, in that group. The task is to find a distribution over the
weights that reproduce the preference ranking matrices. Initially a diffuse distri-
bution is chosen over the weights from which a large sample is drawn. For each
sample weight vector we can compute how a stakeholder with that weight vec-
tor and model (1.1.1) would rank the health states in each 5-group. The entire

3The attribute scores increase in severity: pain score 3 is worse than pain score 1, etc. Health state
i dominates health state j if i′s score on each criteria is greater than j′s.
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1.1 1.1. MOTIVATION AND OUTLINE 5

sample will lead to 5 preference ranking matrices which will not agree with those
from our stakeholder data. Iterative re-weighting schemes like Iterative Propor-
tional Fitting (IPF; see section 1.3.1) will then assign differential weights to each
of the original samples such that if we resample this sample distribution using
these weights, the resulting preference ranking matrices agree - to the extent pos-
sible - possible - with those of the stakeholders. If the problem is feasible, IPF
converges quickly and gives the unique solution which is minimally informative
with respect to the initial sample distribution. In case the problem is infeasible,
other techniques like PARFUM (see section 1.3.1) guarantee a solution that is the
least infeasible in an appropriate sense.

Having obtained a solution using the solution techniques, we validate the so-
lution by splitting the entries of the five preference ranking matrices into a test set
and a validation set. The model is initialized on the test and used to predict values
in the validation set. Procedures of this kind are termed out-of-sample validation.
In the following sections of this chapter we give more detailed information about
the discrete choice format, solution techniques and out-of-sample validation.

The outline of the thesis is given as follows. In chapter 1 we introduce the
concept of stakeholders’ preferences and random utility. We propose definitions
and formalism which extend the formulations of discrete choice. Together with
these formalisms and Probabilistic Inversion(PI) we have created alternative tech-
niques for deriving a distribution over utility functions. These PI techniques allow
us to validate discrete choice models.

In chapter 2 we examine the Independence of Irrelevant Alternatives principle
and it’s consequences. The definitions and formalism from chapter 1 enable us to
resolve the the problems that occur when using a distribution over the utility func-
tions that satisfies the Independence of Irrelevant Alternatives. It has been shown
by Marschak [57] that Independence of Irrelevant Alternatives imposes additional
constraints over stakeholders’ preferences for the existence of a distribution over
utility functions.

In chapter 3 we formulate a discrete choice problem as an optimization pro-
blem. We assume a given starting or prior distribution over the utility functions.
Given this starting distribution we seek a posterior distribution over utility func-
tions that satisfies stakeholders’s preferences while being as close as possible to
the starting distribution in terms of the Kullback-Leibler measure. It follows that
the distribution obtained with PI techniques discussed in chapter 1 is equivalent
with the distribution that follows from the optimization problem. In many cases
PI techniques will find a distribution over utility functions when the optimization
problem becomes intractable. We also study the implications of different starting
distributions with and without independence.

The most recent application is given in chapter 6. Our techniques for MCDM
are applied to find a basic screening model for the safety of nanotechnology en-
abled food products, see Flari et al. [24]. Although the benefits of using nano-
particles in food products are potentially many, i.e. fewer quantities needed, the
risks have yet to be determined and also assessed adequately. Doing a case by case

5



6 CHAPTER 1. INTRODUCTION 1.2

study is not possible, because there is few to no data available about the safety
of nanotechnology enabled food products. With stakeholders’ preferences and PI
we capture knowledge about the safety of such products and use the preferences
to fit a screening model based on a set on 10 criteria.

The second application is given in 5. The idea of modeling health states as a
random utility model with underlying physical attributes is not new [81]. Whe-
reas these studies attempt to extract valuations on criteria (criteria weights), this
study aimed to improve an existing model EQ-5D+C for valuing health states
using stakeholders’ preferences on health states directly. The idea is that applying
stakeholders preferences to the model will lead to more transparent and defen-
sible assessment of the MCDM model.

The aplplication in chapter 4 concerns the prioritization of ecosystem in the
California coastal area[71, 90]. The criteria used in this MCDM model intend
to capture the vulnerability of the ecosystems. Weights fitted to the model using
stakeholders’ preferences on 30 ecosystems are used to determine the threat po-
tential of all the remaining ecosystems.

1.2 Definitions and Formalism

As noted already by Savage [82] simple binomial or multinomial discrete choice
data (paired comparisons, multiple choices) do not enable us to distinguish strict
preference from equivalence in preference. That is, if a subject presented with
a choice between alternatives a and b chooses a, we may only conclude that for
him/her, a is at least as good as b. While this might not be severe in modeling the
preferences of one individual, for populations of stakeholders, such ambiguity
can cause problems. Thus if 50% of stakeholders preferred a red bus to a blue
bus, and 50% preferred the blue to red bus, this might either mean that everyone
had strict preferences evenly divided over the population, or alternatively it might
mean that everyone in the population was indifferent to the buses’ color, and was
choosing one color at random. Failure to distinguish these cases can cause pro-
blems in modeling the preferences of the population see chapter 2. These issues
are important and have dominated a good deal of the discrete choice literature.
The tools that we develop for deriving a distribution over utility functions, given
a distribution of responses to a discrete choice problem apply equally well for
strict and non-strict preference. However, allowing for equivalence in preference
considerably complicates the notation, as can be inferred from Definition 2.

Discrete choice or random utility models describe and analyze the preferences
of a group of stakeholders S for set of choice alternatives. We denote this non-
empty set of choice alternatives by A = {a1, . . . , aN}. The preferences of each
stakeholder are denoted in the customary way as ai � aj . If necessary to distin-
guish s ∈ S, we will write �s.

Savage’s [82] theory of rational decision ensures that the preferences of a
single rational stakeholder can be expressed in terms of expected utility. Each

6



1.2 1.2. DEFINITIONS AND FORMALISM 7

s ∈ S may be assigned a utility function over choice alternatives that is unique up
to a positive affine transformation. If u : A → R is a utility function for a given
stakeholder, then cu+d, c > 0, d ∈ R, is also a utility function for this stakeholder.
We will assume that our set of stakeholders have utility functions which can be
assigned the same unit. This means that there are two consequences, say g and
b, not necessarily belonging to the choice set A, such that all stakeholders agree
that g is strictly preferred to b. Each stakeholder would then choose respectively
g and b as the unit and zero of his utility scale. We call such a set of stakeholders
orientable. Since the number of choice alternatives is always finite, there is no
restriction in assuming that the utilities of an orientable set of rational stakehol-
ders over A may be represented as standardized A-vectors taking values in [0, 1],
that is, as elements of [0, 1]A.

Definition 1. D is called a discrete choice problem on A if

1. A = a1, . . . , aN is a finite non-empty set of N choice alternatives

2. D = {D1, . . . , DK |Di ⊆ A, Di 6= ∅, i = 1, . . . ,K}

A familiar type of a discrete choice problem is paired comparisons. Choice

alternatives are presented in
(
N
2

)
pairs from which stakeholders pick their

(strictly) preferred alternative.
The response of a stakeholder to a discrete choice problem may take many

forms. For example, (s)he may choose a unique preferred alternative from each
set Dk ∈ D (strict choice) or a set of non-dominated alternatives in Dk ∈ D (non-
dominated choice), or (s)he may order the elements of Dk ∈ D, such that the
response is a permutation π ∈ Dk! (strict preference order), or (s)he may produce
an ordered partition of elements Dk where the alternatives in each element of the
partition are equivalent (non-dominated preference order). These are captured
in

Definition 2. • A strict choice response from S, r = (r1, . . . , rK) to discrete
choice problem D is a set of mappings rk : S → Dk, k = 1...K.

• A non-dominated choice response from S, r = (r1, . . . , rK) to discrete choice
problem D is a set of mappings rk : S → 2Dk

+ , with 2Dk
+ = 2Dk\∅, k = 1 . . .K.

• A strict preference order response from S, r = (r1, . . . , rK) to discrete choice
problem D is a set of mappings rk : S → Dk! where Dk! is the set of permuta-
tions of Dk, k = 1 . . .K .

• A non-dominated preference order response from S, r = (r1, . . . , rK) to
discrete choice problem D is a set of mappings rk : S → Πk where Πk is the set
of ordered partitions of Dk, k = 1 . . .K .

7



8 CHAPTER 1. INTRODUCTION 1.2

The set of all possible responses to D for all s ∈ S will be denoted by rD. Many
other response forms are conceivable, but the above are the most straightforward.
Note the difference between strict and non dominated choice. In the standard
versions of random utility theory, when a stakeholder chooses element ai from a
set {a1, . . . , aN}, this is interpreted to mean that ai is at least as good as the other
elements.

Definition 3. A probability mass function P over S induces a probability mass
function Q over rD as Q (rk) = P (s ∈ S|rk (s) = rk)

The probability mass function P over S will usually the counting measure.
The probability of rk is then:

Q (rk) =

∑
s∈S

1rk(s)=rk

|S|
. (1.2.1)

Definition 4. Let S be an orientable finite set of rational stakeholders, whose uti-
lities us(ai) for ai ∈ A, s ∈ S take values in [0, 1]; let Ω = [0, 1]N . P over 2Ω

is the probability mass function induced by P over S if P{B ∈ 2Ω} = P{s ∈
S|(us(1), . . . , us(N)) ∈ B}. The utility ui of ai is a random variable whose distri-
bution function is given as P{ui ≤ v} = P{s ∈ S|us(i) ≤ v}, v ∈ [0, 1].

Note that P depends on S, although we suppress this fact in the notation.
Definition 4 simply says that an orientable set of rational stakeholders whose
utilities are constrained to the [0, 1] interval induces a probability mass function
on the set of utility vectors.

Definition 5. Bi is a cylinder set of Ω if Bi = [0, 1]× [0, 1]× · · · ×B∗i × · · · × [0, 1],
with B∗i ⊂ [0, 1]

Definition 6. The utilities for ai, aj are independent under P if for all Bi, Bj ,

P
(
Bi
⋂
Bj

)
= P

(
s ∈ S|us (ai) ∈ B∗i

⋂
us (aj) ∈ B∗j

)
= P (Bi)P (Bj)

It follows that a population of stakeholders induces both a distribution over res-
ponses as well as distribution over utility values (see figure 1.2.1). The responses
are indirectly induced from the utility values, because each stakeholder is asso-
ciated with a utility vector us (A) = (us (a1) , . . . , us (aN )). If we knew the utility
function of a stakeholder s ∈ S, then we could obviously predict with certainty
how s would respond to a discrete choice problem. Equivalently, if we are given
a vector of utility values over the choice alternatives, we can uniquely determine
how a stakeholder with that utility would respond in any discrete choice problem.

8



1.2 1.2. DEFINITIONS AND FORMALISM 9

Our problem is to infer a distribution over (standardized) utility functions given
a set of responses from stakeholder population S (see figure 1.2.2). With the
distribution over the utility values we will be able to compute measures like the
means, standard deviations, and correlation coefficients of the utility values.

Figure 1.2.1: P inducing P and Q

Figure 1.2.2: Inferring P from Q via P

1.2.1 Paired Comparisons

A simple paired comparison problem will illustrate the definitions. The choice
set A = {a1, . . . , aN} consists of a finite set of alternatives; stakeholders are pre-
sented with each pair of alternatives, and asked to choose their strictly preferred
alternative from each pair.
D = {{a1, a2} , {a1, a3} , . . . , {aN−1, aN}}, where each pair occurs exactly once.

9
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Each stakeholder chooses exactly one element from each pair. Let P be the
counting distribution over S : P (s) = 1

|S| .
For each pair Dij = {ai, aj} the induced distribution over the response {ai}

may be represented as

Q (rij = {ai}) = P (s ∈ S|rij (s) = ai)

= P (s ∈ S|us (ai) > us (aj))

= P (u (ai) > u (aj))

1.2.2 Existence of a Random Utility function
It might not always be possible to derive a random utility function over a set of
choice alternatives given a distribution over the responses. For three choice alter-
natives and simple paired comparisons there are necessary and sufficient condi-
tions for the existence of a random utility function[57]. Let the distribution over
the responses be the counting distribution defined in the previous subsection.
Then the probability of strict response ai to Dij = {ai, aj} is given by

Q (rij = ai) = P (s ∈ S|rij (s) = ai)

=
1

|S|

|S|∑
s=1

1{rij(s)=ai}

= αij , (1.2.2)

with 0 ≤ αij ≤ 1. Marschak [57] gave necessary and sufficient conditions for the
existence of a random utility function for three choice alternatives:

Proposition 1.2.1. For paired comparison data with strict preferences on three
choice alternatives a1, a2, a3, with αij = Q (ai � aj), there exists a joint distribution
P over u ∈ [0, 1]3 such that P{ui > uj} = αij , i, j = 1..3; i 6= j if and only if

1 ≤ α12 + α23 + α31 ≤ 2.

Any cyclic permutation of the indices (1, 2, 3) yields the same inequalities.
The other permutations are cycles of (1, 3, 2), and using pij = 1− pji it is easy to
check that these satisfy a similar inequality. To prove proposition 1.2.1 Marschak
[57] assumed that any paired comparison can be written as a combination of
preference orders e.g. permutations from the set A = {a1, a2, a3}. Inequality
1.2.1 must be relaxed to obtain necessary and sufficient conditions for non-strict
preferences in paired comparisons of three alternatives. Before doing that we
need to stipulate the following for the paired comparisons.

Definition 1.2.2. If � represents strict preference, and ∼ represents equivalence in
preference, then a pairwise preference scheme is transitive for non-strict preference:

10
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• if ai � aj and aj � ak, then ai � ak

• if ai � aj and aj ∼ ak, then ai � ak

• if ai ∼ aj and aj � ak, then ai � ak

• if ai ∼ aj and aj ∼ ak, then ai ∼ ak

with ai, aj , ak ∈ A.
For three choice alternatives the preferences orders and corresponding utilities

are given as follow

• a1�a2�a3 → u (a1) > u (a2) > u (a3)

• a1�a3�a2 → u (a1) > u (a3) > u (a2)

• a2�a1�a3 → u (a2) > u (a1) > u (a3)

• a2�a3�a1 → u (a2) > u (a3) > u (a1)

• a3�a1�a2 → u (a3) > u (a1) > u (a2)

• a3�a2�a1 → u (a3) > u (a2) > u (a1)

• a1�a2∼a3 → u (a1) > u (a2) = u (a3)

• a1∼a2�a3 → u (a1) = u (a2) > u (a3)

• a2�a1∼a3 → u (a2) > u (a1) = u (a3)

• a2∼a3�a1 → u (a2) = u (a3) > u (a1)

• a3�a1∼a2 → u (a3) > u (a1) = u (a2)

• a3∼a1�a2 → u (a3) = u (a1) > u (a2)

• a1∼a2∼a3 → u (a1) = u (a2) = u (a3)

Proposition 1.2.3. For paired comparison data on three choice alternatives a1, a2, a3,
with pij = Q (ai � aj), there exists a joint distribution P over u ∈ [0, 1]3 such that

pij = P (ui ≥ uj) , (i, j) = (1, 2), (2, 3), (3, 1) (1.2.3)

if and only if
1 ≤ p12 + p23 + p31 ≤ 3. (1.2.4)

11
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Proof. Assume first that there exists P such that equation (1.2.3) holds. For
p12, p23, p31 it follows that

p12 = P (u1 > u2 > u3) + P (u1 > u3 > u2) + P (u3 > u1 > u2)

+ P (u1 > u2 = u3) + P (u3 > u1 = u2) + P (u3 = u1 > u2)

+ P (u1 = u2 = u3)

p23 = P (u1 > u2 > u3) + P (u2 > u1 > u3) + P (u2 > u3 > u1)

+ P (u1 = u2 > u3) + P (u1 > u2 = u3) + P (u2 = u3 > u1)

+ P (u1 = u2 = u3)

p31 = P (u3 > u1 > u2) + P (u2 > u3 > u1) + P (u3 > u2 > u1)

+ P (u2 > u3 = u1) + P (u3 = u1 > u2) + P (u2 = u3 > u1)

+ P (u1 = u2 = u3) . (1.2.5)

Summing p12, p23, p31 gives

p12 + p23 + p31 = 1 + P (u1 > u2 > u3) + P (u3 > u1 > u2)

+ P (u2 > u3 > u1) + P (u1 > u2 = u3) + P (u3 = u1 > u2)

+ P (u2 = u3 > u1) + 2P (u1 = u2 = u3) ≤ 3. (1.2.6)

This gives the first part of the proof. The maximal value of three for (1.2.6) is
obtained when P (u1 = u2 = u3) = 1 and the minimal value of one is obtained
when the probabilities P (u1 > u2 > u3), P (u3 > u1 > u2), P (u2 > u3 > u1),
P (u1 > u2 = u3), P (u3 = u1 > u2), P (u2 = u3 > u1), P (u1 = u2 = u3) are all
zero. With non-strict preference we do not have pij = 1 − pji. However, the
above argument will also apply mutatis mutandis for p13 + p32 + p21.

Now assume that equation (1.2.4) holds. We show that there exists a dis-
tribution P over u ∈ [0, 1]3 such that equation (1.2.3) holds. We can write the
probabilities p12, p23, p31 as

p12 = P (u1 > u2) + P (u1 = u2)

p23 = P (u2 > u3) + P (u2 = u3)

p31 = P (u3 > u1) + P (u3 = u1) . (1.2.7)

Let α× 100%, 0 ≤ α ≤ 1 of our stakeholders have strict preferences and the other
(1− α) × 100% of our stakeholders equally prefer all three choice alternatives.
Let the sum of the probabilities of the strict preferences from the right hand side
of (1.2.7) be β then by an obvious extension of proposition 1.2.1:

α ≤ β ≤ 2α. (1.2.8)

12
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Similarly summing the probabilities of the equivalence preferences gives

P (u1 = u2) + P (u2 = u3) + P (u3 = u1) = 3− 3α. (1.2.9)

Since α is between zero and one, 0 ≤ β ≤ 2. By assumption, summing the left
hand side of (1.2.7) gives

p12 + p23 + p31 = β + 3− 3α = γ, 1 ≤ γ ≤ 3. (1.2.10)

To prove that there exists a distribution over the utility values we only have to
show that for all γ, 1 ≤ γ ≤ 3 there exist an α, with 0 ≤ α ≤ 1 and β with
0 ≤ β ≤ 2. Because we deal with linear inequalities, it suffices to consider γ = 1
and γ = 3. For γ = 1 it follows that

1 = β + 3− 3α

β = 3α− 2
2

3
≤ α ≤ 1 → 0 ≤ β ≤ 1. (1.2.11)

For γ = 3 it follows that

3 = β + 3− 3α

β = 3α

α = 0 → β = 0. (1.2.12)

We have to note that proposition 1.2.3 is only valid when the distribution over
utility values can be modeled as a discrete distribution. For continuous distribu-
tions the probability P (ui = uj) will always be zero.

Necessary and sufficient conditions for the existences of a random utility func-
tion for more than three choice alternatives have not been found, but according
to [22] Prof. T. Motzkin proved that proposition 1.2.1 is a sufficient condition for
less than six choice alternatives.

1.3 Deriving a Random Utility Function using Probabilistic In-
version

A response r is defined as a function on the stakeholders S. If the stakeholders are
rational and orientable in the sense of Savage, then we could equally well think
of r as a function defined on the utility vectors uS ⊂ [0, 1]A which are realized
by members of S. Let Qk denote the distribution over responses rk induced by a

13
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distribution P over stakeholders S and let Q = (Q1, . . . QK). In the case of strict
preference order responses with Dk = {ak1 , . . . , akj}, rk = π ∈ Dk! we would have:

Qk (π ∈ Dk!) = Qk
(
π−1(1) � · · · � π−1(j)

)
= P

(
s ∈ S |π−1(1) �s · · · �s π−1(j)

)
.

(1.3.1)

In analyzing discrete choice data, it is natural to consider the population of sta-
keholders as a random sample from a virtual population, whose utilities we wish
to characterize. In this case P is simply the counting measure and

Qk
(
π−1(1) � · · · � π−1(j)

)
=
|
(
s ∈ S |π−1(1) �s · · · �s π−1(j)

)
|

|S|
. (1.3.2)

Our problem is to find a distribution P over u ∈ [0, 1]N which reproduces Q; that
is

P
(
u(π−1(1)) ≥ · · · ≥ u(π−1(j))

)
= Qk(π−1(1) � · · · � π−1(j)); (1.3.3)

Dk = {ak1 , . . . , akj}, π ∈ Dk!, k = 1 . . .K. (1.3.4)

For strict preference response, the formulations are a bit simpler; rk ∈ Dk, and

Qk(rk) = P (s ∈ S | rk(s) �s aki ; aki 6= rk(s)) ; (1.3.5)

P
(
u ∈ [0, 1]A |u(aki) = max{u(akj ) | akj ∈ Dk}

)
= Qk(aki). (1.3.6)

One recognizes a common form to all these problems, namely, we have a set
functions r = (r1, . . . , rK) from the set of possible utility vectors to the set of
possible responses, we have distributions over responses generated by the discrete
choice data Q = (Q1, . . . , QK), and we wish to find a distribution over utility
values whose "push forward" distribution through r coincides with Q. In other
words, we wish to invert r at Q. This operation is termed probabilistic inversion;
a formal definition and intuitive sketch of solution algorithms are given in the
following sub section.

1.3.1 From Stakeholders’ Preference to Random Utility

To obtain an intuitive understanding of the solution algorithms for probabilistic
inversion, this section steps through a simple example. Figure (1.3.1) illustrates a
mental projection of a stakeholder s faced with two overlapping groups of choice
alternatives, D1 and D2. In this simple example, the stakeholder has to choose
one most preferred alternative from each set. With the utilities as shown, s pre-
fers alternative a2 from subset D1 and alternative a4 from subset D2. Another
stakeholder might arrange the four alternatives differently on the utility scale,
leading to other responses. In practice we can’t observe the utility values that sta-
keholders assign to the alternatives, but we do observe their preferences in terms

14
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Figure 1.3.1: Response to D1 and D2 : us = (us (a1) , us (a2) , us (a3) , us (a4)) , G1 (us) =
a2, G2 (us) = a4

of responses to the subsets presented. Suppose that a set of stakeholders induce
marginal distributions Q shown in Table (1.3.1). In other words, in D1, a1 is
preferred by 50% of the stakeholders, a2 is preferred by 30% of the stakeholders,
etc.

Table 1.3.1: Marginal distribution Q over the responses

a1 a2 a3 a4
D1 0.5 0.3 0.2 N/A
D2 N/A 0.25 0.5 0.25

If we knew the utility function of a stakeholder s ∈ S, then we could obviously
predict with certainty how s would respond to a discrete choice problem. Equi-
valently, if we are given a vector of utility values over the choice alternatives, we
can uniquely determine how a stakeholder with that utility would respond in any
discrete choice problem. Our problem is to infer a distribution over (standardi-
zed) utility functions given a set of responses from stakeholder population S. We
solve this problem using a technique called "probabilistic inversion". Probabilistic
inversion (PI) is similar to ordinary function inversion: there are sets X,Y , and a
function g that maps X into Y . The quantity y ∈ Y is observed and the task then
is to find an x ∈ X such that y = g(x). In the probabilistic setup, the quantities
x, y are random vectors. There are two formulations of probabilistic inversion na-
mely, the measure theoretic version4 and the random variable version [40] from
which we choose the latter.

Definition 1.3.1. Let X,Y be random vectors taking values in RN and RM respecti-

4The measure theoretic approach has been applied before to infer a distribution over the utility
values based on a distribution over the preferences[7]

15
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vely. Further let G : RN → RM be a measurable function. X is called a probabilistic
inverse of G at Y if G (X) ∼ Y,where ∼ means "has the same distribution as".
If C is a set of random vectors taking values in RM , then X is an element of the
probabilistic inverse of G at C if G(X) ∈ C.

There are two main algorithms to carry out PI, namely IPF(Iterative Propor-
tional Fitting)[44],[86],[20] and PARFUM (PARameter Fitting for Uncertainty
Models)[9],[17],[50]. IPF was first described by Kruithof [44] and later redis-
covered by Deming and Stephan [16], and many others. Csiszar [13] proved
the convergence of IPF in case of a feasible problem. He shows that if the IPF
algorithm converges, then it converges to the unique distribution (called the I-
projection) which is minimally informative relative of the starting distribution,
within the set of feasible distributions. PARFUM was introduced and studied by
Cooke [9]. If the problem is feasible, PARFUM converges to a solution which
is distinct from the IPF solution. Unlike IPF, PARFUM always converges, and
it converges to a solution which minimizes a suitable information functional
[17]. The convergence of PARFUM (and its canonical variations) was proved
by Matus[58] but has not yet been published. When the problem is feasible IPF is
preferred, because of its fast convergence. PARFUM is used when the problem is
infeasible, because it insures a solution such that Kullback-Leibler divergence or
relative information I (G (X) |Y) is minimal.

The idea now is to infer from table 1.3.1 a distribution over the utility values
given the marginal distributions Q over the responses using PI. In this example
strict preferences are assumed to hold and the probability that ai is strictly pre-
ferred from Dk is denoted as Qk,i. P denotes the dstribution over utility values.
For the diffuse initial distribution we take u1, u2, u3, u4 to be independent and
uniformly distributed on [0, 1]. This distribution would then yield the following
distribution over responses see Table (1.3.2). It does not comply with (1.3.1).
Note that we could use other distributions as the initial distribution.

Table 1.3.2: Marginal distribution Q over the responses given uniform distribution

a1 a2 a3 a4
D1 1/3 1/3 1/3 N/A
D2 N/A 1/3 1/3 1/3

In this case it is possible to find a distribution P over the utility values u1, u2, u3, u4

with either IPF or PARFUM such that this distribution complies with the distribu-
tion over the responsesQ. As mentioned, IPF and PARFUM are sample based algo-
rithms for obtaining a probabilistic inverse. These algorithms re-weight samples
from a starting distribution to get a distribution over the samples satisfying the
constraints (1.3.1). We first draw a number of samples from the starting distribu-
tions and then compute the responses to D1, D2 for each sampled utility vector.
These constitute the values of the functions r1, r2.

16
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r1 (s) =

 a1 if us (a1) > us (a2) , us (a1) > us (a3)
a2 if us (a2) > us (a1) , us (a2) > us (a3)
a3 if us (a3) > us (a1) , us (a3) > us (a2)

(1.3.7)

r2 (s) =

 a2 if us (a2) > us (a3) , us (a2) > us (a4)
a3 if us (a3) > us (a2) , us (a3) > us (a4)
a4 if us (a4) > us (a2) , us (a4) > us (a3)

(1.3.8)

Note that r1, r2 constitute the measurable function G from definition 1.3.1.
For demonstration purposes we use ten samples, but a far greater number

of samples is needed in real applications. Table (1.3.3) shows ten samples for
u1, u2, u3, u4 from a uniform distribution together with the computed outputs
r1, r2.

Table 1.3.3: Ten input and output samples

Sample u1 u2 u3 u4 r1 r2

1 0.6047 0.13987 0.8202 0.39849 a3 a3
2 0.20205 0.34152 0.47065 0.88651 a3 a4
3 0.11747 0.78388 0.81113 0.36028 a3 a3
4 0.1898 0.25268 0.04756 0.84957 a2 a4
5 0.86156 0.89332 0.20379 0.25159 a2 a2
6 0.14059 0.09522 0.30707 0.28061 a3 a3
7 0.29232 0.20926 0.73012 0.36256 a3 a3
8 0.87431 0.65964 0.42908 0.31673 a1 a2
9 0.36005 0.08888 0.12888 0.03023 a1 a3
10 0.31374 0.82145 0.00599 0.59636 a2 a2

The samples (u1 (l) , u2 (l) , u3 (l) , u4 (l) , r1 (l) , r2 (l)), on the l-th sample (l-th vir-
tual stakeholder), are drawn from the starting joint distribution P0. Each sample
has probability 0.1 under P0. The successive joint distributions obtained after
m-th iterate of IPF or PARFUM will be denoted by Pm.

Next we compute the marginal distributions for outputs of r1 and r2

P0 (r1 = a1) ,P0 (r1 = a2) ,P0 (r1 = a3),
P0 (r2 = a2) ,P0 (r2 = a3) ,P0 (r2 = a4)
which are presented in table (1.3.4). Evidently these probabilities do not comply
with the target probabilities in (1.3.1). Large sample fluctuations with only 10
samples cause large deviations table (1.3.2).

Table 1.3.4: Marginal distribution Q over the responses given P0

a1 a2 a3 a4
D1 0.2 0.3 0.5 N/A
D2 N/A 0.3 0.5 0.2

The I-projection of a given distribution onto a convex set of distributions is the
element of that convex set which is minimally informative with respect to the

17
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given distribution. The IPF procedure successively I-projects onto each margin,
and repeats until convergence is reached. If the problem is feasible IPF converges
to a P∗ which satisfies all constraints and is minimally informative with respect
to the starting distribution P0 [13]. PARFUM on the other hands averages the
I-projections of each margin to obtain the next iterate. It is not difficult to prove
with Lagrange multipliers [13] that the I-projection of a distribution P0 onto the
margins of r1 is given by (1.3.9), where Qk,i is the (k, i) entry of Table (1.3.1).

Ir1
(
P0
)

= Ir1=a3

(
Ir1=a2

(
Ir1=a1

(
P0
)))

, (1.3.9)

with

Irk=ai

(
P0
l

)
=

{
P0
l ∗

Qk,i

P0(rk=ai)
, rk (l) = {ai}

P0
l , rk (l) 6= ai

. (1.3.10)

The I-projection of P0 onto the margins of r2 is computed in the same way as r1,
but P0 replaced by Ir1

(
P0
l

)
. Table (1.3.5) shows how an I-projection of P0 onto

the margins of r1 is computed. Note that only the third column are weights that
sum to 1, as (1.3.9) requires cycling through all values in the range of r1.

Table 1.3.5: I-projection of the margin of r1; I1,2 ◦ I1,1 denotes Ir1=a2 ◦ Ir1=a1

(
P0
)
, etc.

Ir1=a1

(
P0
)

I1,2 ◦ I1,1 I1,3 ◦ I1,2 ◦ I1,1
0.1 0.1 0.2

0.5
∗ 0.1=0.04

0.1 0.1 0.2
0.5
∗ 0.1=0.04

0.1 0.1 0.2
0.5
∗ 0.1=0.04

0.1 0.3
0.3
∗ 0.1=0.1 0.1

0.1 0.3
0.3
∗ 0.1=0.1 0.1

0.1 0.1 0.2
0.5
∗ 0.1=0.04

0.1 0.1 0.2
0.5
∗ 0.1=0.04

0.5
0.2
∗ 0.1=0.25 0.25 0.25

0.5
0.2
∗ 0.1=0.25 0.25 0.25

0.1 0.3
0.3
∗ 0.1=0.1 0.1

The I-projections of P0 onto r1, and the result of I-projecting that first projection
onto r2 are respectively:
(0.04, 0.04, 0.04, 0.1, 0.1, 0.04, 0.04, 0.25, 0.25, 0.1) and
(0.0488, 0.0714, 0.0488, 0.1786, 0.0556, 0.0488, 0.0488, 0.1389, 0.3049, 0.0556). The
next joint distribution P1 is equal to last I-projection.

P1 =(0.0488,0.0714,0.0488,0.1786,0.0556,0.0488,0.0488,0.1389,0.3049,0.0556). (1.3.11)

The marginal distributions for r1, r2 given several IPF iteration steps are presented
in Table (1.3.6).
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Table 1.3.6: Marginal distributions r1, r2

Step m r1 = a1 r1 = a2 r1 = a3 r2 = a2 r2 = a3 r2 = a4

1 0.4437669 0.2896825 0.2665505 0.25 0.5 0.25
5 0.4998888 0.3001261 0.1999851 0.25 0.5 0.25
10 0.4999959 0.3000048 0.1999993 0.25 0.5 0.25
15 0.4999998 0.3000002 0.2 0.25 0.5 0.25
17 0.5 0.3 0.2 0.25 0.5 0.25

After 17 iterations IPF has converged. Let PIPF be the solution of the IPF proce-
dure. PIPF is then equal to

PIPF =(0.03625, 0.055, 0.03625, 0.195, 0.0525, 0.03625, 0.03625, 0.145, 0.355, 0.0525). (1.3.12)

For PARFUM, the next iterate is computed by first I-projecting P0 separately onto
each of the margins r1, r2 and then averaging these projections. The next iterate
P1 is equal to

P1 =(0.07,0.0825,0.07,0.1125,0.0917,0.07,0.07,0.1667,0.175,0.0917) (1.3.13)

The marginal distributions for r1, r2 given several PARFUM iteration steps are
presented in Table (1.3.7). After 75 iterations PARFUM converges. The PARFUM
solution is then equal to

Table 1.3.7: Marginal distributions r1, r2

Step m r1 = a1 r1 = a2 r1 = a3 r2 = a2 r2 = a3 r2 = a4

1 0.3416667 0.2958333 0.3625 0.35 0.455 0.195
5 0.4744914 0.2919279 0.2335807 0.2847194 0.4803188 0.2349619
25 0.5000717 0.2999113 0.200017 0.2500172 0.4999107 0.2500721
50 0.5000018 0.2999979 0.2000003 0.2500003 0.499998 0.2500017
75 0.5 0.3 0.2 0.25 0.5 0.25

PPARFUM =(0.0363, 0.0547, 0.0363, 0.1953, 0.0524, 0.0363, 0.0363, 0.1453, 0.3547, 0.0524)

(1.3.14)
As expected IPF converges faster to a solution than PARFUM. Note that the sample
weights obtained from IPF (1.3.12) are slightly different those obtained using
PARFUM (1.3.14). The utilities of the choice alternatives under IPF and PARFUM
are also close (see Tables 1.3.8,1.3.9). The resulting joint distribution over the
choice alternatives induces correlations, as shown in Table (1.3.10) for IPF5. Thus
a stakeholder who values a2 highly is also likely to value a1 highly, but little can
be said about his/her valuation of a4. More information on iterative methods for
probabilistic inversion may be found in [50].

5The correlation matrix (1.3.10) is not semi-positive definite due to rounding and the small number
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Table 1.3.8: Means and Standard Deviations of Utility Values using IPF

a1 a2 a3 a4
Mean 0.4063 0.3298 0.2509 0.3664
Standard Deviation 0.2505 0.2797 0.2354 0.3235

Table 1.3.9: Means and Standard Deviations of Utility Values using PARFUM

a1 a2 a3 a4
Mean 0.4063 0.3298 0.2510 0.3665
Standard Deviation 0.2506 0.2796 0.2356 0.3234

Table 1.3.10: Correlation coefficients of the Utility Values using IPF

a1 a2 a3 a4
a1 1.00 0.78 0.24 0.23
a2 0.78 1.00 0.69 0.16
a3 0.24 0.69 1.00 0.60
a4 0.23 0.16 0.60 1.00

1.4 Multi Criteria Decision Making and Probabilistic Inversion

In many applications of stakeholders’ preferences, we want to model the utility
values as functions of underlying physical variables. The paradigm case is Multi
Attribute Utility Theory (MAUT) where utility is expressed as a weighted combi-
nation of physical attributes, such as price, weight, reliability, maintainability, etc.
The reservations regarding standard utility modeling expressed in the first section
can be dispelled to some extent within the probabilistic inversion approach.

First, we may assume that the utility of stakeholder s for alternative ai, us(ai)
can be expressed as some function

us (ai) = Φ (ci, ωs) , (1.4.1)

where ci is a vector of ’criteria scores’ which depend on i but not on s, and ωs
is a vector of parameters which depend on s but not on i. The population of
stakeholders S would be described by a distribution over ωs. The most familiar
form is the standard MAUT expression:

us (ai) =

M∑
j=1

ωs,j × ci,j . (1.4.2)

MAUT assumes that the ω are normalized weights. The solution algorithms
using IPF and PARFUM proceed exactly as before: we begin with a diffuse star-
ting distribution over ω from which a large number of samples are drawn. Using

of samples used.
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(1.4.2) we compute the joint distribution of utility values associated with the
starting distribution. IPF and/or PARFUM are applied to re-weight the starting
distribution to comply with the discrete choice data. We hasten to add that a
wide variety of functional forms would be tractable. For example, we might add
quadratic and interaction terms of arbitrary order to (1.4.2) without compromi-
sing solvability. Constraints on the parameters ω, (non-negativity, normalization)
can also be imposed. Sampling the resulting joint distribution of ω we obtain the
joint distribution of utilities for all alternatives, characteristic for S. Note that
no assumption regarding the dependence of utility values across S is imposed;
rather, dependencies emerge from the fitting algorithms themselves. Of course
the simple linear form (1.4.2) has distinct advantages; because of the linearity
of expectation, the expected utility of an alternative can be simply computed by
plugging in the expected values of ω.

1.5 Model Validation

To exploit the modeling freedom afforded by probabilistic inversion, and to conform
with sound science, it is essential to evaluate and validate model forms. The near
absence of validation has rendered the field of utility theory more parochial than
scientific. We distinguish five levels of model validation for MCDM.

1. Is the model logically consistent with the discrete choice data?

2. Is the discrete choice data consistent with Savage rationality, that is, is there
a distribution over utilities that recovers the distribution over the prefe-
rences?

3. Does the model recover the preferences from the discrete choice data (in-
sample validation?

4. Can the MCDM utility model fitted on part of the data predict the rest of the
data (out-of-sample validation)?

5. Does the MCDM model predict preferences of fresh stakeholders on fresh
alternatives(Fresh alternative/stakeholder validation)?

The extent to which these levels are possible depends on the form of the dis-
crete choice data. Many other features also influence the choice of data format.
For example, in the nanotechnology enabled food study, we are especially inter-
ested in predicting high and low risk scenarios. In the health states application,
in contrast, we are interested in valuing all health states without focusing on the
very good or very bad.

Three discrete choice formats have been tested with respect to the five levels
of validation:
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• Paired comparison

• Top/bottom rankings

• Rank overlapping subsets

With paired comparisons, logical consistency (1) is checked with circular triads.
Savage rationality (2) can be checked by checking the Marschak [57] necessary
condition - or the new condition for non strict preference from proposition 1.2.3.
The MCDM utility model can be validated in-sample(3) as well as out of sample
(4) and (5) fresh alternative/stakeholder validation. In previous studies[70, 73]
the paired comparison format was found to pose a very heavy assessment burden.
This format has therefore not been used in the studies for this thesis.

Top/bottom ranking (Ecosystems prioritization [71, 90] and in the nanotech-
nology enabled food safety [24] studies): Level (1) can be checked by checking
violations of dominance, if there are dominated scenarios. (2) is difficult to check,
as utilities of unranked scenarios are indeterminate. Levels (3), (4) are perfor-
med for both studies. Level (5) was performed in the nanotechnology application
during an experts’s workshop enlisting fresh experts. Evidently, fresh alterna-
tive/stakeholder validation is very resource intensive. These studies are described
in the chapters 4 and 6.

Rank overlapping subsets (Health State valuation study [72]): Level (1) va-
lidation is done by checking preference reversal, and levels (2), (3), and (4) are
done as well, see chapter 5.
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Chapter2
Independence of Irrelevant
Alternatives

2.1 Introduction

With discrete choice analysis it is possible to predict shares of a given set of
choice alternatives based on preferences of a group of respondents or stakehol-
ders. Examples of such exercises are predicting the share of transportation modes
or shares of a new product [61, 59, 33, 77, 96].

Several models can be used to translate group preferences into shares. Among
these models are the Logit or Bradley-Terry model[5, 93, 25]. The Logit model
offers a closed form solution which makes predicting the shares relatively easy.
Besides the computational benefits of the Logit model, it also has some draw-
backs when used in real life applications. The pros and cons of the these models
have been debated in terms of the Independence of Irrelevant Alternatives(IIA)
assumption. As elaborated in the following section, IIA implies that the ratio of
probabilities of choosing any two alternatives is independent of other alterna-
tives. This implies that adding a new alternative does not alter the "odds ratio" of
choosing between two alternatives already present.

Consider the blue-bus, red-bus example[15]. Commuters initially face a de-
cision between two modes of transportation namely, the car and the bus. Let
the probability of commuters choosing the car equal 0.5 and the probability of
choosing the bus equal 0.5. Thus the odds ratio of the car and the bus is 1. Now
suppose that the bus company paints half of the buses red and the other half blue.
Assuming bus commuters do not care about the color of the bus, consumers are
expected to choose between bus and car still with equal probability, so the proba-
bility of car should remain 0.5, while the probabilities of choosing a bus (red or
blue) is 0.5. IIA implies that this is not the case: for the odds ratio between car
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and red bus to be preserved, the new probabilities for choosing the car, the red
bus, or the blue bus must all be 0.33. Intuitively, the problem with the IIA axiom
is that it fails to account for the fact that commuters see the red- and blue bus as
the same type of transportation.

In this chapter we will direct our focus to the IIA assumption and its implica-
tions. We show that the red-blue bus conundrum is not so much about IIA, but
results from confusing strict and non-strict preference. To resolve the conundrum,
it is essential to distinguish probabilistic indifference from individual preference
indifference. If 50% of the stakeholder population strictly prefer alternative A to
alternative B, then the chance of a random stakeholder choosing A when offered
a choice of {A,B} is 1/2. This is probabilitic indifference. If all stakeholders are
indifferent between A and B, and if they choose randomly when offered the choice
{A,B}, then the probability of a random stakeholder choosing A is also 1/2. Ho-
wever these two cases are very different. Indeed, if preferences may be non-strict,
then the condition in proposition 1.2.1 is not necessary for consistency. A more
general result is proved in section 1.2.2. If all preferences are indeed strict then
IIA does not lead to paradoxes like the red-blue bus conundrum. IIA may be false,
but it is not paradoxical. The discrete choice formalism and solution techniques
introduced in chapter one are used to analyse these issues. Indeed, we show that
if we admit probabilistic indifference, the red-blue bus example does satisfy IIA.

2.2 IIA

Following the notation of chapter 1, we denote the set of choice alternatives by
A = {a1, . . . , an}, S the set of stakeholders, and D as the set of discrete choice
problems generated by A. Further let D{i,j} = {ai, aj} ∈ D then rD{i,j} denotes
the response function of s ∈ S to D{i,j}. The probability distribution Q over
rD{i,j} is induced by a distribution P over S.

Several formulations of (IIA) are found in the literature. Most of these for-
mulation describe IIA as a condition on the response functions. Basically the IIA
condition implies that if a stakeholder for a given set D{1,2} = {a1, a2} prefers
a1 over a2 then he also would prefer a1 over a2 if faced with an extended set
D{1,2,3} = {a1, a2, a3}. Luce gave a stochastic formulation of IIA which has led to
derivation of the Logit and the Bradley-Terry Luce model [54].

Definition 2.2.1. If D is a discrete choice problem on A with strict response, let
Dij = {ai, aj} and let Dij+ ∈ D be a superset of Dij , then IIA holds if

Q (rij = ai)

Q (rij = aj)
=
Q (rij+ = ai)

Q (rij+ = aj)

Definition 2.2.1 on strict responses leads to the following condition on the
distribution of the utility values P.
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P (u (ai) > u (aj))

P (u (aj) > u (ai))
=
P
(
∀ak∈Dij+

u (ai) > u (ak)
)

P
(
∀ak∈Dij+

u (aj) > u (ak)
) (2.2.1)

with P (u (ai) > u (aj)) ,P
(
∀ak 6=ai∈Dij+u (ai) > u (ak)

)
6= 0∀ai, aj , ak ∈ A.

Marschak [57] showed that for a distribution P satisfying equation (2.2.1),
there exist a function v : A 7→ R+, random variables V (ai), ai ∈ A and a function
φ : R 7→ [0, 1], φ (−∞) = 0, φ (0) = 1/2, φ (∞) = 1 such that (recall, under
P, u(ai) is a random variable):

1. u (ai) = v (ai) + V (ai), E (V (ai)) = 0, and v (ai) > 0

2. P (u (ai) ≥ u (aj)) = φ (v (ai)− v (aj)),

3. P (V (ai)− V (aj) ≤ λ) = φ (λ)

4. P
(
∀ak∈Dij+

u (aj) ≥ u (ak)
)

= v(ai)∑
ak∈Dij+

v(ak)

5. Q12 ∗Q23 ∗ · · · ∗Qn−1,n ∗Qn1 = Q21 ∗Q32 ∗ · · · ∗Qn,n−1 ∗Q1n with Qij =
Q (rij = {ai}), 0 < Qij < 1

The first three conditions ensure a probability distribution over the utility va-
lues and the last one ensures that (2.2.1) hold. By putting v (ai) = ew(ai) the form
of the distribution becomes:

φ (λ) =
1

1 + e−λ
. (2.2.2)

Satisfying the condition in proposition 1.2.1 however is not a sufficient condi-
tion for the existence of a probability distribution satisfying (2.2.1). For example
take let A = {a1, a2, a3} with simple paired comparison, and Q12 = Q23 =
0.75, Q31 = 0.25; then it satisfies proposition 1.2.1, but it fails (2.2.1).

The distribution that follows from (2.2.1) has its advantages and disadvan-
tages. One of the advantages is that this distribution has closed form. The closed
form makes it then relatively easy to estimate parameters of the utility function
v (ai) or the share of ai which is equal to the probability that ai is preferred to all
alternatives in A.

As a disadvantage this distribution puts restrictions on the probability values
over the responses in addition to proposition 1.2.1. This disadvantage has not
been highlighted by many in the literature [57]. Another well known disadvan-
tage of this distribution is the so called blue-bus, red-bus problem[15], [8]. In the
blue-bus, red-bus problem the distribution predicts counter intuitively that a bus
company could increase its market share by painting its buses different colors. To
cope with this problem McFadden and others[64], [77], [96] introduced the so
called Mixed-Logit model to capture these dependencies among the utility values

25



26 CHAPTER 2. INDEPENDENCE OF IRRELEVANT ALTERNATIVES 2.3

of the alternatives. The dependence structure does not emerge from the data, but
is imposed a priori.

According to the discrete choice approach set forth in chapter one, inferring
dependence structures from the discrete choice data with probabilistic inversion
is preferable to imposing such structures a priori. Because probabilistic inversion
yields the entire joint distribution over the utility values, we can compute all mo-
ments and dependency structures. In examples like the red-blue bus paradox, the
probabilistic inversion must explicitly take account of equivalence in preference.
A group of stakeholders is said to be probabilistic indifferent with respect to alter-
natives ai, aj if 50% strictly prefers ai to aj and the other 50% strictly prefers aj to
ai. A group of stakeholders is individually indifferent to alternatives ai, aj if these
are equivalent in preference for each stakeholder. It may be difficult to distinguish
probabilistic indifference and individual preference indifference in discrete choice
data whose collection protocols were not specifically designed for this purpose 1.
This, however, is a question of experimental design, and should not lead us to
confuse probabilistic and individual preference indifference. Of course, mixtures
of probabilistic and individual preference may also arise, which further compli-
cates the issues. The next section demonstrates how probabilistic indifference
and individual preference indifference lead to very different conclusions when
probabilistic inversion is applied to discrete choice data.

2.3 Implications of IIA

Four scenarios that the bus company might face are analyzed below and ques-
tions of the bus company (see introduction) are answered for each scenario. We
shall see that the answers differ according to whether preferences are strict or
non-strict. The choice alternative set A will contain three choice alternatives
{a1 = Bus1, a2 = Bus2, a3 = Car}. The two bus lines can also be marked as the
blue-bus and red-bus as in the example of Debreu[15]. Stakeholders are faced
with paired comparisons

D =
{
D{1,2} = {a1, a2} , D{2,3} = {a2, a3} , D{3,1} = {a3, a1}

}
For a stakeholder faced with D{i,j} he or she might either respond with either ai,
aj or {ai, aj}.

2.3.1 From Preferences to Shares

Before working out the four scenarios we explain how to derive the shares of
the three transportation modes using Probabilistic Inversion. We assume that the

1As described in Savage [82], strict preference between two alternatives may be detected by sup-
plementing the unchosen alternative with vanishingly small utility increments. Alternatively, intransi-
tivities in pair wise comparison data may indicate indifference.
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utility functions of all commuters take value within the unit cube
(u (a1) , u (a2) , u (a3)) ∈ [0, 1]3. If a commuter s ∈ S responses to {ai, aj} with
{ai} then it is assumed that u (ai) > u (aj), and if responded with {aj} then
u (aj) > u (ai). If a commuter responses with {ai, aj} then it is assumed that
u (ai) = u (aj). In formula this gives

r{i,j} (s) =

 ai if us (ai) > us (aj)
aj if us (ai) < us (aj)
{ai, aj} if us (ai) = us (aj) .

(2.3.1)

The distribution over responses is obtained from the distribution over commuters
giving

Q
(
r{i,j} = ai

)
=

∑
s∈S

1r{i,j}(s)=ai

|S|

Q
(
r{i,j} = aj

)
=

∑
s∈S

1r{i,j}(s)=aj

|S|

Q
(
r{i,j} = {ai, aj}

)
=

∑
s∈S

1r{i,j}(s)={ai,aj}

|S|
. (2.3.2)

We want to find a distribution P over the commuters utility values (u (a1) , u (a2) ,
u (a3) ∈ [0, 1]3 such that when plugged into 2.3.1 we observe 2.3.2. As men-
tioned before this in done using sample re-weighting techniques of Probabilistic
Inversion. We start with an initial non-informative distribution over the utility va-
lues which is the joint uniform distribution and sample a large number of utility
values from it. When sampling from a continuous distribution one would never
observe the event us (ai) = us (aj). There are a number of ways to deal with this
problem. In the first approach one could sample from the continuous uniform
distribution and assume that if a stakeholder responses with {ai, aj} that there
is no noticeable difference in the utility values of us (ai) , us (aj) if there exists a
ε > 0 such that

ai ∼s aj → |us (ai)− us (aj) | < ε, i 6= j

In the second approach that we have used one does not need to include an
additional dependency of ε and can simply sample from the discrete uniform dis-
tribution and normalize the utility values such that they are between zero and
one.

After properly sampling these utility values we obtain a P∗ using either IPF or
PARFUM if the problem is feasible and a solution P∼, which is a good as possible,
with PARFUM if the problem is infeasible. After obtaining this joint distribution
over the utility values (u (a1) , u (a2) , u (a3)) ∈ [0, 1]3 we can calculate not only
the means, standard deviation, and correlations, but also the probability that ai
is ranked first or the share of ai, which is given as follows
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pai#1 = P (∀ak∈Au (ai) ≥ u (ak)) , (2.3.3)

with pai#1 the share of ai.

2.3.2 Scenario One

In the first scenario all passengers have strict preference. 60% prefer the car
over bus line 1 (Q

(
r{3,1} = a3

)
= α31 = 0.6), 80% prefer the car over bus

line 2 (Q
(
r{3,2} = a3

)
= α32 = 0.8), and 45% prefer bus line 2 over bus line

1 (Q
(
r{2,1} = a2

)
= α21 = 0.45). According to propisition 1.2.1 this is a fea-

sible problem so we were able to find a random utility function using IPF, but we
would not be able to find a solution satisfying IIA, because one of the constraints
is not met (α12 ∗ α23 ∗ α31 = 0.55 ∗ 0.2 ∗ 0.6 6= α21 ∗ α32 ∗ α13 = 0.45 ∗ 0.8 ∗ 0.4).
Fig. 2.3.1 illustrates the margins for the utility values for each choice alternative.
From the margins we can read how probable certain utility values are for a given
choice alternative. From figure 2.3.1 it follows that high utility values for the car
are more probable than low values.

The means, standard deviations, and correlations from the transportation
modes are given in table 2.3.1.

Table 2.3.1: Probabilistic Inversion using IPF First Scenario

µB1 µB2 µCar σBus1 σB2 σCar ρB1B2 ρB1Car ρB2Car

0.463 0.439 0.600 0.2926 0.2732 0.2724 -0.019 -0.045 0.166

With the joint density P∗ obtained from IPF we can compute the probability
that the car is preferred over both bus lines. This probability is equal to the share
of the car: pCar = 0.5339. Therefore 53.39% of the time the stakeholders will
prefer the car over either bus and 46.61% of the time the stakeholders will prefer
one of the buses over the car. The share for bus line 1 would be 32.26% and the
share of bus line 2 would be 14.35%. If the bus company would cancel bus line
1 then it would lose 26.61% of its share and if it would cancel bus line 2 it share
would loss 6.61% of its currently held share2.

2.3.3 Scenario Two

In scenario two the commuters also have strict preferences and we have probabi-
listic indifference among all three choice alternatives. Thus 50% strictly prefer the
car over bus line 1 (Q

(
r{3,1} = a3

)
= α31 = 0.5), 50% strictly prefer the car over

bus line 2 (Q
(
r{3,2} = a3

)
= α32 = 0.5), and 50% strictly prefer bus line 2 over

2The drop in share is calculated by subtracting the probability of bus line i being preferred to the
car from the total share of bus lines combined
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Figure 2.3.1

bus line 1 (Q
(
r{2,1} = a2

)
= α21 = 0.5). In this scenario we could find a solution

using both probabilistic inversion and a solution satisfying the IIA constraints.
Fig. 2.3.2 shows the margins for the utility values.

The means, standard deviations, and correlations from the transportation
modes are given by table 2.3.2 .

Table 2.3.2: Probabilistic Inversion using IPF Second Scenario

µB1 µB2 µCar σB1 σB2 σCar ρB1B2 ρB1Car ρB2Car

0.4999 0.4994 0.4993 0.2887 0.2888 0.2885 0.0004 -0.001 -0.003

The probability pCar = 0.33, so 33% of the time the stakeholders prefer the
car over the bus and 66% of the time the stakeholders prefer the combined bus
lines over the car. Canceling either bus line would decrease the share with 16%.
Introducing an extra bus line might indeed lead to extra share if the case of the
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Figure 2.3.2

extra bus line if probabilistic indifference again holds. An extra line would mean
an extra mode of transportation in the perception of the stakeholders. Evidently
if the number of bus would approach infinity then the share of the bus would
approach 100%.

2.3.4 Scenario Three

In the third scenario the commuters have strict preferences between the buses
and the car and non-strict preferences among the buses. 50% strictly prefer the
car over bus line 1 (Q

(
r{3,1} = a3

)
= α31 = 0.5), 50% strictly prefer the car

over bus line 2 (Q
(
r{3,2} = a3

)
= α32 = 0.5), and 100% are indifferent about

either two bus lines (Q
(
r{2,1} = {a2, a1}

)
= 1). So Q

(
r{2,1} = a2

)
= α21 = 0

and Q
(
r{1,2} = a1

)
= α12 = 0. Note that the probabilities of scenario 3 satisfy

both proposition 1.2.1 and proposition 1.2.3. For strict preferences it follows
from proposition 1.2.1 that 1 ≤ α12 + α23 + α31 = 0 + 0.5 + 0.5 = 1, where
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αij = Q
(
r{i,j} = ai

)
denotes strict preferences. In case of non-strict preferences

it follows from proposition 1.2.3 that 1 ≤ p12 + p23 + p31 = 1 + 0.5 + 0.5 = 2 ≤ 3,
where pij = Q (ai ∼ aj) = Q

(
r{i,j} = ai

)
+ Q

(
r{i,j} = {ai, aj}

)
. Note that IIA

does holds in this case. The probability of choosing the red over the blue bus is 1/2
(everyone is indifferent but if they must choose, they choose randomly). Adding a
car doesn’t change that. Similarly, the probability that the car is preferred (in this
case strictly) over the red bus is 1/2 and doesn’t depend on whether the the blue
bus is or is not available. This shows that the red-blue bus conundrum results
from a failure to distinguish strict and non-strict preference and is not a problem
for IIA when strict and non-strict preference are properly distinguished.

Fig. 2.3.3 illustrates the margins for the utility values from the transportation
modes.

Figure 2.3.3

The means, standard deviations, and correlations from the transportation
modes are given by table 2.3.3.

Table 2.3.3: Probabilistic Inversion using IPF Third Scenario

µB1 µB2 µCar σB1 σB2 σCar ρB1B2 ρB1Car ρB2Car

0.4998 0.4998 0.4998 0.289 0.289 0.288 1 0.002 0.002

The probability pCar = 0.49748 - the deviation from 1/2 is of numerical origin.
Thus 50% of the time the stakeholders prefer the car over either of the buses.
The margins of bus lines in the second and third scenario coincide, but from the
correlation coefficient ρb1b2 of bus line 1 and bus line 2 from third scenario it
follows that bus line 1 is not different from bus line 2. Canceling either one of the
bus lines wouldn’t significantly affect the share of the bus.

2.3.5 Scenario Four
In the fourth and final scenario 60% strictly prefer the car over bus line 1
(Q
(
r{3,1} = a3

)
= α31 = 0.6), 80% strictly prefer the car over bus line 2
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(Q
(
r{3,2} = a3

)
= α32 = 0.8), 100% of the stakeholders were indifferent over

either bus lines (Q
(
r{2,1} = {a2, a1}

)
= 1).

From proposition 1.2.1 it follows that no random utility function exists satis-
fying these strict preferences: α12 + α23 + α31 = 0 + 0.20 + 0.60 = 0.80 < 1.
However, if forced to choose between bus 1 and bus 2 stakeholders will choose
randomly; if we mistake that for strict preference, then α12 = 0.5 and a strict
preference solution can be found. Mistaking individual indifference for probabi-
listic indifference will yield paradoxes. According to proposition 1.2.3 there exists
a distribution over the utility values, satisfying these non-strict preferences since
1 ≤ p12 + p23 + p31 = 1 + 0.2 + 0.6 = 1.8 ≤ 3.

The means, standard deviations, and correlations from the transportation
modes are given by table 2.3.4.

Table 2.3.4: Probabilistic Inversion using IPF Fourth Scenario

µB1 µB2 µCar σB1 σB2 σCar ρB1B2 ρB1Car ρB2Car

0.404 0.404 0.608 0.2722 0.2719 0.2717 1 0.1148 0.1164

The margins of the utility values from the transportation modes are given by
fig. 2.3.4.

The probability pCar = 0.799, so 79.9% of the time the stakeholders prefer the
car over the bus and 20.1% of the time the stakeholders prefer the combined bus
lines over the car.
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Figure 2.3.4

2.4 Conclusion

Scenario two and three of the bus company from the previous showed that group
indifference can have two sources. One source can be traced to the fact that half
the group can have choice alternative ai as response to {ai, aj}, and the other half
can have choice alternative aj as response. In a situation like this, models that
are based on the IIA assumption will work fine. Taken into account the red-bus,
blue-bus example and scenario two of the example it would simply mean that
introducing a new bus or bus line increases the probability of bus being chosen as
a transportation mode, which leads to an increase of share.

The other source of indifference is found on an individual level. In other
words there are stakeholders in the group that are indifferent about combined
buses or bus lines see scenario three and four. In practice there is no way of to
know upfront if stakeholders’ response will be strict or non-strict so it seems a
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good practice to let them express their preferences properly. If in the case of the
bus scenarios this was not taken into account there was no way of telling that the
two buses are the same in terms of utility values, which would lead to a paradox.

The above emphasizes the fact that on binomial or multinomial choice data
(paired comparisons, multiple choices) alone we cannot distinguish strict prefe-
rence from equivalence in preference. If stakeholders in Scenario three of our
examples weren’t able to express their indifference properly it might have oc-
curred that Q (a1 � a2) = Q (a2 � a1) = 1. According to proposition 1.2.1 this
would still yield a distribution over the utility values, but conventional methods
would not be able to derive a distribution over utility values.

However when presented with a discrete choice data set that hasn’t taken into
account non-strict preferences one can test if stakeholders responded at random.
As mentioned before the source of inconsistency can be due to expert choosing at
random. If choosing at random is due to non-strict preferences then one can use
our method to be used to properly analyze the discrete choice data set.

With our formalism and techniques for discrete choice we were able to cope
with both sources of indifference without creating a paradox. This formalism and
technique for discrete choice is capable of highlighting the dependency structures
over the utility values that follow from the responses without the need of defining
them beforehand.
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Chapter3
Minimum Information and
Independence in Discrete Choice

3.1 Introduction

Discrete choice denotes the choice behavior of a group of stakeholders given a
set of choice alternatives. The basic assumption made in discrete choice is that the
utility over the choice alternatives can be inferred from stakeholders’ preferences.
Examples of discrete choice exercises are the modeling of purchase behavior of a
new car or the selection of a given mode of transportation. The goal of discrete
choice is to quantify the (utility) values of the set of choice alternatives based
on preferences or selections of stakeholders. To reach this goal two tasks must
be carried out. The first task is to model attributes or characteristics of choice
alternatives that contribute to utility. For example the purchase of a car depends
on the car’s price, size, fuel consumption, etc. It is possible to model utility given
the choice attributes for a given stakeholder. However it is fool’s errand to de-
rive a single utility function for the group of stakeholders or to derive stakeholder
specific utility functions[3, 4, 84, 89]. That is where the second task comes in
to play. Here the previously derived model is extended with random characteris-
tics to incorporate the fluctuation in stakeholders’ utility. The distribution of the
random terms is estimated using for example selections, purchases, or orderings
given the set of choice alternatives as data. The problem of discrete choice can be
formulated as an inverse problem.

There are several types of methods that can deal with stochastic inverse pro-
blems. Examples of such methods are Regression[29, 74, 23, 26], Maximum
Likelihood[12, 30], Bayesian Updating[38], and Minimal Relative Information[45,
20, 86]. Examples of discrete choice models that use regression or maximum li-
kelihood are the Logit and Probit models[91, 55, 60, 62]. The Logit and Probit
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models assume that utility is a composition of choice attributions with some ran-
domly distributed error term. In the Logit model the error terms are generalized
extreme value (GEV) distributed and in the Probit the error terms are normally
distributed. The advantage of the Logit model is that it has a closed form rep-
resentation which eases the burden of estimating the coefficients of the choice
attributes. On the other hand it suffers from the so called independence of ir-
relevant alternatives (IIA)[15]. The Probit model does not suffer from IIA, but
does not have a closed form. Both models require certain dependency structures
of the error terms in order to obtain a solution. So far we’ve not encountered
models that make use of Minimal Relative Information. A literature review did
not turn up explicit use of the minimal information principle to discrete choice
models, though maximum likelihood methods are closely related to information
minimization.[1].

In this chapter we will investigate the derivation of a distribution over utility
using minimal relative information subject to marginal constraints in the form of
discrete choice data. The type of discrete choice data that will be used is paired
comparisons. The problem of finding a minimal relative information distribution
is formulated as a constrained optimization problem, which can be solved using
either the method of Lagrange or Probabilistic Inversion (PI). In section 3.2 we
will use a uniform distribution as the starting distribution and examine the in-
dependence assumption. It emerges that PI can find solutions where standard
optimization methods will fail due to intractability. In section 3.4 we will use a
normal distribution as a starting distribution and compare the solution with the
one obtained from Thurstone[91, 92]. We will demonstrate in sections 3.3.3 and
3.3.4 that the dependency structures often assumed for the distribution over the
utility values adds additional relative information.

3.2 Minimal Relative Information Solution of a Uniform Distri-
bution Without Independence

Let A = {a1, . . . , aN} be the set of choice alternative, with N choice alternatives,
and S the group of stakeholders. The preferences of each stakeholder are denoted
as ai �s aj , s ∈ S, which implies that ai is at least as preferable as aj for s. The
probability that ai � aj is equal to the number of stakeholders who preferred ai
to aj divided by the number stakeholders:

P (ai � aj) = P (s ∈ S|ai �s aj) =

|S|∑
s=1

1{ai�saj}

|S|
(3.2.1)

Each s ∈ S may be assigned a utility function over choice alternatives that is
unique up to a positive affine transformation, i.e. unique up to choice of zero and
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unit. As in chapter 1 we assume that our set of stakeholders have utility func-
tions which can be assigned the same unit, and that the utilities over A may be
represented as standardized N -vectors taking values in [0, 1], that is, as elements
of [0, 1]N . If nothing is known about what drives the utility values of the choice
alternatives we assume a discrete uniform distribution over { 1

M , . . . , 1}N , deno-
ted g. We seek a joint probability mass function f for the utilities over A that
is as close as possible to g in terms of relative information and that satisfies the
following constraints.

∑
u∈{ 1

M ,...,1}N
f(u) = 1

P(ui > uj) =
∑

u∈{ 1
M ,...,1}N

f(u)1{ui>uj}

= Q(s ∈ S|ai �s aj)
= αij

αij ∈ (0, 1),∀i 6= j (3.2.2)

P denotes the probability measure on the utility values and Q the probability
measure over stakeholders’ preferences and ui ∈ { 1

M , . . . , 1} the utility value of
choice alternative ai.

3.2.1 Two Choice Alternatives
For two choice alternatives a1, a2 ∈ A and strict responses, the problem of fin-
ding a minimum informative probability mass function f (u1, u2) over the utility
values, such that

∑
u∈{ 1

M ,...,1}2:u1>u2

f (u) = α; , can be formulated as follows:

argmin
f

I(f |g) = argmin
f

∑
u∈{ 1

M ,...,1}2
f(u) ln

f(u)

g(u)
(3.2.3)

Subject to: ∑
u∈{ 1

M ,...,1}2
f (u) = 1

∑
u∈{ 1

M ,...,1}2:u1>u2

f (u) = α; 0 < α < 1 (3.2.4)

Proposition 3.2.1. The minimally informative distribution that satisfies 3.2.3 and
3.2.4 is equal to

f∗(u1, u2) =


2α

M(M−1) , u1 > u2

2(1−α)
M(M+1) , u1 ≤ u2

(u1, u2) ∈ { 1
M , . . . , 1}2

(3.2.5)
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The proof of (proposition 3.2.1) uses the method of Lagrange multipliers and
may be found in the appendix. The relative information of the minimally infor-
mative distribution of proposition 3.2.1 is

I (f∗|g) =
∑

u:u1>u2

f∗ (u) ln (f∗ (u)) +
∑

u:u1≤u2

f∗ (u) ln (f∗ (u))

+ 2 ln (M)

= α ln

(
2α

M (M − 1)

)
+ (1− α) ln

(
2 (1− α)

M (M + 1)

)
+ 2 ln (M) . (3.2.6)

We can also consider the continuous version of (3.2.3), where g is the uniform
density on the unit square and f a joint density that is absolutely continuous with
respect to g:

f∗ = argmin
f

I (f |g) = argmin
f

∫
u∈[0,1]2

f (u) ln

(
f (u)

g (u)

)
du (3.2.7)

Subject to: ∫
u∈[0,1]2

f (u) du = 1

∫
u∈[0,1]2:u1>u2

f (u) du = α (3.2.8)

Proposition 3.2.2. The minimally informative distribution that satisfies 3.2.7 and
3.2.8 is equal to

f∗ (u1, u2) =

 2α, u1 > u2

2 (1− α), u1 ≤ u2

(u1, u2) ∈ [0, 1]2
(3.2.9)

Proof. Instead of considering the full class of joint densities that satisfies (3.2.8).
Consider a joint density that is constant on both u1 > u2 and u1 ≤ u2:

f (u1, u2) =

 2α, u1 > u2

2 (1− α), u1 ≤ u2

(u1, u2) ∈ [0, 1]2
(3.2.10)

Let f∗ be the minimal informative distribution solving to (3.2.7) and (3.2.8).
We know that f∗ is unique, because I (f |g) and the constraints are convex and
has a global minimum. According to Kullback et al. [48] it follows that
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I (f∗|g) = sup
C∈C

k∑
i=1

Pf∗(Ci) ln

(
Pf∗(Ci)

Pg(Ci)

)
Pf (Ci) =

∫
Ci

f(x)dx (3.2.11)

where C =
k⋃
i=1

Ci and C is the set of all finite Borel partitions of [0, 1]2

We can write the constraints (3.2.8) in terms of a partition C = {C1, C2}, with

C1 = {u1 > u2} (u1, u2) ∈ [0, 1]2

C2 = {u1 ≤ u2} (u1, u2) ∈ [0, 1]2

(3.2.12)

giving

Pf (C1) = α

Pf (C2) = 1− α (3.2.13)

Because f∗ is unique we must have

I (f |g) ≥ I (f∗|g) ≥
2∑
i=1

Pf∗(Ci) ln

(
Pf∗(Ci)

Pg(Ci)

)
≥ I (f |g)

⇒ f∗ = f (3.2.14)

So f given by (3.2.10) is the solution to (3.2.7) and (3.2.8).

The minimal relative information given of problem (3.2.7) given (3.2.10) is:

I (f∗|g) = Pf∗(C1) ln

(
Pf∗(C1)

Pg(C1)

)
+ Pf∗(C2) ln

(
Pf∗(C2)

Pg(C2)

)
= α ln

(
α
1
2

)
+ (1− α) ln

(
1− α

1
2

)
= α ln (2α) + (1− α) ln (2(1− α)) (3.2.15)

Likewise the means, variances, and correlation coefficient can be computed using
this density which gives:
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E (u1) =
1 + α

3

E (u2) =
2− α

3

V ar (u1) =
−2α2 + 2α+ 1

18

V ar (u2) =
−2α2 + 2α+ 1

18

Cor (u1, u2) =
4α2 − 4α+ 1

−4α2 + 4α+ 2
. (3.2.16)

Similarly we can compute the means, variances, and correlation coefficient with
the solution of the discrete case.

The means, variances, and correlation of the utility values for a1 and a2 are
computed using probability mass function f∗ from proposition (3.2.1).

EM (u1) =
M (1 + α) + 2

3M
(3.2.17)

EM (u2) =
M (2− α) + 1

3M
(3.2.18)

V arM (u1) = V arM (u2) =
M2

(
−2α2 + 2α+ 1

)
+M (2α− 1) + 2

18M2
(3.2.19)

CorM (u1, u2) =
(M (2α− 1) + 1) (M (2α− 1)− 2)

M2 (−4α2 + 4α+ 2) +M (2− 4α)− 4
(3.2.20)

The limit of the minimal relative information asM approaches infinity is equal
to

lim
M→∞

I (f∗|g) = α ln (2α) + (1− α) ln (2 (1− α)) . (3.2.21)

Filling in the optimal probability mass function (3.2.1) into the relative informa-
tion and then taking the limit as M approaches infinity gives the same result as
(3.2.15).
As M approaches infinity the measures of u becomes

lim
M→∞

EM (u1) = lim
M→∞

M (1 + α) + 2

3M

= lim
M→∞

(1 + α)

3
+

2

3M

=
1 + α

3
(3.2.22)
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lim
M→∞

EM (u2) = lim
M→∞

M (2− α) + 1

3M

= lim
M→∞

(2− α)

3
+

1

3M

=
2− α

3
(3.2.23)

lim
M→∞

V arM (u1) = lim
M→∞

M2
(
−2α2 + 2α+ 1

)
+M (2α− 1) + 2

18M2

= lim
M→∞

(
−2α2 + 2α+ 1

)
18

+
(2α− 1)

18M
+
−1

18M2

=
−2α2 + 2α+ 1

18
(3.2.24)

lim
M→∞

V arM (u2) = lim
M→∞

M2
(
−2α2 + 2α+ 1

)
+M (2α− 1) + 2

18M2

= lim
M→∞

(
−2α2 + 2α+ 1

)
18

+
(2α− 1)

18M
+
−1

18M2

=
−2α2 + 2α+ 1

18
(3.2.25)

lim
M→∞

CorM (u1, u2) = lim
M→∞

(M (2α− 1) + 1) (M (2α− 1)− 2)

M2 (−4α2 + 4α+ 2) +M (2− 4α)− 4

= lim
M→∞

M2
(
4α2 − 4α+ 1

)
M2 (−4α2 + 4α+ 2) +M (2− 4α)− 4

+
−M (2α− 1)

M2 (−4α2 + 4α+ 2) +M (2− 4α)− 4

+
−2

M2 (−4α2 + 4α+ 2) +M (2− 4α)− 4

=
4α2 − 4α+ 1

−4α2 + 4α+ 2
. (3.2.26)

Figure 3.2.3 plots α against the minimal relative information. As suspected no
information is gained if α = 0.5. Note that for α = 0.5 the correlation between
the utility values of a1, a2 are zero with mean and variance equal to the uniform
distribution on [0, 1].
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Figure 3.2.1: Variance with respect to α

Figure 3.2.2: Correlation with respect to α

3.2.2 N Choice Alternatives

Let there be N choice alternatives a1, a2, . . . , aN . Data is available of the form
P (ui > uj) = αij , i 6= j, 0 ≤ αij ≤ 1 and we seek a minimum informative distri-
bution over the utility values on a uniform hypercube

{
1
M , . . . , 1

}N
which reco-

vers the data.

The problem of finding such a distribution is:
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Figure 3.2.3: Minimal relative information with respect to α

argmin
f

I (f |g) = argmin
f

∑
u∈{ 1

M ,...,1}N
f (u) ln

(
f (u)

g (u)

)

= argmin
f

∑
u∈{ 1

M ,...,1}N
f (u) ln (f (u)) +N ln (M)

g (u) =
1

MN
, (3.2.27)

subject to:

∑
u∈{ 1

M ,...,1}N
f (u) = 1

∑
u∈{ 1

M ,...,1}N :ui>uj

f (u) = αij ,∀i 6= j. (3.2.28)

We found no closed form solution for more than two choice variables nor were
we able to find a solution using standard numerical algorithms. For standard
numerical methods the number of unknown variables would be equal to MN .
Finding good numerical results using standard numerical methods becomes in-
feasible. However, the problem can be solved using more unconventional me-
thods like IPF(Iterative Proportional Fitting) and PARFUM(PARameter Fitting for
Uncertainty Models)[44, 16, 58, 13, 20, 17]. Kraan [39] shows that the PI pro-
blem is the dual of the convex optimization problem if the problem of finding
a minimally informative distribution is feasible. Moreover the number of unk-
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nown values would be equal to the number of samples drawn, because the joint
probability mass function can be written a vector of size K.

When the solution is feasible IPF is usually preferred over PARFUM, because of
its fast convergence. However, if the problem is almost infeasible, the IPF solution
may be ’peculiar’. The results of probabilistic inversion procedures can be found
in sections 3.3.3 and 3.3.4 .

3.3 Minimal Relative Information Solution with a Standard Uni-
form Distribution Assuming Independence

The assumption of independence is often made without justification. Not only
is this assumption mathematically convenient, but in many cases independence
insures minimal information, since the independent distribution is the most en-
tropic of all distributions with given margins. This section examines whether the
independence assumptions common in modeling discrete choice data are infor-
mation minimizing. We seek the minimally informative distributions recovering
the paired comparisons data and satisfying independence constraints, and com-
pare these with the solutions from the previous section. These comparisons can
be found in sections 3.3.3, 3.3.4. It turns out that the independence constraint
adds considerable information to the solution. Following the minimal informa-
tion principle [35], dictates solutions without assuming independence should be
preferred.

The minimum informative distribution over the choice alternatives assuming
independence is :

f (u1, . . . , uN ) = f1 (u1)× · · · × fN (uN ) .

In the following subsection we derive the minimal joint distribution given paired
comparison preferences and the independence assumption.

3.3.1 Two Choice Alternatives

Let a1 and a2 be two choice alternatives with u1 independent of u2. The pro-
bability that a1 is preferred over a2 is Q (a1 � a2) = α and the probability mass
functions over the utility values over a1 and a2 are given by f1, f2. The problem
of finding a minimally informative distribution relative to the discrete uniform
distribution on

{
1
M , . . . , 1

}2
is:
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argmin
f1,f2

I (f1f2|g) = argmin
f1,f2

∑
u1

∑
u2

f1 (u1) f2 (u2) ln

(
f1 (u1) f2 (u2)

g

)
= argmin

f1,f2

∑
u1

∑
u2

f1 (u1) f2 (u2) ln (f1 (u1) f2 (u2))

+ 2 ln (M) , (3.3.1)

subject to: ∑
u1

f1 (u1) = 1∑
u2

f2 (u2) = 1∑
u1

∑
u1>u2

f1 (u1) f2 (u2) = α, (3.3.2)

with
0 ≤ f1 (u1) , f2 (u2) ≤ 1.

Proposition 3.3.1. The minimally informative solution of 3.3.1 and 3.3.2 satisfies
the following two recurrence relationships

f1

(
u1 +

1

M

)
= f1 (u1) eλ12f2(u2+ 1

M )

f2

(
u2 +

1

M

)
= f2 (u2) e−λ12f1(u1) (3.3.3)

u1, u2 =
{

1
M , . . . , M−1

M

}
Proof. see appendix

The problem now is to find f1

(
1
M

)
, f2

(
1
M

)
and λ12 such that the constraints

are met. This can be solved numerically. If a solution is found this would be
unique, because the Lagrangian of this minimization problem (3.3.1) is convex.
And convexity of the objective and constraint functions are sufficient conditions
for a unique solution according to the Kuhn-Tucker Theorem. The relative infor-
mation of the independent case is compared with a dependent case, which can be
found in subsections 3.3.3 and 3.3.4.

3.3.2 N Choice Alternatives

The problem of finding N independent utility values given
(
N
2

)
paired com-

parison constraints can be written as follow.

45



46 CHAPTER 3. MINIMUM INFORMATION AND INDEPENDENCE IN DISCRETE CHOICE 3.3

argmin
f1,...,fN

I (f1 . . . fN |g) = argmin
f1,...,fN

∑
u∈{ 1

M ,...,1}N

N∏
i=1

fi (ui) ln

(∏N
i=1 fi (ui)

g (u)

)

= argmin
f1,...,fN

∑
u∈{ 1

M ,...,1}N

N∏
i=1

fi (ui) ln

(
N∏
i=1

fi (ui)

)

+ N ln (M) , (3.3.4)

subject to: ∑
ui

fi (ui) = 1, i = 1, . . . , N∑
ui

∑
ui>uj

fi (ui) fj (uj) = αij , i, j = 1, . . . , N, i 6= j, (3.3.5)

with
0 ≤ f1 (u1) , . . . , fN (uN ) ≤ 1

ui =

{
1

M
, . . . , 1

}
, i = 1 . . . N.

Proposition 3.3.2. The minimally informative solution of 3.3.4 and 3.3.5 satisfies
the following recurrence relationships

f1

(
u1 +

1

M

)
= f1 (u1) e

N∑
j=2

λ1jfj(uj+ 1
M )

f2

(
u2 +

1

M

)
= f2 (u2) e

−λ12f1(u1)+
N∑

j=3
λ2jfj(uj+ 1

M )

. . . = . . .

. . . = . . .

. . . = . . .

fN

(
uN +

1

M

)
= fN (uN ) e

−
N−1∑
j=1

λNjfj(uj+ 1
M )

(3.3.6)

Proof. see appendix

As with the case of two choice alternatives the problem is to find
f1

(
1
M

)
,f2

(
1
M

)
,. . . ,fN

(
1
M

)
and λ12,λ13,. . . ,λN(N−1) such that the constraints are

met with λij = λji.

46



3.3
3.3. MINIMAL RELATIVE INFORMATION SOLUTION WITH A STANDARD UNIFORM

DISTRIBUTION ASSUMING INDEPENDENCE 47

3.3.3 Results Uniform distribution with Two Choice Alternatives

As mentioned above the problem can also be solved using probabilistic inver-
sion techniques. Table 3.3.1 gives the results of sample based probabilistic inver-
sion using IPF and table 3.3.2 shows the results of the asymptotic solution of the
convex optimization problem (3.2.3).

Table 3.3.1: Probabilistic Inversion 50000 samples

Scenario α µx µx σx σy ρxy I
(
f |u2

)
1 0.50 0.5015 0.4997 0.2893 0.2877 0.0065 0.0000
2 0.60 0.4669 0.5323 0.2879 0.2865 0.0095 0.0199
3 0.70 0.4362 0.5666 0.2819 0.2818 0.0573 0.0818
4 0.80 0.4021 0.5979 0.2715 0.2696 0.1358 0.1920
5 0.90 0.3673 0.6332 0.2578 0.2553 0.2653 0.3670
6 0.95 0.3497 0.6507 0.2468 0.2454 0.3626 0.4935
7 0.99 0.3392 0.6642 0.2395 0.2370 0.4645 0.6360

Table 3.3.2: Asymptotic solution

Scenario α µx µx σx σy ρxy I
(
f |u2

)
1 0.50 0.5000 0.5000 0.2887 0.2887 0.0000 0.0000
2 0.60 0.4667 0.5333 0.2867 0.2867 0.0135 0.0201
3 0.70 0.4333 0.5667 0.2809 0.2809 0.0563 0.0823
4 0.80 0.4000 0.6000 0.2708 0.2708 0.1364 0.1927
5 0.90 0.3667 0.6333 0.2560 0.2560 0.2712 0.3681
6 0.95 0.3500 0.6500 0.2466 0.2466 0.3699 0.4946
7 0.99 0.3367 0.6633 0.2380 0.2380 0.4709 0.6371

From tables 3.3.1 and 3.3.2 it follows that the probabilistic inversion solution is
close to the asymptotic solution.

Table 3.3.3 below shows the results of adding the independence constraint to
the problem.

Table 3.3.3: Results with Independence Constraints

Scenario α µ1 µ2 σ2
1 σ2

2 I
(
f |u2

)
1 0.50 0.505 0.514 0.079 0.079 0.000
2 0.60 0.455 0.564 0.075 0.090 0.036
3 0.70 0.405 0.614 0.068 0.115 0.135
4 0.80 0.356 0.662 0.056 0.153 0.308
5 0.90 0.300 0.711 0.037 0.212 0.565
6 0.95 0.297 0.738 0.036 0.222 0.690

From table 3.3.4 it follows that information score of the solution with the in-
dependence constraints is higher than the solution without the independence
constraint with equality when α = 0.5. The effect of the higher information score
can also be seen from the cumulative probability distribution function (CDF), see
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figures 3.3.1,3.3.2. The marginal CDF’s of u1, u2 without independence marked
by U1, U2 are closer to the starting distribution g which is the standard uniform
distribution marked by U than the marginal CDF’s of u1, u2 with independence
marked by U1+, U2+.

Figure 3.3.1: CDF’s of u1, u2 with and without independence for α = 0.6

Figure 3.3.2: CDF’s of u1, u2 with and without independence for α = 0.8
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Table 3.3.4: Comparison between Dependent and Independent Case

Scenario Dependent Independent
Iindependent−Idependent

Idepedent
× 100%

1 0.0000 0.0000 0.00%
2 0.0201 0.0360 79.1%
3 0.0823 0.1350 64.0%
4 0.1927 0.3080 59.8%
5 0.3680 0.5650 53.5%
6 0.4946 0.6900 39.5%

3.3.4 Results Uniform distribution with Three Choice Alternatives
Table 3.3.5 shows paired comparisons scenarios for three choice alternatives.
Table 3.3.6 and 3.3.7 give the result for the solution using probabilistic inver-
sion and constraint optimization, respectively. As expected the information score
for the solution without assuming independence is as least as small as the one
with the independence assumption see table 3.3.8.

Table 3.3.5: Scenarios Marginal Constraints

Scenario α12 α13 α23

1 0.8 0.54 0.31
2 0.5 0.5 0.5
3 0.6 0.35 0.71

Table 3.3.6: Solution with Probabilistic Inversion and 100000 samples

Scenario µ1 µ2 µ3 σ2
1 σ2

2 σ2
3 ρ12 ρ13 ρ23 I

(
f |u3

)
1 0.59 0.38 0.54 0.08 0.07 0.08 0.01 0.01 0.03 0.21
2 0.5 0.50 0.50 0.08 0.08 0.084 0.00 0.0 0 0
3 0.49 0.53 0.49 0.08 0.08 0.081 -0.05 0.00 0.05 0.53

Table 3.3.7: Solution Recurrence Relations

Scenario α12 α13 α23 µ1 µ2 µ3 σ2
1 σ2

2 σ2
3

1 0.800 0.540 0.310 0.589 0.335 0.583 0.044 0.110 0.106
2 0.500 0.500 0.500 0.502 0.506 0.508 0.080 0.082 0.081
3 0.600 0.350 0.710 0.452 0.525 0.508 0.128 0.113 0.014
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Table 3.3.8: Comparison Dependent and Independent Case

Scenario Dependent Independent
Iindependent−Idependent

Idepedent
× 100%

1 0.208 0.545 162%
2 0 0 0%
3 0.119 0.211 77%

3.4 Normal distribution : Probit model

Thurstone formulated the Law of Comparative Judgment to elicit a distribution
over the utility values of the alternatives based on the preferences of one or more
individuals. The law formulates a model that is not solvable in its general form;
various restrictions are imposed to ensure solvability. The law of comparative
judgment assumes that the value u (ai) is normally distributed with mean µi and
standard deviation σi. The difference between two alternatives ai and aj is again
normally distributed with mean µij = µi − µj and standard deviation σij =√
σ2
i + σ2

j − 2ρ2σiσj . Where ρij is the correlation coefficient of the utility values

from alternative ai and aj .
In our next examples we want to seek a minimally informative distribution

relative to the standard normal distribution. Finding a generic distribution that
is minimal with respect to the standard normal is rather complex. To enhance
comparison with standard results, we seek minimally informative distributions
within the set of joint normal distributions. Thus, it suffices to find the parameters
µ̄ and Σ such that the joint normal distribution with these parameters is minimally
informative with respect to the standard normal distribution.

Thurstone proposed three different models, known as Thurstone A, Thurstone
B, and Thurstone C to find a distribution over utility values that satisfies the mar-
ginal constraints from stakeholder data. Thurtsone A model assumes that the
correlation term is constant, with varying means and standard deviations. Thurs-
tone B model assumes that the correlation is zero and the standard deviations
vary. Thurstone C model assumes that the correlation is zero and constant stan-
dard deviation, often equal to one. By formulating the problem as a problem of
minimal relative information we will derive solutions that obey the Thurstone B
assumption of zero correlation, varying means and standard deviation. We have
obtained the solution without assuming any dependency structure of the mini-
mally informative distribution. We will show that the solution that follows from
the Thurstone C assumption adds more information to the problem then neces-
sary.

3.4.1 Minimal Information Solution for Two Alternatives

The relative information between two multivariate normal distributions f and g
is given by Whittaker and Robinson [99]:
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I (f |g) =
1

2

[
µ̄f − µ̄g,Σ−1

g (µ̄f − µ̄g)
]

+
1

2
tr
(
ΣfΣ−1

g

)
− 1

2
ln
(
|ΣfΣ−1

g |
)
− N

2
, (3.4.1)

with f : X̄ ∼M (µ̄f ,Σf ) and g : X̄ ∼M (µ̄g,Σg) .
In our case g is multivariate standard normal so the relative information be-

comes
I (f |g) =

1

2
[µ̄f , µ̄f ] +

1

2
tr (Σf )− 1

2
ln (|Σf |)−

N

2
(3.4.2)

We will first look at the bivariate case. We want to find µ̄f = (µ1, µ2) and Σf =
(σ1, σ2, ρ) with the constraint

P (u1 > u2) = α,

that minimizes (3.4.2). We can rewrite the equation to obtain:

P (u1 > u2) = P (u1 − u2 > 0)

= P (u1 − u2 − µ12 > −µ12)

= P
(
u1 − u2 − µ12

σ12
>
−µ12

σ12

)
= P

(
X̄ >

−µ12

σ12

)
= P

(
X̄ <

µ12

σ12

)
= Φ

(
µ12

σ12

)
= α (3.4.3)

where µ12 = µ1 − µ2, σ12 =
√
σ2

1 + σ2
1 − 2ρ2σ1σ2 and Φ the cumulative standard

normal distribution. Taking the inverse distribution over the constraint gives

µ1 − µ2√
σ2

1 + σ2
2 − 2ρ2σ1σ2

=Φ−1 (α) . (3.4.4)

The minimization problem can be formulated as follows

argmin
µ̄f ,Σf

I (f |g) = argmin
µ̄f ,Σf

1

2

(
µ2

1 + µ2
2

)
+

1

2

(
σ2

1 + σ2
2

)
− 1

2
ln
(
σ2

1σ
2
2 − ρ2σ2

1σ
2
2

)
− 1,

(3.4.5)
subject to:

µ1 − µ2√
σ2

1 + σ2
2 − 2ρ2σ1σ2

=Φ−1 (α) . (3.4.6)
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Proposition 3.4.1. The minimal informative solution to 3.4.5 and 3.4.6 is given by

µ∗1 = δ

√
1

2 + δ2
, µ∗2 = −δ

√
1

2 + δ2

σ∗1 =

√
2

2 + δ2
, σ∗2 =

√
2

2 + δ2
, ρ∗ = 0

δ = Φ−1 (α)

.

Proof. See Appendix.

Proposition 3.4.2. The minimal value for I (f |g) given in proposition 3.4.1 is

I (f∗|g) = ln

(
2 + δ2

2

)
.

Proof. Substitute the values of µ∗1, µ∗2, σ∗1 , σ∗2 , ρ∗ into I (f∗|g)

The Thurstone models are usually solved using least squares instead of mini-
mal relative information. In case of Thurstone C (unit variance, zero correlation)
the formulation is:

argmin
µ1,µ2

(
µ1 − µ2 − δ

√
2
)2

(3.4.7)

with δ = Φ−1 (α).
Equation 3.4.7 has a trivial solution namely µ∗1 = 1

2

√
2δ and µ∗2 = − 1

2

√
2δ,

which gives µ∗1 + µ∗2 = 0. In general it follows that for the optimal solution
N∑
i=1

µi = 0.

Proposition 3.4.3. The minimally informative solution to 3.4.5 and 3.4.6 accor-
ding to Thurstone C is µ∗1 = 1

2

√
2δ and µ∗2 = − 1

2

√
2δ

Proof. The minimally informative solution according to equation 3.4.2 according
to Thurstone C (unit variance, zero correlation) is

argmin
f

I (f |g) = argmin
µ1,µ2

1

2

(
µ2

1 + µ2
2

)
+

1

2
(1 + 1)− 1

2
ln (1) − 1

= argmin
µ1,µ2

1

2

(
µ2

1 + µ2
2

)
, (3.4.8)
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subject to
µ1 − µ2 = δ

√
2 (3.4.9)

The Lagrangian is

L (µ1, µ2, λ) =
1

2

(
µ2

1 + µ2
2

)
+ λ12

(
µ1 − µ2 − δ

√
2
)

(3.4.10)

and the derivatives of the Lagrangian are

∂L

∂µ1
= µ1 + λ

∂L

∂µ2
= µ2 − λ

∂L

∂λ
= µ1 − µ2 − δ

√
2

setting the derivatives to zero yields

µ1∗ =
1

2

√
2δ

µ2∗ = −1

2

√
2δ

λ∗ =
1

2

√
2δ

It follows from proposition 3.4.3 that the same solution is obtained from either
solving (3.4.7) or (3.4.8),(3.4.9) .

Proposition 3.4.4. The relative information of the Thurstone C solution (TC) is
given by:

I (TC |g) =
1

2
δ2 (3.4.11)

Proof. Filling in the optimal solution from proposition 3.4.3 into 3.4.8 gives

I (TC |g) =
1

2
δ2

From proposition 3.4.1 and 3.4.2 it follows that
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Figure 3.4.1: Minimal relative information of Thurstone C and f∗ with respect to δ

I (TC |g) ≥ I (f∗|g)

1

2
δ2 ≥ ln

(
1 +

δ2

2

)
(3.4.12)

with equality when δ = 0 or α = 0.5.
In the two dimensional case it can be concluded that the Thurstone C solution

is more informative than the one obtained by minimizing the relative information
with respect to the given constraint.

The reason that the Thurstone C solution does not satisfy the constraints for
α 6= 0.5 is that the variance is assumed to be one, so that the contribution of the
tails of the normal distributions becomes large.

3.4.2 Minimal Information Solution for Three Alternatives

In this section we will find the minimally informative distribution with respect to
the standard normal distribution for three choice alternatives.

The relative information is given by

I (f | g) =
1

2

(
µ2

1 + µ2
2 + µ2

3

)
+

1

2

(
σ2

1 + σ2
2 + σ2

3

)
− 1

2
ln
(
σ2

1σ
2
2σ

2
3

{
1−ρ2

12−ρ2
13−ρ2

23+2ρ12ρ13ρ23

})
− 3

2
.(3.4.13)

We want to minimize the relative information subject to the following constraints
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µ1 − µ2√
σ2

1 + σ2
2 − 2ρ2

12σ1σ2

= Φ−1 (α12) = δ12

µ2 − µ3√
σ2

2 + σ2
3 − 2ρ2

23σ2σ3

= Φ−1 (α23) = δ23

µ3 − µ1√
σ2

3 + σ2
1 − 2ρ2

31σ3σ1

= Φ−1 (α31) = δ31. (3.4.14)

A closed form solution for (3.4.13) and (3.4.14) has not been found, but we can
look at the set of feasible solutions. We did however solve the problem numeri-
cally using the feasible set of solutions. The set of feasible solution is obtained by
looking at the constraints (3.4.14) and setting the partial derivatives with respect
to the µ’s, σ’s and ρ’s of the Lagrangian to zero. Investigating (3.4.14) gives the
following proposition 3.4.5.

Proposition 3.4.5. There is no solution to (3.4.13) and (3.4.14) if δ12, δ23, δ31 > 0
or δ12, δ23, δ31 < 0.

Proof. Let σij =
√
σ2
i + σ2

j − 2ρ2
ijσiσj > 0 and δij > 0. Then the three constraints

from (3.4.14) become

µ1 − µ2 = σ12δ12

µ2 − µ3 = σ23δ23

µ3 − µ1 = σ31δ31. (3.4.15)

Summing up the first two equations of (3.4.15)

µ1 − µ3 = σ12δ12 + σ23δ23. (3.4.16)

And multiplying the last equation of (3.4.15):

µ1 − µ3 = −σ31δ31. (3.4.17)

From (3.4.16) it follows that
µ1 − µ3 > 0 (3.4.18)

And from (3.4.17) it follows that

µ1 − µ3 < 0 (3.4.19)

given δ12, δ23, δ31 > 0 and σij > 0. Hence there is no solution. The same is true if
δ12, δ23, δ31 < 0
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The partial derivatives of the Lagrangian from (3.4.13) and (3.4.14) with respect
to each of the variables are:

∂L
∂µi

= µi +
∑
j 6=i

(
2 ∗ 1{j>i} − 1

)
λij√〈

σij , R(ij)σij
〉

∂L
∂σi

= σi −
1

σi
−
∑
j 6=i

λij (µi − µj)
(
σi − ρ2

ijσj
)

〈
σij , R(ij)σij

〉 3
2

∂L
∂ρij

=
1

2

(
C−1
ij + C−1

ji

)
+

2λij (µi − µj) ρijσiσj〈
σij , R(ij)σij

〉 3
2

∂L
∂λij

=
µi − µj√

σ2
i + σ2

j − 2ρ2
ijσiσj

− δij (3.4.20)

with

σij = (σi, σj)

R(ij) =

(
1 −ρ2

ij

−ρ2
ij 1

)

(λij = λji)

(ρij = ρji)

Setting

∂L
∂µi

= µi +
∑
j 6=i

(
2 ∗ 1{j>i} − 1

)
λij√〈

σij , R(ij)σij
〉

to zero it follows that
M∑
i=1

µi = 0

The feasible solutions of ρ’s are given by 1− ρ2
12 − ρ2

13 − ρ2
23 + 2ρ12ρ13ρ23 > 0.

We can directly note that for ρ12 = ρ13 = ρ23 = 0 the relative information is mi-
nimal, because then the term ln

(
1− ρ2

12 − ρ2
13 − ρ2

23 + 2ρ12ρ13ρ23

)
becomes zero.

The minimal solution will consist solely out of varying µ’s and σ’s.
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In view of (3.4.15) the feasible set of solution with constant variance and
constant correlation satisfy

δ12 + δ23 = δ13. (3.4.21)

Equation 3.4.21 looks familiar to the inequality formulated by Marschak [57]. His
constraint for the existence of a distribution over utility for three choice alterna-
tives is given by equation (3.4.22)

α12 + α23 ≥ α13 (3.4.22)

The feasible set for varying means and standard deviation with zero corre-
lation is larger than the set with varying mean, constant variance, and varying
correlation. A number of scenarios for δij is worked out and solved in following
subsection.

3.4.3 Results Normal distribution with Three Choice Alternatives
The scenarios for the marginal constraints to the problem of finding a minimally
informative solution using a normal starting distribution is given by table 3.4.1.
Table 3.4.2 shows the result for varying means and variances and zero correlation.
Table 3.4.3 shows the result for constant variance. We also give the solution for
the Thurstone B and C solution in tables 3.4.4 and 3.4.5. In a number of cases
the information score for the Thurstone B and C solution are smaller than the
information score for the minimally informative solution, but the Thurstone B
and C solution do not satisfy the marginal constraint.

Table 3.4.1: Scenarios Marginal Constraints

Scenario α12 α23 α31

1 0.8 0.31 0.4
2 0.6 0.7 0.3
3 0.4 0.7 0.2
4 0.4 0.3 0.8
5 0.5 0.5 0.5

∆Thur. B and ∆Thur. C respectively are the sum of squared difference between the
probabilities αij provided and α

′

ij obtained.
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Table 3.4.2: Results Minimal Informative Distribution f∗

Scenario µ1 µ2 µ3 σ1 σ2 σ3
1 0.4457 -0.5534 0.1077 0.8401 0.8387 1.0364
2 0.3969 0.0204 -0.4173 1.4005 0.4973 0.6702
3 0.1642 0.4969 -0.6611 0.6295 1.1522 0.7519
4 -0.4513 -0.1177 0.569 0.8626 0.9946 0.8517
5 0 0 0 1 1 1

Table 3.4.3: Results Minimal Informative Distribution f∗ with constant variance and non-
zero correlation

Scenario µ1 µ2 µ3 σ ρ12 ρ23 ρ31
1 0.4326 -0.5372 0.1046 0.9153 0.4566 0 0
2 0.3509 0.008 -0.3589 0.9570 0 0.8560 0
3 0.1413 0.4619 -0.6032 0.8949 0 0 0.7151
4 -0.4419 -0.1162 0.5581 0.9091 0 0 0.3821
5 0 0 0 1 0 0 0

Table 3.4.4: Results Thurstone B Model

Scenario µ1 µ2 µ3 σ1 σ2 σ3
1 0.0056 -0.0503 0.1035 0.0917 0.4856 2.4227
2 0.2302 0.0213 -0.1614 1.6799 0.4466 0.8735
3 0.0715 0.1550 -0.1687 1.4961 0.8032 0.7007
4 N/A N/A N/A N/A N/A N/A
5 N/A N/A N/A N/A N/A N/A

Table 3.4.5: Results Thurstone C Model

Scenario µ1 µ2 µ3 σ1 σ2 σ3
1 0.1630 -0.2773 0.1143 1 1 1
2 0.3666 0.1278 -0.4944 1 1 1
3 0.1278 0.5162 -0.6439 1 1 1
4 -0.3666 -0.2773 0.6439 1 1 1
5 0 0 0 1 1 1
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Table 3.4.6: Recovery of Marginal Constraints

Scenario II III IThur. C IThur.B ∆Mininf ∆Thur. C ∆Thur. B

1 0.314 0.381 0.058 3.790 0 0.226 0.315
2 0.757 0.792 0.198 0.855 0 0.431 0.313
3 1.134 0.349 0.388 0 0.516 0.376
4 0.314 0.365 0.313 5.132 0 0.569 0.386
5 0 0 0 N/A 0 0 N/A

II - Relative information from the so-
lution of (3.4.13) and (3.4.14)
with zero correlation 3.4.2

III - Relative information from solu-
tion of (3.4.13) and (3.4.14) with
constant variance and non-zero
correlation 3.4.3

IThur. C - Relative information from the
Thurstone C case

IThur. B - Relative information from the
Thurstone B case

3.5 Appendix

Derivation Minimal Informative Distribution over Two Choice Al-
ternatives and Uniform Starting Distribution

The general Lagrange function L : Rn+m → R is defined as,

L (x, λ) = q (x) + λT r (x) ,

where m is the number of constraint functions and n the number of variables and
q (x) the objective function. Extreme values can be found by setting the gradients
of x and λ equal to zero. The objective function I (f |g) can be simplified by using
the probability mass function of g.

I (f |g) =

1∑
u1= 1

M

1∑
u2= 1

M

f (u1, u2) ln

(
f (u1, u2)

g (u1, u2)

)

=

1∑
u1= 1

M

1∑
u2= 1

M

f (u1, u2) ln (f (u1, u2)) + 2 ln (M) . (3.5.1)

The gradient with respect to f (u1, u2) is given by

∂L
∂f (u1, u2)

= ln (f (u1, u2)) + 1 + λ1 + λ121{u1>u2}. (3.5.2)
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Likewise the gradients for λ1 and λ12 are given by

∂L
∂λ1

=
∑
u1

∑
u2

f (u1, u2)− 1 (3.5.3)

∂L
∂λ12

=
∑
u1

∑
u1>u2

f (u1, u2)− α. (3.5.4)

Setting the gradient of f (u1, u2) to zero gives

f (u1, u2) = e−(1+λ1+λ121{u1>u2}). (3.5.5)

Setting the gradients of λ1 and λ12 to zero and substituting f (u1, u2) gives

∂L
∂λ1

=
M (M − 1)

2
e−(1+λ1+λ12) +

M (M + 1)

2
e−(1+λ1) − 1 = 0(3.5.6)

∂L
∂λ12

=
M (M − 1)

2
e−(1+λ1+λ12) − α = 0. (3.5.7)

After substituting it follows that the distribution f (u1, u2) that minimizes the
relative information with the given constraints is equal to:

f∗ (u1, u2) =

{
2α

M(M−1) , u1 > u2

2(1−α)
M(M+1) , u1 ≤ u2

. (3.5.8)

Derivation Minimal Informative Distribution over Two Choice Al-
ternatives and with Independent Uniform Marginals

The problem of finding a minimally informative distribution relative to the dis-
crete uniform distribution on the unit square discretized by

{
1
M , . . . , 1

}2
can be

formulated as follow:

argmin
f1,f2

I (f1f2|g) = argmin
f1,f2

1∑
u1= 1

M

1∑
u2= 1

M

f1(u1)f2(u2) ln

(
f1(u1)f2(u2)

g(u1, u2)

)

= argmin
f1,f2

1∑
u1= 1

M

1∑
u2= 1

M

f1(u1)f2(u2) ln (f1(u1)f2(u2))

+ 2 ln (M) , (3.5.9)
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Subject to:

1∑
u1= 1

M

f1 (u1) = 1

1∑
u2= 1

M

f2 (u2) = 1

1∑
u1= 1

M

1∑
u1>u2

f1 (u1) f2 (u2) = α, (3.5.10)

with
0 ≤ f1 (u1) , f2 (u2) ≤ 1

The gradient of f1 (u1) , u1 =
{

1
M . . . 1

}
is equal to:

∂L

∂f1 (u1)
=

1∑
u2= 1

M

f2 (u2) [ln (f1 (u1) f2 (u2)) + 1] + λ1 + λ12

1∑
u2=u1+ 1

M

f2 (u2).

(3.5.11)
And the gradient of f2 (u2) , u2 =

{
1
M . . . 1

}
is equal to:

∂L

∂f2 (u2)
=

1∑
u1= 1

M

f1 (u1) [ln (f1 (u1) f2 (u2)) + 1] + λ2 + λ12

u2− 1
M∑

u1= 1
M

f1 (u1).

(3.5.12)
Putting the gradients equal to zero gives a system of non-linear equations

ln (f1 (u1)) +

1∑
u2= 1

M

f2 (u2) ln (f2 (u2)) + 1 + λ1 + λ12

1∑
u2=u1+ 1

M

f2 (u2) = 0

ln (f2 (u2)) +

1∑
u1= 1

M

f1 (u1) ln (f1 (u1)) + 1 + λ2 + λ12

u2− 1
M∑

u1= 1
M

f1 (u1) = 0

,(3.5.13)

which leads to two recurrence relations that are .

f1

(
u1 +

1

M

)
= f1 (u1) eλ12f2(u2+ 1

M )

f2

(
u2 +

1

M

)
= f2 (u2) e−λ12f1(u1), (3.5.14)
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for u1, u2 =
{

1
M , . . . , M−1

M

}
. The problem now is to find values for f1

(
1
M

)
,

f2

(
1
M

)
, λ12 such that the constraints are met.

Derivation Minimal Informative Distribution over N Choice Al-
ternatives and with Independent Uniform Marginals

Then problem of finding a minimally informative distribution relative to the dis-

crete uniform distribution on the unit hypercube
{

1
M , . . . , 1

}N
given

(
N
2

)
pai-

red comparison constraints can be written as follow:

argmin
f1,...,fN

I (f1 . . . fN |g) = argmin
f1,...,fN

∑
u∈{ 1

M ,...,1}N

N∏
i=1

fi (ui) ln

(∏N
i=1 fi (ui)

g (u)

)

= argmin
f1,...,fN

∑
u∈{ 1

M ,...,1}N

N∏
i=1

fi (ui) ln

(
N∏
i=1

fi (ui)

)

+ N ln (M) , (3.5.15)

Subject to:

∑
ui

fi (ui) = 1, i = 1, . . . , N∑
ui

∑
ui>uj

fi (ui) fj (uj) = αij , i, j = 1, . . . , N, i 6= j, (3.5.16)

with

0 ≤ f1 (u1) , . . . , fN (uN ) ≤ 1

ui =

{
1

M
, . . . , 1

}
, i = 1 . . . N
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The gradients of f1 (u1) , . . . , fN (uN ) given the Lagrangian are :

∂L

∂f1 (u1)
=

1∑
u2,...,uN= 1

M

f2 (u2) . . .fN (uN ) [ln (f1 (u1) . . . fN (uN )) + 1] + λ1

+ λ12

1∑
u2=u1+ 1

N

f2 (u2) + · · ·+ λ1N

1∑
uN=u1+ 1

M

fN (uN )

∂L

∂f2 (u2)
=

1∑
u1,u3,...,uN= 1

M

f1 (u1) f3 (u3) . . .fN (uN ) [ln (f1 (u1) . . . fN (uN )) + 1] + λ2

+ λ21

u2− 1
M∑

u1= 1
M

f1 (u1) + · · ·+ λ2N

1∑
uN=u2+ 1

M

fN (uN )

. . . = . . .

. . . = . . .

. . . = . . .

∂L

∂fN (uN )
=

1∑
u1,...,uN−1= 1

M

f1 (u1) . . . fN−1 (uN−1) [ln (f1 (u1) . . . fN (uN )) + 1] + λN

+ λN1

uN− 1
M∑

u1= 1
M

f1 (u1) + · · ·+ λNN−1

uN− 1
M∑

uN−1= 1
M

fN−1 (uN−1). (3.5.17)

Putting the gradients equal to zero gives a system of non-linear equations
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ln (f1) = −
∑

u2,...,uN

f2 (u2) . . . fN (uN ) ln (f2 (u2) . . . fN (uN ))− 1− λ1

− λ12

1∑
u2=u1+ 1

M

f2 (u2)− · · · − λ1N

1∑
uN=u1+ 1

M

fN (uN )

ln (f2) = −
∑

u1,u3,...,uN

f1 (u1) f3 (u3) . . . fN (uN ) ln (f1 (u1) . . . fN (uN ))

− 1− λ2 − λ21

u2− 1
M∑

u1= 1
M

f1 (u1)− · · · − λ2N

1∑
uN=u2+ 1

M

fN (uN )

. . . = . . .

. . . = . . .

. . . = . . .

ln (fN ) = −
∑

u1,...,uN−1

f1 (u1) . . . fN−1 (uN−1) ln (f1 (u1) . . . fN−1 (uN−1))

− 1− λN − λN1

uN− 1
M∑

u1= 1
M

f1 (u1)− . . .

− λNN−1

uN− 1
M∑

uN−1= 1
M

fN−1 (uN−1). (3.5.18)

which can be written as a system of recurrence relations.

f1

(
u1 +

1

M

)
= f1 (u1) e

N∑
j=2

λ1jfj(uj+ 1
M )

f2

(
u2 +

1

M

)
= f2 (u2) e

−λ12f1(u1)+
N∑

j=3
λ2jfj(uj+ 1

M )

. . . = . . .

. . . = . . .

. . . = . . .

fN

(
uN +

1

M

)
= fN (uN ) e

−
N−1∑
j=1

λNjfj(uj+ 1
M )
. (3.5.19)

As with the case of two choice alternatives the problem is to find f1

(
1
M

)
,f2

(
1
M

)
,

. . . ,fN
(

1
M

)
and λ12,λ13,. . . ,λN(N−1) such that the constraints are met with λij =

λji.
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Derivation Minimal Informative Distribution over Two Choice Al-
ternatives and with Independent Normal Marginals

The problem of finding a minimally informative distribution relative to a standard
normal distribution and paired comparison data

argmin
µ̄,
∑ I (f |g) = argmin

µ̄,
∑ 1

2

(
µ2

1 + µ2
2

)
+

1

2

(
σ2

1 + σ2
2

)
− 1

2
ln
(
σ2

1σ
2
2 − ρ2σ2

1σ
2
2

)
− 1,

(3.5.20)
Subject to:

µ1 − µ2√
σ2

1 + σ2
2 − 2ρ2σ1σ2

=Φ−1 (α) (3.5.21)

The Lagrangian is

L (µ̄, σ̄, ρ, λ) =
1

2

(
µ2

1 + µ2
2

)
+

1

2

(
σ2

1 + σ2
2

)
− 1

2
ln
(
σ2

1σ
2
2

)
− 1

2
ln
(
1− ρ2

)
− 1

+ λ

(
µ1 − µ2√

σ2
1 + σ2

2 − 2ρ2σ1σ2

− δ

)
. (3.5.22)

Deriving the derivatives of the Lagrangian with respect to µ̄, σ̄, ρ, λ and setting
them to zero gives

∂L

∂µ1
= µ1 +

λ√
σ2

1 + σ2
2 − 2ρ2σ1σ2

= 0 (3.5.23)

∂L

∂µ2
= µ2 −

λ√
σ2

1 + σ2
2 − 2ρ2σ1σ2

= 0 (3.5.24)

∂L

∂σ1
= σ1 −

1

σ1
−
λ (µ1 − µ2)

(
σ1 − ρ2σ2

)
(σ2

1 + σ2
2 − 2ρ2σ1σ2)

3
2

= 0 (3.5.25)

∂L

∂σ2
= σ2 −

1

σ2
−
λ (µ1 − µ2)

(
σ2 − ρ2σ1

)
(σ2

1 + σ2
2 − 2ρ2σ1σ2)

3
2

= 0 (3.5.26)

∂L

∂ρ
=

ρ

1− ρ2
+

2λ (µ1 − µ2) ρσ1σ2

(σ2
1 + σ2

2 − 2ρ2σ1σ2)
3
2

= 0 (3.5.27)

∂L

∂λ
=

µ1 − µ2√
σ2

1 + σ2
2 − 2ρ2σ1σ2

− δ = 0. (3.5.28)

Adding (3.5.23) and (3.5.24) gives.
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µ1 + µ2 = 0 (3.5.29)

For convenience we set

a =
λ (µ1 − µ2)

(σ2
1 + σ2

2 − 2ρ2σ1σ2)
3
2

. (3.5.30)

Multiplying (3.5.25) and (3.5.26) respectively with σ1 and σ2 gives.

σ1 (1− a) = 1− aρ2σ1σ2 (3.5.31)

σ2 (1− a) = 1− aρ2σ1σ2. (3.5.32)

From (3.5.31) and (3.5.32) it follows that

σ1 = σ2. (3.5.33)

From (3.5.27) and (3.5.33) it follows that

ρ

(
1

1− ρ2
+ 2aσ2

1

)
= 0, (3.5.34)

which gives

ρ = 0 ∨ 1

1− ρ2
+ 2aσ2

1 = 0. (3.5.35)

For ρ = 0 the term − 1
2 ln

(
1− ρ2

)
is minimal. Substituting µ2 = −µ1, σ2 = σ1 and

ρ = 0 into (3.5.28) gives

µ1 =
1

2

√
2σ1δ. (3.5.36)

Substituting (3.5.36) into (3.5.23) gives

λ = −σ2
1δ. (3.5.37)

Substituting (3.5.37) into (3.5.25) gives

σ1 =

√
2

2 + δ2
∨ σ1 = −

√
2

2 + δ2
. (3.5.38)

But the standard deviation has to be bigger than zero. After substituting the result
of (3.5.38) into the other equation it follows that

µ∗1 = δ

√
1

2 + δ2
, µ∗2 = −δ

√
1

2 + δ2
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σ∗1 =

√
2

2 + δ2
, σ∗2 =

√
2

2 + δ2
, ρ∗ = 0

δ = Φ−1 (α)
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Chapter4
Application to Prioritizing Marine
Ecosystem Vulnerabilities1

4.1 Background

This study presents an analysis of 64 experts’ rankings of 30 scenarios of human
activities and their impacts to coastal ecosystems. The elicitation protocols were
designed and executed by researchers at the National Center for Ecological Ana-
lysis and Synthesis. Experts were asked to rank the five scenarios posing the
greatest threats and the five scenarios posing the least threats. The goal of this
study was to find weights for criteria that adequately model these stakeholders’
preferences and can be used to predict the scores of other scenarios. Probabilistic
inversion (PI) techniques were used to quantify a model of ecosystem vulnera-
bility based on five criteria. Stakeholder preference modeling can also serve as
a form of expert elicitation when the stakeholders are domain experts, as in the
present case. Their preferences are taken to prioritize threats to marine ecosys-
tems, with a view to optimizing mitigation and abatement actions.

Other multicriteria weighting methods [51, 27, 52] require stakeholders to
evaluate the criteria directly. However, the weights assigned to a criterion cannot
be assessed independently of the scale on which all criteria scores are measured
this is a fact that is sometimes overlooked. The present approach asks the stake-
holders to rank scenarios rather than evaluate criteria. Criteria weights are then
derived to fit the stakeholder preference rankings as well as possible. This has the
significant advantage of allowing us to assess the validity of our fitted model of
stakeholder preference.

Probabilistic inversion denotes the operation of inverting a function over a pro-

1This chapter is based on Neslo et al. [71]
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bability distribution, rather than at a point. Such problems arise in quantifying
uncertainty in physical models [17, 42, 43, 41, 56]. One has uncertainty distribu-
tions on observable phenomena, either from data or from expert judgment, and
one wishes to find a distribution over the parameters of a predictive model, such
that one recovers the observed distributions when the parameter distributions
are pushed through the model. PI algorithms used in the past were computatio-
nally intensive, involving sophisticated interior point optimization techniques and
duality theory as well as ad hoc steering [39]. Recent computational advances
[58, 98] clarify the mathematical foundations for PI and yield simple algorithms
with proven convergence behavior, suitable for use by nonspecialists. The re-
sults depend on a variant of the classical Iterative Proportional Fitting algorithm
[13, 16, 17, 34, 44, 46, 47, 58].

In stakeholder preference modeling, the data is discrete-choice preference
data elicited from a set of stakeholders. The distributions to be inverted are those
of indicator variables, for example:

• Alternative i is better than alternative j.

• Alternative i is ranked third in the given set of alternatives.

We are interested in the probability of such variables, taking the values "yes"
or "no" for a set of stakeholders. We can measure these probabilities by querying
a large representative set of stakeholders. Existing discrete-choice or random-
utility techniques construct a value or utility function from discrete- choice data
[2, 5, 56, 55, 60, 85, 91, 94, 96, 95], and they strongly restrict the form of the
utility functions. Using PI, this form can be inferred from choice data.

We first discuss the model, then address model adequacy and model fit. Sum-
mary statistics for the 30 scenarios are then given. The conclusion of this analysis
is that the data are broadly consistent with a linear model of stakeholder prefe-
rences.

4.2 The Model

In this study there were 64 experts ranking 30 threat scenarios based on the scores
of five criteria:
These criteria were developed and tested elsewhere [31, 11, 66, 88]. The score
(utility) of threat scenario i for stakeholder s is modeled as:

us (ai) =

5∑
j=1

ωs,j × ci,j ;
5∑
j=1

ωs,j = 1; ωs,j > 0. (4.2.1)

The weights are non-negative random variables that sum to 1. The (joint)
distribution for the weights is modeled to represent the distribution of weights
in a population of stakeholders, of which the 64 elicited experts are a random
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Table 4.2.1: Threat criteria definition

Name Description Unit Range
C1 Spatial scale km2 0.1-50000
C2 Frequency #/yr 1-360
C3 Trophic (functional) impact − 1-4
C4 Recovery time yrs 1-50
C5 Resistance % 5-75

sample. Since the weights are normalized, the criteria are transformed so that
the product ωs,j × ci,j is positive and falls roughly within the same range. Spatial
scale is given in square kilometers, and the values for spatial scale range from
0.1 to 50,000 km2. These values are transformed to ln(100 ∗m2), whose values
thus range from 2.3 to 15.4. Frequency was scored as ln(360 ∗ /year). Trophic
or functional impact is the number of trophic layers affected. Resistance is scored
as the percent of species affected per trophic layer. These transformations are
chosen for mathematical convenience.

A salient feature of these data is dominance. Scenario ai dominates Scenario
aj from above if ai’s scores on all five criteria are greater or equal to the scores of
aj . ai dominates aj from below if ai’s scores on all five criteria are less than or
equal to those of aj . If ai dominates aj from above, then aj can never be ranked
above ai in any model that computes the scenario score as a monotonic function
of the five criteria scores. The presence of dominated scenarios enables us to
analyze whether the experts’ rankings are broadly consistent with a monotonic
model of criteria scores.

4.3 Results and Validation

4.3.1 Model Adequacy

Of the 30 scenarios, only seven were non-dominated. This means that none of
the 23 scenarios dominated from above could be ranked 1 by a stakeholder whose
preferences were consistent with the model. In fact, 22.4% of the top rankings
were inconsistent in this sense: 77.6% of the top rankings went to four of the
seven non-dominated scenarios. A scenario dominated from above by two or
more scenarios could not consistently be ranked second; in fact, 23.7% of the
second rankings were inconsistent in this sense. Dominance from below was
much less prevalent than dominance from above.

In view of the large number of dominated scenarios, we view the percentages
of inconsistent rankings as indicating that the stakeholders’ preferences were
broadly, though not wholly, consistent with a monotonic model2. We therefore

2If the 64 experts had chosen their top-ranked scenario at random, the probability that 14 or fewer
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proceeded to fit the linear model (4.2.1).
The 30 scenarios and their criteria scores are shown in Table 4.3.1. The non-

dominated scenarios are shaded.

Table 4.3.1: Scenario and Criteria Scores

Nr Code Scenario Scale Freq Func Recov Resist
1 am Aquaculture: marine plant 5.30 11.77 1 1 0.2
2 as Aquaculture: shellfish 6.21 11.77 1 0.1 0.05
3 cl Climate change: sea level rise 13.82 5.19 2 5 0.2
4 ct Climate change: sea temp 15.42 5.89 3 50 0.25
5 cu Climate change: UV 13.82 3.58 1 1 0.05
6 ca Coastal engineering: habitat

alteration
4.61 5.89 4 25 0.75

7 dh Direct human impact: tram-
pling

9.62 11.77 2 25 0.35

8 fd Fishing: demersal destructive 6.68 2.89 4 0.5 0.1
9 fn Fishing: demersal non-

destructive low bycatch
2.30 2.89 1 0.5 0.1

10 fa Fishing: non-destructive artisa-
nal

4.61 2.89 1 1 0.5

11 fp Fishing: pelagic high bycatch 6.21 1.28 1 0.5 0.05
12 fr Fishing: recreational 6.68 9.84 2 5 0.2
13 fu Freshwater input: increase 6.91 4.28 2 1 0.1
14 is Invasive species 14.51 11.77 1 20 0.25
15 ma Military activity 6.91 8.37 1 5 0.1
16 nh Nutrient input: causing HAMs 9.21 4.28 2 1 0.1
17 nz Nutrient input: causing hy-

poxic zones
6.68 4.28 3 1 0.05

18 no Nutrient input: into oligotro-
phic waters

8.29 4.97 1 0.5 0.3

19 og Ocean dumping: lost fishing
gear

2.30 5.89 3 3 0.15

20 os Ocean dumping: ship wrecks 3.91 2.89 4 10 0.5
21 ox Ocean dumping: toxic mate-

rials
6.91 2.89 1 1 0.1

22 po Ocean pollution 6.91 6.58 1 3 0.2
23 pa Pollution input: atmospheric 9.62 3.58 1 0.5 0.2
24 pi Pollution input: inorganic 8.29 4.28 2 3 0.2
25 pr Pollution input: organic 8.52 5.19 2 5 0.2
26 ps Power, desalination plants 4.61 11.77 3 10 0.5
27 sr Scientific research: collecting 2.30 8.37 1 2 0.15
28 sd Sediment input: decrease 3.91 1.28 1 0.5 0.05
29 si Sediment input: increase 10.82 5.19 2 10 0.3
30 ts Tourism: surfing 2.30 10.49 1 1 0.05

would chose one of the 23 dominated scenarios is in the order of 1020.
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4.3.2 Criteria Weights

We fit the linear model by finding a distribution over criteria weights which fit as
well as possible the probabilities of rankings given by the stakeholders. The fitting
is done by probabilistic inversion. We start with a non-informative distribution
over criteria weights (which however are constrained to add to 1). We then adapt
this distribution to optimally recover the stakeholders’ rankings. That is, if we
sample randomly from the adapted distribution, the probability of drawing a set
of weights with which Scenario ai is ranked first equals, to the extent possible,
the percentage of experts who ranked ai first, and so on. The fitting based on
first ranks applies only to the percentages for the scenarios that were ranked first.
Similarly, the fitting based on the first two ranks applies only to the percentages
for the scenarios ranked 1 or 2.

We are interested in finding a fitting that can be validated by predicting ran-
kings not used in the fitting, also known as out-of-sample validation. Since the
goal is to prioritize threats, the top rankings are most important. Satisfactory re-
sults were found by fitting the model based on the first four rankings; this model
could then be used to predict the fifth rankings. Table 4.3.2 and Figure 4.3.14
compare the predicted and observed percentages of rankings. The model is first
used to "retrodict" or "recover" the first four rankings. These are the data actually
used to fit the model, so this comparison is a check of model fit rather than model
prediction. Using the model, we can predict the percentages of experts ranking
the various scenarios in the fifth position (Figure 4.3.14). These percentages
were not used in fitting the model and test the ability of the model to predict
preferences of the population of stakeholders. Of course, we should hope that the
predictions and retrodictions show similar agreement with the observed rankings.

Because we are fitting a linear model, the expected score of any scenario may
be computed by using the expected values of the criteria weights in the adapted
distribution. A new scenario, not among the original 30, can be scored by multi-
plying its (transformed) criteria scores by the expected weight of each criterion.
This of course is the great advantage of a linear model, and explains the prefe-
rence for this model above more complex models, even though the latter might
yield a better fit. Figures 4.3.1 to 4.3.5 show the expected criteria weights based
on fitting only the first ranks, the first two ranks, the first three ranks, and the
first four ranks, and finally, based on fitting all ranks.

We observe that these expected weights do not change significantly between
the two-, three-, and four-rank options. Using all ranks causes changes, and also
causes greater variance in the criteria scores (see Table 4.3.4).

Although the expected weights are most important in using the model, it is
also of interest to examine the distributions of weights. Figures 4.3.6 to 4.3.10
shows the cumulative distribution functions of the five weights in the four cases
shown in Figures 4.3.1 to 4.3.5.

The joint distributions for rank one, ranks one and two, ranks one to three,
ranks one to four, and all ranks are shown in Figures 4.3.11 to 4.3.13.
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Figure 4.3.1: Expected criteria weights based on ranks 1

Figure 4.3.2: Expected criteria weights based on ranks 1,2

Figure 4.3.3: Expected criteria weights based on ranks 1,2,3

The rightmost cumulative distributions indicate greatest importance. The pic-
tures from Figures 4.3.6 to 4.3.10 echoes that in Figures 4.3.1 to 4.3.5 for the
first two ranks: resistance is most important, followed by trophic impact. Of
course, we must bear in mind that these results are relative to the scaling chosen
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Figure 4.3.4: Expected criteria weights based on ranks 1,2,3,4

Figure 4.3.5: Expected criteria weights based on all ranks

Figure 4.3.6: Cumulative weight distributions based on ranks 1

to represent the criteria scores.
Figures 4.3.1 to 4.3.5 and 4.3.6 to 4.3.10 show that the mean values and
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Figure 4.3.7: Cumulative weight distributions based on ranks 1,2

Figure 4.3.8: Cumulative weight distributions based on ranks 1,2,3

Figure 4.3.9: Cumulative weight distributions based on ranks 1,2,3,4

marginal distributions are somewhat similar in all fitting situations. The joint dis-
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Figure 4.3.10: Cumulative weight distributions based on all ranks

Figure 4.3.11: Percentile cobweb plots for criteria weights based on fitting ranks 1

tributions, however, are quite different. One sample of weights represents one
virtual stakeholder. If we plot these five weights on five vertical lines, we get
a jagged line representing one virtual stakeholder. If we plot 16,000 such lines
we get a picture of the population of stakeholders. We say that the stakeholder
weights have interactions if, for example, knowledge that a stakeholder assigns
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Figure 4.3.12: Percentile cobweb plots for criteria weights based on fitting ranks 1,2,3,4

Figure 4.3.13: Percentile cobweb plots for criteria weights based on fitting ranks all ranks

high weight to the "frequency" criterion gives significant information regarding
weights for other criteria. A quick visual impression of the joint distributions is
given by the "percentile cobweb plots" shown in Figure 3. Instead of the weights
themselves, Figures 4.3.11 to 4.3.13 plot the weights’ percentiles, as this makes
the dependence structure more visible. Evidently the joint distributions are com-
plex, and are different for the different fitting situations. A detailed analysis of
interactions is not undertaken here. It is worth noting that the probabilistic in-
version infers the dependence structure from the stakeholder data; it does not
assume or impose any structure. We note that as we use more ranks in the fit-
ting, the fitting becomes less smooth. The departure from the starting distribution
grows more pronounced as the number of constraints that the fitting tries to sa-
tisfy increases.
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Table 4.3.2 shows the predicted probabilities of rankings based on the fitting in
the four cases discussed above. Thus "prediction I" indicates the prediction based
on fitting only the first-ranked scenarios. The first column gives the constraints.
"#S4=1" denotes the constraint that Scenario 4 was ranked 1. The last column
shows that 34.33% of the stakeholders ranked Scenario 4 as 1. Using the fitting
based only on the first ranks predicts that 34.24% of the population of stakehol-
ders would rank Scenario 4 as 1. Similarly, using the fitting based on the first four
ranks, 43.59% of the population would rank Scenario 4 first. Of course, owing
to the presence of inconsistent rankings, the fitting can never be perfect. Indeed,
22.4% of the first ranks were inconsistent with the model; as we fit 77.6% of the
consistent rankings, the remaining probability mass must be distributed over the
other feasible rankings. Some of the discrepancies are sizeable, as in the case of
#S20 = 5 for the prediction based in the top four ranks. On the whole, however,
the predictions do capture the drift of stakeholder preferences. Fitting all ranks
is numerically quite burdensome and conflates issues that determine the most se-
rious and least serious threats. The fitting based on the top four rankings presents
the best compromise.

Table 4.3.2: Model predictions and stakeholder probabilities for top 5 rankings

Constraint Prediction I Prediction
I,II

Prediction
I,II,III

Prediction
I,II,III,IV

Stakeholders

#S3=1 0.0000 0.0000 0.0000 0.0000 0.0597
#S4=1 0.3424 0.3428 0.3420 0.4359 0.3433
#S6=1 0.2695 0.2687 0.4164 0.3008 0.2687
#S7=1 0.0296 0.0299 0.0453 0.0329 0.0299
#S8=1 0.0000 0.0000 0.0114 0.0000 0.0149
#S9=1 0.0000 0.0000 0.0000 0.0000 0.0149
#S11=1 0.0000 0.0000 0.0000 0.0000 0.0149
#S12=1 0.0000 0.0000 0.0000 0.0000 0.0149
#S14=1 0.0744 0.0748 0.0580 0.0800 0.0746
#S16=1 0.0000 0.0000 0.0000 0.0000 0.0299
#S19=1 0.0000 0.0000 0.0000 0.0000 0.0149
#S22=1 0.0000 0.0000 0.0000 0.0000 0.0448
#S25=1 0.0000 0.0000 0.0000 0.0000 0.0149
#S28=1 0.0000 0.0000 0.0000 0.0000 0.0299
#S29=1 0.0000 0.0000 0.0000 0.0000 0.0299
#S2=2 0.0000 0.0000 0.0000 0.0000 0.0339
#S3=2 0.0001 0.0339 0.0442 0.0392 0.0339
#S4=2 0.2295 0.2213 0.1713 0.2218 0.2203
#S5=2 0.0000 0.0000 0.0000 0.0000 0.0169
#S6=2 0.4753 0.0511 0.0663 0.0661 0.0508
#S7=2 0.1557 0.0676 0.0825 0.0681 0.0678
#S8=2 0.0000 0.0679 0.0432 0.0725 0.0678
#S9=2 0.0000 0.0000 0.0000 0.0000 0.0169
#S11=2 0.0000 0.0000 0.0000 0.0000 0.0169
#S14=2 0.0275 0.2700 0.1855 0.2829 0.2712
#S16=2 0.0000 0.0000 0.0000 0.0000 0.0508
#S18=2 0.0000 0.0000 0.0000 0.0000 0.0169
#S20=2 0.0238 0.0170 0.0214 0.0174 0.0169
#S22=2 0.0000 0.0000 0.0000 0.0000 0.0508
#S23=2 0.0000 0.0000 0.0000 0.0000 0.0169
#S24=2 0.0000 0.0000 0.0000 0.0000 0.0169
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Table 4.3.2 – continued from previous page
Constraint Prediction I Prediction

I,II
Prediction
I,II,III

Prediction
I,II,III,IV

Stakeholders

#S29=2 0.0000 0.0000 0.0000 0.0000 0.0508
#S2=3 0.0000 0.0000 0.0000 0.0000 0.0317
#S3=3 0.0015 0.0084 0.1924 0.3305 0.1587
#S4=3 0.0798 0.0656 0.0769 0.1486 0.0635
#S6=3 0.0707 0.2063 0.0713 0.1131 0.0635
#S7=3 0.5732 0.4615 0.0816 0.1401 0.0794
#S8=3 0.0005 0.0053 0.0328 0.0514 0.0317
#S9=3 0.0000 0.0000 0.0000 0.0000 0.0159
#S12=3 0.0000 0.0000 0.0000 0.0000 0.0635
#S14=3 0.0730 0.0649 0.1276 0.1616 0.1270
#S16=3 0.0000 0.0000 0.0000 0.0000 0.0317
#S17=3 0.0000 0.0000 0.0000 0.0000 0.0635
#S18=3 0.0000 0.0000 0.0000 0.0000 0.0317
#S20=3 0.0968 0.1582 0.0158 0.0189 0.0159
#S21=3 0.0000 0.0000 0.0000 0.0000 0.0159
#S22=3 0.0000 0.0000 0.0000 0.0000 0.0159
#S24=3 0.0000 0.0000 0.0000 0.0000 0.0159
#S25=3 0.0000 0.0000 0.0000 0.0000 0.1111
#S26=3 0.1044 0.0293 0.0160 0.0181 0.0159
#S29=3 0.0000 0.0000 0.0000 0.0000 0.0794
#S3=4 0.0137 0.0687 0.0137 0.2174 0.1864
#S4=4 0.1508 0.1125 0.0150 0.0392 0.0339
#S5=4 0.0001 0.0036 0.0372 0.0392 0.0339
#S6=4 0.0889 0.3417 0.2099 0.0958 0.0847
#S7=4 0.1196 0.1948 0.2580 0.1091 0.1017
#S8=4 0.0031 0.0074 0.0028 0.0737 0.0678
#S11=4 0.0000 0.0000 0.0000 0.0000 0.0339
#S12=4 0.0017 0.0000 0.0000 0.0000 0.0847
#S14=4 0.2851 0.0784 0.0235 0.0910 0.0847
#S16=4 0.0000 0.0000 0.0000 0.0000 0.0339
#S17=4 0.0000 0.0000 0.0000 0.0000 0.0169
#S18=4 0.0000 0.0000 0.0000 0.0000 0.0169
#S20=4 0.0990 0.0795 0.3630 0.0176 0.0169
#S22=4 0.0000 0.0000 0.0000 0.0000 0.0678
#S24=4 0.0000 0.0000 0.0000 0.0000 0.0169
#S25=4 0.0000 0.0000 0.0000 0.0000 0.0508
#S29=4 0.0000 0.0001 0.0000 0.1024 0.1017
#S2=5 0.0122 0.0024 0.0035 0.0705 0.0333
#S3=5 0.0140 0.0845 0.0276 0.0000 0.0500
#S4=5 0.1189 0.1671 0.0182 0.0270 0.0500
#S6=5 0.0544 0.0789 0.0974 0.0969 0.0667
#S7=5 0.1121 0.1460 0.4151 0.2279 0.1667
#S8=5 0.0034 0.0091 0.0057 0.0000 0.0167
#S12=5 0.0094 0.0005 0.0000 0.0004 0.0167
#S13=5 0.0000 0.0000 0.0000 0.0000 0.0167
#S14=5 0.1848 0.1641 0.1137 0.1036 0.1167
#S16=5 0.0000 0.0000 0.0000 0.0000 0.0833
#S17=5 0.0000 0.0000 0.0114 0.0000 0.0167
#S19=5 0.0000 0.0000 0.0000 0.0000 0.0167
#S20=5 0.1714 0.0864 0.0883 0.2331 0.0333
#S22=5 0.0000 0.0000 0.0000 0.0000 0.0333
#S24=5 0.0000 0.0000 0.0000 0.0000 0.0167
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Table 4.3.2 – continued from previous page
Constraint Prediction I Prediction

I,II
Prediction
I,II,III

Prediction
I,II,III,IV

Stakeholders

#S25=5 0.0000 0.0000 0.0000 0.0000 0.0500
#S26=5 0.2552 0.1646 0.1003 0.0493 0.0667

Figure 4.3.14 shows the information in Table 4.3.2 graphically. On the hori-
zontal axis are stakeholders’ percentages for rankings of scenarios; on the vertical
axis are the predicted percentages based on the fitted model. The diamonds are
scenarios which were ranked first, second, third, or fourth. These percentages
were used to fit the model. The squares are scenarios that were ranked fifth. We
see that these percentages are reasonably well predicted by the model. Scenarios
plotted on the horizontal axis correspond to rankings that are inconsistent with
the model.

Figure 4.3.14: Predictions based on ranks 1 to 4, of stakeholder percentages for first four
ranks(diamonds), and for 5th ranks (squares)

4.3.3 Scenario Scores

Figure 4.3.15 shows the densities of the scores of the top four scenarios, ranked
according to their mean values. These densities are generated by the distribution
of criteria weights, which models the distribution of participants. It is interesting
to note that the modes of these densities are all similar, but the shapes are dif-
ferent. The top-ranked scenario, Scenario 4 (Sea level rise), is distinguished by
a large right tail. Scenario 6 (Coastal engineering) shows a bimodal form, sug-
gesting that there are two distinct subgroups of participants. The remaining two
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scenarios, Scenario 14 (Invasive species) and Scenario 7 (Direct human impact)
are quite similar in distribution.

Figure 4.3.15: Densities for the top 4 ranked scenarios

Table 4.3.3 shows the mean, variance, and standard deviation of the five cri-
teria weights and the 30 scenarios, based on the first four ranks. Table 4.3.4 gives
the same information based on all ranks. Note that the variances in Table 4.3.4
tend to be larger, sometimes much larger. The top-ranked Scenario 4 has a va-
riance of 3.7 based on four ranks, and 17.2 based on all ranks. This suggests that
trying to fit the top and bottom ranks just makes the problem more infeasibleâĂŤit
does not give more insight into the factors determining high-threat scenarios.

Table 4.3.3: With First four Rank

Variable Mean Variance SD
S1 1.572 1.362 1.167
S2 1.561 1.523 1.234
S3 2.214 2.103 1.450
S4 2.901 3.702 1.924
S5 1.763 1.649 1.284
S6 2.328 1.464 1.210
S7 2.420 2.441 1.562
S8 1.825 1.732 1.316
S9 0.693 0.193 0.439
S10 1.146 0.214 0.462
S11 0.923 0.412 0.642
S12 1.844 1.547 1.244
S13 1.446 0.920 0.959
S14 2.540 2.953 1.719
S15 1.472 1.075 1.037

82



4.4 4.3. RESULTS AND VALIDATION 83

S16 1.657 1.226 1.107
S17 1.639 1.352 1.163
S18 1.446 0.688 0.829
S19 1.405 1.035 1.017
S20 1.858 1.165 1.079
S21 1.118 0.533 0.730
S22 1.412 0.794 0.891
S23 1.465 0.856 0.925
S24 1.642 1.050 1.025
S25 1.729 1.178 1.085
S26 2.220 1.944 1.394
S27 1.065 0.677 0.823
S28 0.712 0.228 0.477
S29 2.024 1.513 1.230
S30 1.129 1.023 1.012

Table 4.3.4: With All Ranks

Variable Mean Variance SD
S1 1.118 1.725 1.313
S2 1.065 2.115 1.454
S3 2.066 4.997 2.235
S4 4.196 17.187 4.146
S5 1.613 4.405 2.099
S6 2.689 4.173 2.043
S7 2.726 6.270 2.504
S8 1.396 2.081 1.442
S9 0.528 0.255 0.505
S10 1.041 0.482 0.694
S11 0.822 0.932 0.965
S12 1.510 2.294 1.514
S13 1.167 1.585 1.259
S14 2.768 7.954 2.820
S15 1.274 1.975 1.405
S16 1.384 2.433 1.560
S17 1.263 1.874 1.369
S18 1.264 1.688 1.299
S19 1.039 0.961 0.980
S20 1.786 1.714 1.309
S21 0.981 1.232 1.110
S22 1.220 1.596 1.263
S23 1.302 2.185 1.478
S24 1.445 2.066 1.437
S25 1.568 2.362 1.537
S26 1.918 2.361 1.537
S27 0.757 0.651 0.807
S28 0.605 0.431 0.656
S29 2.051 3.663 1.914
S30 0.701 0.902 0.950
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4.4 Conclusion

By design, this study involved many dominated scenarios. This enabled us to test
the extent to which the stakeholder preferences were consistent with a model for
scenario scores based on a monotonic function of the five criteria scores. A sta-
keholder who prefers a dominated to a nondominated scenario is not consistent
with any such model. Of course, this does not mean that such a stakeholder is
inconsistent, it simply means that his/her preferences are not consistent with this
type of model. In view of the large number of dominated scenarios, we may
conclude that these stakeholders are broadly, though not wholly, consistent with
such a monotonic model. A more complex model possibly involving other criteria
or interactions of criteria might produce a better fit, but such models would be
much more cumbersome in practice.

The linear model (4.2.1) is one type of monotonic model. Owing to the in-
consistencies noted above it can never yield a perfect fit, but it does seem to
capture the main drift of the stakeholder preferences. This means that the ex-
pected weights (Figures 4.3.1 to 4.3.5) can be used to score coastal ecosystem
threat scenarios, provided their scores on the five criteria are given and scaled
appropriately.
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Chapter5
Application to Strategic Risk
Planning in Public Health1

5.1 Background

Prioritization of resources, assessment of cost-effectiveness of various health in-
terventions and equitable health care are some of the most challenging policy ma-
king processes in the area of public health. Currently, relevant analyses employ a
number of summary measures: Disability Adjusted Life Years (DALYs: introduced
since 19932), Quality Adjusted Life Years (QALYs: introduced since 19683) and
Life Years gained (LYs) are the most widely accepted so far. The advantages and
disadvantages of those have been assessed in a number of publications (Murray
and Acharya [68];[32]; Reidpath et al. [76];Robberstad [79];Ubel et al. [97]).

From the above listed summary measures we are particularly interested in DA-
LYs as one of its most recent applications concerns their integration in risk benefit
quantitative models4 that join together adverse and beneficial effects of variable

1This chapter is based on Neslo and Cooke [72]
2DALYs were introduced as a health summary measure by the World Bank in the World Health

Report 1993 (as cited in Robberstad, 2005[79]).
3QALYs were first introduced by Klarman et al. (1963) as cited in Robberstad [79]
4QuAlity of Life âĂŞ Integrated Benefit Risk Analysis: QALIBRA is a Specific Targeted Research

Project coordinated by Matis of Iceland and supported by the European Commission’s 6th Framework
Programme, contract number FOOD-CT-2006-022957. The project began on April 1st 2006 and will
run until 2009. To assess the balance between the risks and benefits associated with a particular food,
they must be converted into a common measure of net health impact. Uncertainties affecting the risks
and benefits cause uncertainty about the magnitude and even the direction of the net health impact.
QALIBRA will develop methods that can take account of multiple risks, benefits and uncertainties and
implement them in web-based software for assessing and communicating net health impacts. Further
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food consumption. The calculation of DALYs summary measures depends upon
elicitation of subjective valuations of burden of disease or disease stages, i.e. di-
sease or disease stage specific disability weights5. Subjective valuations are elici-
ted via particular methodologies6 from "experts", and then they are transformed
into numerical values. This transformation allows for introducing "expert" pre-
ferences into cost-effectiveness models with the view to deciding upon resource
allocation. Nevertheless, one may question a number of issues when this proce-
dure is applied to introduce peoples’ preferences in social models associated with
public health policy-making:

• Transparency: disability weights employed in the calculation of DALYs are
commonly cited as a single number, usually the mean of the individual
"expert" (transformed) valuations. As a result, any recorded variability in
âĂIJexpert assessments is lost.

• Ability to accommodate for either personal, social, or medical changes in
time: it is understandable that disability weights elicited at a particular
point in time reflect peoples’ knowledge and biases for each disease at the
time that elicitation occurred. Personal views may change over time due
to different reasons; age and personal experiences (of "experts") maybe
the most important ones, but other reasons probably are contributing, for
example advances in medical science. Perhaps, peoples’ preferences never
change, perhaps they change only slightly, perhaps they change a lot; we
cannot be certain about the validity of employing elicited health states’ eva-
luations in studies that follow years after primary elicitations took place.

• True biological meaning of the transformed numerical values: elicited sub-
jective valuations reflect either an individual and/or a societal point of view
on different disease or disease stages, but do not rank diseases or diseases
stages. Therefore, equal disability weights between two or more diseases
or disease stages are possible. However, most probably, all people carry
particular ranking preferences for different health states.

information can be found in http://www.qalibra.eu. Health endpoints of adverse and beneficial effects
in the QALIBRA framework are to be expressed in a common unit, specifically Disability Adjusted Life
Years (DALYs).

5DALYs summary measure combines the estimated number of life years lost (YLL) to premature
death and the estimated number of years lived with disability (YLD) due to a specific disease. Whereas
certain parameters of the DALYs equation can be estimated via empirical data (i.e. one could estimate
Years Life Lost to a disease: YLL and Years Life with a disease: YLD via epidemiological data), the
remaining parameter of disability weight (wd) is subjective and elicited as valuations of the burden of
different diseases by "experts". Different techniques are employed to elicit these valuations which are
transformed into disability weight normalised numbers (i.e. usually in a scale from 0=perfect health
to 1=death). These techniques assess either individual (i.e. Visual Analogue Scale: VAS; Standard
Gamble: SG; Time Trade-Off: TTO) or societal (i.e. Person Trade-Off: PTO) preferences over different
states of health (Essink-Bot et al. [19]; Schwarzinger et al. [83]

6As above.
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Further to the above, the concept of DALYs has been based on a number of
technical assumptions one of which refers to that rigid, single disability weights
are tied with diseases regardless of social and regional differences. As a matter
of fact, this was the basis of the comparability strength of DALYs among different
countries. However, this assumption carries a number of flaws as diseases may
have different impact on peoples’ lives according to the region they live7. Conse-
quently, its applicability as a measure of health interventions and/or public health
policies is questioned, particularly when considering food health and safety po-
licy making in a particular geographical area, that being either a city, a state, a
country, or set of countries.

The current study was set to test whether it is possible to quantify the prioriti-
zation of a health state based on a Multi Criteria Decision Model. The idea behind
the approach is based upon a set of assumptions:

• Each health state maybe represented as a multidimensional point in a space
defined by the weights of a precisely defined set of criteria

• The population of interest owns a true distribution of the criteria weights.

• Targeted experts whose preferences are elicited comprise a representative
sample of the population of interest.

The approach followed in the study elicited ranking judgments of a number
of health states rather than preference weights for diseases or disease stages,
therefore excluding that two health states may result to carry the same burden.
Probabilistic Inversion was applied in order to infer the relative weights (i.e. im-
portance) of the criteria for each "expert" when determining their rank order of
health states. Further, the approach used these inferred weights in order to build
a linear model that combines all responses from consistent experts and can be
applied in order to predict weights for further, not ranked, health states.

It is anticipated that the stepwise approach followed in this study would contri-
bute towards three areas of interest when thinking about public health priorities
and policy making:

• Identifying whether certain choices would bring a difference in peoples’
health towards any direction, either for the better or the worse, without
producing a number that does not carry any biological meaning.

• Organizing the thoughts and preferences of "experts" in a coherent way that
would be justifiable and transparent.

7Historically, disability weights have been designed to represent the consequences of the relative
severity of each disease. They can be employed in summary measures for either a descriptive, cau-
sative or evaluative use in various fields that are affiliated with public health (Essink-Bot and Bonsel,
2002).Three major studies are published so far on elicited disability weights; these concern a range
of specific diseases: a) Global Burden of Disease Study (GBD) (Murray and Lopez [69]; Murray and
Acharya [68]) Dutch Disability Weights Group (Stouthard et al. [87]; Melse et al. [65]) European
Disability Weights Project (Essink-Bot et al. [19]; Schwarzinger et al. [83])
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• Being able to foresee changes in "experts" preferences in view of changes in
time, most particularly scientific and medical ones.

5.2 Steps for employing the model

The following steps are followed to derive a model for valuing health states and
that takes into account the the three points from mentioned above in the previous
section.

1. Choose the criteria that are used to evaluate population’s health.

2. Define a number of health states

3. Choose a survey format to elicit the preferences over the health states from
step 2 given the criteria from step one

4. Create a model based on the criteria that can recover the preferences from
step 3

5. Validate the model from step 4 as mentioned in section 1.5

In the following (sub)sections we work out the first four steps and the last step
is worked out in section 5.4.

5.2.1 Step 1 - criteria employed to characterize scenarios

The dimensions of the EQ-5D+C descriptive system (see Table 5.2.1) were defi-
ned as the criteria or attributes that characterize each health state. These criteria
are measurable quantities that although they increase in a monotonic scale they
are not expressed in units. Instead, criteria levels are expressed as a score on an
arbitrary scale.

5.2.2 Step 2 - Scenarios: health states

As mentioned in introduction, this valuation study uses the extended version EQ-
5D+C (see Table 5.2.1) introduced by Stouthard et al. [87]. Although the Eu-
roQol descriptive system is non disease specific, health states can be associated
with diseases and/or disease stages via the use of questionnaires filled by pa-
tients, proxies and/or physicians. Due to human variability, as well as variability
in symptoms and stages of a disease, a particular disease could be associated with
a number of health states[18]. The health states were the scenarios8 that experts
participating in the current study judged.

8Health states employed in the current study are available on request.
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Table 5.2.1: The extended, six dimensional version of the original EuroQol descriptive system,
i.e. EQ-5D+C

Value Mobility Self Care Usual Acti-
vities

Pain Dis-
comfort

Anxiety De-
pression

Cognitive
Functioning

1 No pro-
blems in
walking
about

No pro-
blems
with self
care

No pro-
blems with
performing
usual acti-
vities (e.g.
work, study,
housework)

No pain or
discomfort

Not an-
xious or
depressed

No pro-
blems in
cognitive
functioning

2 Some pro-
blems in
walking
about

Some
problems
washing
or dres-
sing self

Some pro-
blems with
perfor-
ming usual
activities

Moderate
pain or
discomfort

Moderately
anxious or
depressed

Moderate
problems
in cognitive
functioning

3 Confined
to bed

Unable to
wash or
dress self

Unable to
perform
usual activi-
ties

Extreme
pain or
discomfort

Extremely
anxious or
depressed

Severe pro-
blems in
cognitive
functioning

17 (out of possible 36 = 729) health states, as these are described by the
extended version (i.e. EQ-5D+C) of the EuroQol system, were defined as the
scenarios that experts ranked in the current study.

The set of all 17 health states are shown in table (5.2.2). The 17 scenarios are
non-dominated.

Table 5.2.2: Criteria Values Per Health State

Health
States

Mobility Self Care Usual Acti-
vities

Pain Dis-
comfort

Anxiety De-
pression

Cognitive
Functioning

HS1 3 2 2 1 2 1
HS2 2 1 2 2 3 1
HS3 2 1 3 2 2 1
HS4 1 1 1 2 3 2
HS5 2 2 3 1 3 2
HS6 1 1 1 3 1 2
HS7 1 1 2 2 1 2
HS8 3 1 1 1 2 2
HS9 2 1 1 2 1 2
HS10 2 2 1 3 2 1
HS11 3 3 2 1 1 1
HS12 2 3 3 1 3 1
HS13 1 3 3 1 1 2
HS14 2 2 2 2 2 1
HS15 1 1 1 2 1 3
HS16 2 2 1 1 3 3
HS17 2 2 2 1 2 3
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5.2.3 Step 3 - Surveys layout

Nineteen experts participated in the survey and ranked all the scenarios in each
group of five. A great majority (17/19) of experts, represented a panel of "non-
health care professionals" defined as people with academic background but with
no health care professional experience. This did not exclude any health care per-
sonal experience, however they were asked to declare this in advance. The sce-
narios where presented in five groups of five. Figure (5.2.1) shows the questions
asked to rank the scenarios for the first group of five.

Surveys9 were sent electronically to experts during October/November 2008.
The survey was divided into three parts: In parts I and II experts were invited
to report personal attributes (e.g. professional affiliation, gender, age), and to
recognize any potential vested interests of their selves by providing a declaration
of interest. In part III, experts indicated their ranking preferences over the 17
health states. These ranking preferences were the empirical data employed to
produce the criteria weights.

The 17 scenarios were presented to experts in five groups of five. Therefore,
scenarios overlapped among the groups; the last two in each group were repeated
as the first two in the consecutive group. This design ensured that we could test
experts for consistency in their results. We tested each group for dominating
scenarios, i.e. scenarios for which all criteria are of higher level when compared
with the rest.

An example of a question from part III, where experts were asked their prefe-
rences ranking over a subset of the 17 health states is presented by figure 5.2.1

The results of the elicitation are captured in five preference ranking matrices
that are used to fit our model. The matrices for all 19 experts are shown in Tables
(5.2.3,5.2.4,5.2.5,5.2.6,5.2.7).

Table 5.2.3: Rank preferences Group 1

Rank 1 2 3 4 5
HS 1 6 5 2 3 3
HS 2 1 7 6 4 1
HS 3 4 4 7 3 1
HS 4 8 2 3 6 0
HS 5 0 1 1 3 14

9Survey form is available on request.
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Figure 5.2.1: Questions group 1

Table 5.2.4: Rank preferences Group 2

Rank 1 2 3 4 5
HS 4 1 5 4 8 1
HS 5 0 0 1 4 14
HS 6 4 6 4 2 3
HS 7 12 4 3 0 0
HS 8 2 4 7 5 1

Table 5.2.5: Rank preferences Group 3

Rank 1 2 3 4 5
HS 7 8 7 2 0 2
HS 8 0 2 11 4 2
HS 9 9 8 1 1 0
HS 10 1 0 3 9 6
HS 11 1 2 2 5 9
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Table 5.2.6: Rank preferences Group 4

Rank 1 2 3 4 5
HS 10 3 6 1 4 5
HS 11 2 5 7 3 2
HS 12 0 0 2 6 11
HS 13 4 5 5 4 1
HS 14 10 3 4 2 0

Table 5.2.7: Rank preferences Group 5

Rank 1 2 3 4 5
HS 13 1 6 5 4 3
HS 14 11 4 1 1 2
HS 15 7 5 6 1 0
HS 16 0 1 2 4 12
HS 17 0 3 5 9 2
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5.3 Step 4 - The Model

When criteria are measured by the same level of steps, as is the case in the EQ-
5D+C system, the experts may think of interrelationships between the different
levels if they are asked to think about criteria weights directly. Furthermore, it
can not be assumed that all experts understand the levels of each criterion in
the same way. To avoid such effects one should ensure that experts do not think
directly about criteria weights, therefore employing a technique to derive each
expert’s judgment on the importance of each criterion indirectly.

In the current study we applied a random utility model, in particular a Multi
Criteria Decision Model that employs probabilistic inversion to derive criteria
weights based on experts’ empirical data.

We used two models in the analysis. The first is the so called unmodelled
scores where us (ai) = ui as in the IPF and PARFUM example of section 1.3.1,
taking values between zero and one. The second is the linear model formulated
by equation 1.4.2. An overview of the health criteria is given in figure (5.2.2).
The criteria took values 1, 2, 3 and we assumed that a higher values are always
worse. As a result, the health scores will take values between −1 and −3.

The unmodelled scores can be seen as a composition of both observed and
unobserved criteria and will be used as a benchmark. If we can fit the unmodelled
scores, but fail to fit linear model then we know the lack of fit is due to the linear
model.

The number of health states or choice alternatives used is 17 so the set of
choice alternatives defined in chapter 1 is A = {a1, . . . , a17}. The discrete choice
format that we used was the ranking of five choice alternatives in five groups. The
last two choice alternatives of each group overlapped with the first two choice
alternatives of the subsequent group. The discrete choice problem is given as
follow

D = {D1, . . . , D5}
D1 = {a1, a2, a3, a4, a5}
D2 = {a4, a5, a6, a7, a8}
D3 = {a7, a8, a9, a10, a11}
D4 = {a10, a11, a12, a13, a14}
D5 = {a13, a14, a15, a16, a17} (5.3.1)

The task was to find a distribution over the weights (ω1, . . . , ω6) which repro-
duces the distributions over the rankings.

P (ω1, . . . , ω6 |u(aki) is j-th ranked in u(Dk)) =

#{s ∈ S | s ranks aki in j-th position in Dk}
#S

, k = 1, . . . , 5 (5.3.2)
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If an expert ranks health state ai above aj in group k then we consider an expert
to be inconsistent if he ranks aj above ai in group k + 1.

5.4 Step 5 - Model adequacy and Results

To assess model adequacy proceeds in four steps:

1. We first assess expert consistency.

2. After selecting a consistent subset of experts we address the question whe-
ther any apparent agreement in rankings can be ascribed to chance, in
other words, we test the hypothesis that the consistent experts’ rankings
are drawn at random from the set of all rankings.

3. Having rejected the hypothesis of random rankings, we ask if the experts
are rational in the sense of Savage. Experts’ consistency is only checked for
four pairs of scenarios that were assessed in two groups. We must also check
whether a distribution over the utilities of the 17 health states could repro-
duce all the ranking probabilities. Thus, we check whether a distribution
over "unmodeled utilities" can recover the ranking probabilities.

4. If the unmodelled utilities are able to recover the ranking probabilities, can
they also be recovered with a distribution over the weights in an MCDM
model?

The last question is of course the most interesting, but the preceding steps are
also of independent interest.

5.4.1 Expert consistency

In paired comparisons studies, we can tabulate the number of intransitivities, or
circular triads. The sampling distributions for the number of circular triads has
been computed [14] and can be used to test the hypothesis that an individual
expert expresses his/her pairwise preference at random. Because of the design of
this discrete choice exercise, this sort of statistical test is not an option.

When the same pair of alternatives is offered to an expert twice, we could
consider a preference reversal as an event with a certain probability of occurrence.
In analogy with the test of intransitivity mentioned above, we could test (and
hopefully reject) the null hypothesis that this probability of reversal is 1/2. In
the current design, there are only 4 repeated pairs, and the probability of no
reversals on four trials on the null hypothesis is 1/24 = 0.0625, which is slightly
above the traditional rejection level of 5%. Nonetheless, we consider that the null
hypothesis of random pairwise preference is rejected (at the 0.0625 level) for
experts with no preference reversals. Of the 19 experts who participated in the
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study, 13 consistently ranked all of the overlapping pairs of health states, thereby
rejecting the random pairwise preference hypothesis. The analysis proceeds with
these 13 consistent experts.

5.4.2 Random preference orderings

Using Kendall’s coefficient of concordance W [37],[28] we also looked if the ex-
perts rankings are random in each group. If W is one, then each expert has
assigned the same order to the choice alternatives. If W is zero, then there is no
overall agreement among the experts, and their responses may be regarded as
essentially random. Intermediate values of W indicate a greater or lesser degree
of agreement among the various responses.

Let R (ai, s) be the rank given to health state ai by stakeholder or expert s.
Then the sum of ranks given to ai is

R (ai) =
∑
s

R (ai, s) (5.4.1)

The mean value of these sum ranks is equal to

R̄ =
1

2
m (n+ 1) (5.4.2)

with m the number of experts and n the number of health states. The sum of
squared deviations is defined as

S =

n∑
i=1

(
R (ai)− R̄

)2
(5.4.3)

The coefficient of concordance is then equal to

W =
12S

m2 (n3 − n)
(5.4.4)

The null hypothesis that experts choose ranks at random can be tested in terms
of the values for S given n and m. Friedman[28] derived a table which contains
the critical values ∗ of S at 5% significance level, for n between 3 and 7 and m
between 3 and 20. For each group we computed the values of S and W , shown
in Table (5.4.1).

Table 5.4.1: Values of S and W for each group

Group 1 Group 2 Group 3 Group 4 Group 5
S 1166 1854 1744 1282 1597
W 0.323 0.514 0.483 0.355 0.443
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Friedman’s table does not contain the critical values for S given m = 19; we
therefore used the values for m = 20. The null hypothesis would be rejected at
the 5% level for m = 20 if S > 468.5. With this criterion the null hypothesis is
rejected for all groups.

5.4.3 Savage rationality

Fitting the unmodelled scores to the data from the consistent experts yields a near
perfect fit(R2 = 0.999), see figure 5.4.1. This means that we can assign a joint
distribution over the utilities for the 17 health states, such that the probabilities of
observing each health state at each rank in each Dk are predicted nearly perfectly
by randomly sampling from from this distribution. This merely says that our
population of experts can be modeled as rational in the sense of Savage.

Figure 5.4.1: Recovery ranks consistent experts from unmodelled scores

5.4.4 Multi Criteria Decision Making (MCDM)

We fitted both the rank data of all experts and the rank data of the consistent
experts to the MCDM model (5.4.2, 5.4.3).

Each point is an alternative-rank in each of the sets Dk. Each alternative could
possibly be ranked in any of the five positions; yielding 5× 5× 5 points; however
the actual number of points is smaller as the experts confined some alternatives to
a smaller number of ranks, and zero probabilities are not plotted. The observed
probabilities of rankings are on the horizontal axis, of figures 5.4.2, 5.4.3 and
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Figure 5.4.2: Recovery ranks all experts

Figure 5.4.3: Recovery ranks consistent experts

the probabilities recovered by the linear model of the utilities are on the vertical
axis. We used linear regression as goodness of fit measure for our method. The
slope tells us how accurate the predictions are on average. And the coefficient
of determination tells us how much of the variation of the observed frequencies
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is explained by the predicted frequencies. Both fits have a accuracy of around
95% and a high coefficient of determination (R2 = 0.906), (R2 = 0.964) which
suggests that the preferences of the experts are consistent with the linear model
(1.4.2). We continue the analysis using the rankings of the consistent experts.

5.4.5 Criteria Weights

We fitted the model to each rank preferences groups separately to see how it
affects the weights for the criteria. With the joint distribution over the weights
that we obtain from fitting we can compute not only the average or mean value
for each weight, but also the standard deviation and dependencies among the
weights. With the standard deviation we can visualize the spread around the
mean for each weight. Figures (5.4.4), (5.4.5), (5.4.6) illustrate the lower and
upper bound of the spread from the weights as well as the mean values.

Figure 5.4.4: Subtracting one standard deviation from the mean of the weights obtained
from fitting the consistent experts’ rankings

Figure 5.4.5: Mean of the weights obtained from fitting the consistent experts’ rankings

Figure 5.4.6: Adding one standard deviation to the mean of the weights obtained from fitting
the consistent experts’ rankings
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In most of the cases criterion Pain Discomfort is the most important factor
followed by Cognitive Functioning, if we look at the weights obtained from fitting
the rank data from each group. However if we look at the weights from fitting
the rank data of all the groups we notice that criterion Pain Discomfort no longer
is the most important factor, but Self Care (5.4.7).

Figure 5.4.7: Weights fitting all rank data from consistent experts

We could also read the most important criteria, fitting all the groups ,from the
cumulative distribution over the weights, see figure the figure below. The cumu-
lative distribution of the values for each weight is plotted. The most important
criterion is represented by the right most distribution, which is Self Care.
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Cumulative Distribution of the
Weights

w1 - Mobility
w2 - Self Care
w3 - Usual Activities
w4 - Pain Discomfort
w5 - Anxiety
w6 - Cognitive Functioning

We say that the expert weights have interactions if, for example, knowledge
that a expert assigns a high weight to the Self Care criterion gives significant in-
formation regarding weights for other criteria. Detailed analysis of interactions is
not undertaken, but the correlation matrix presented in table (5.4.2) suggests that
the mobility - anxiety depression; self care - cognitive functioning; self care - usual
activities; pain discomfort - anxiety depression interactions are rather strong. The
requirement that the weights sum to one imposes an overall negative correlation.

5.4.6 Health State Scores

Fitting the MCDM model not only gives us statistics about the disability weights,
but also statistics about the health scores. In the introduction we mentioned that
utility is affine unique, which we have used to transform the health scores to
the zero one interval. Initially the health scores given the MCDM model vary
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Table 5.4.2: Correlation coefficients of the weights.

M S U P A C
M 1 -0.2812 0.1018 0.1044 -0.4669 -0.1695
S -0.2812 1 -0.5247 -0.3103 0.1577 -0.5574
U 0.1018 -0.5247 1 -0.0104 -0.0146 -0.0362
P 0.1044 -0.3103 -0.0104 1 -0.4643 -0.1107
A -0.4669 0.1577 -0.0146 -0.4643 1 -0.1880
C -0.1695 -0.5574 -0.0362 -0.1107 -0.1880 1

M - Mobility
S - Self Care
U - Usual Activities
P - Pain Discomfort
A - Anxiety Depression
C - Cognitive Functioning

between -3 and -1, which have no tangible meaning. However if we standardize
these scores we can think of them as the relative impact on health see Figure
(5.4.8).

Figure 5.4.8: Standardized Health Scores Obtained From Fitting The Model To The Discrete
Choice Data

The unmodelled scores presented by figure (5.4.9) are assumed to take values
between -1 and 0. The variance of the unmodelled scores seems to be higher than
the variance of the health scores from the linear model (1.4.2). Note that the
ranks of the health states have slightly changed with respect to the scores from
the linear model.
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Figure 5.4.9: Unmodelled Health Scores

5.4.7 Out-of-sample validation
Finally we perform out-of-sample validation by fitting the model to a training set
consisting of ranks that were attested by at least 5 experts or 38% of the experts.
This model was used to predict the remaining ranks (validation set). using the
fitted model. At first glance, from Figure (5.4.10) the prediction does not look
good at all.

The predictions of lower ranks show very large scatter. However, if we zoom
in on the ranks that got less than 38% and take the average of these predicted
ranks we get a fit that is not so bad, see figure (5.4.11).

If we perform a similar out-of-sample validation using a training set of ranks
that were attested by at most 5 experts (38% of the experts) then we get a much
better fitter, see figure 5.4.12. Note that the ranks that were attested by 6 experts
or not predicted accurately, but for more than 6 attestations, the predictions are
quite convincing.

Performing the same excersice of averaging the predicted ranks leads to a
much more overwhelming fit see figure 5.4.13.

Without undertaking an in-depth analysis, it seems that the unpopular ranks
concerned primarily the lowest ranked health states, and one possible explanation
for these results is that the preference judgments for the ’less important’ health
states were less discerning. Fitting the model to the most and least discerning
leads to a different set of weights for the experts, see figures 5.4.14, 5.4.15.
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Figure 5.4.10: Prediction of Rank Percentages Using Rank Percentages Greater Than or equal
to 38%

Figure 5.4.11: Average Prediction of Rank Percentages Less Than 30%
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Figure 5.4.12: Prediction of Rank Percentages Using Rank Percentages Smaller Than 38%

Figure 5.4.13: Average Prediction of Rank Percentages Using Rank Percentages Smaller Than
38%
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Figure 5.4.14: Weights from fitting only first ranked health states

Figure 5.4.15: Weights from fitting only last ranked health states
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5.5 Conclusion

Probabilistic inversion methods can be used to infer a distribution over utility
functions based on discrete choice data. This type of application is rather new
and more experience in real applications is needed. In particular, questions regar-
ding the optimal format of the discrete choice data, the best approach to out-of-
sample validation are still largely open. Equally important is how best to model
utilities in terms of physical attributes. It is hoped that out-of-sample validation
will eventually yield utility models with a solid scientific foundation.
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Chapter6
Application to The Risk Assessment
of Nanotechnology Enabled Food
Products1

6.1 Background

Research of nanotechnology has led to the development of new products and
applications in the food sector. With every new advance there is the sustainability
question: do the benefits outweigh the risks. The problem owner, in this case
is the Food and Environment Research Agency (FERA) in the UK, was prompted
by relevant research on the safety of nantechnology enabled food products to
address the risks[24].

The current state of knowledge on the safety of nanotechnology applications
in the food sector still contains many gaps (EFSA2, 2009; EFSA 2011). These
large knowledge gaps lead to high scientific uncertainties, and as a result they do
not allow the application of standard data driven risk assessment procedures for
the majority of currently developed nanotechnology applications. The problem
with such approaches is that fully assessed and approved tests for the safety of
nanotechnology enabled food products have yet to be developed. Even if such
tests would be developed and fully certified, one would still need to overcome
the hurdle of extrapolating from in vitro to in vivo. In view of this large degree of
incomplete knowledge in the field of nanotechnology, an expert driven approach
capturing differences in experts’ opinions in a coherent way is the best alterna-
tive. The task of such an expert judgment approach would be to seek for criteria

1This chapter is based on Flari et al. [24]
2The European Food Safety Authority
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that significantly influence the safety of nanotechnology enabled food products
and create a screening model based on these criteria. Morgan [67] introduced
a framework for informing about the risk related to nanoparticles. This frame-
work make use of influence diagrams based on expert judgment. These diagrams
were not driven by data and merely project the relations between the criteria and
safety of a food product. This model is thereby unable to screen the safety of
nanoparticles.

Another approach was proposed by Linkov[53] who made use of Multi-Criteria
Decision Making based on the Analyic Hierarchy Process (AHP) [80] to assess the
risk of nanoparticles. AHP has a number of shortcomings[75], of which the most
salient is the use of preference ratios, which presupposes a ratio scale for utilities.
There is no foundation for a ratio scale, and standard utility theory defines uti-
lity values up to positive affine transformations, which of course do not preserve
ratios.

Our approach makes use of the Multi-Criteria Decision Making paradigm, or
more precisely Multi-Attribute Utility Theory (MAUT) [36, 21]. MAUT is mostly
used to construct a utility function given multi-attributes for a single person. Be-
cause the views of multiple experts need to be captured MAUT, can not be used
in it’s original form. For an extension of MAUT for groups we have to direct our
focus to the field of Random Utility Theory [91, 5, 78, 59, 96, 63]. Random Uti-
lity Theory or Random Utility Models derive a distribution over utility functions
rather then a single utility function.

The concept of MAUT for groups is as follows:

1. identify a set of criteria that contribute significantly to the safety one wishes
to assess.

2. select a number of scenarios to be ranked according to the safety of nano-
technology enabled food products, also known as alternatives.

3. determine how the scenarios score on each of the criteria.

4. identify a set of stakeholders

5. choose a survey format is chosen to elicit discrete choice preferences for the
scenarios. Selection of the survey format usually depends on the number of
scenarios and the questions to be answered by the study.

6. find a distribution over coefficients or weights such that the preferences
of the set of experts is captured. Once such a model is found, it must be
validated for its purpose.

In our study scores were calculated as a weighted linear combination of the cri-
teria scores. As a result, the coefficients can be interpreted as the relative im-
portance of the criteria or simply as their weights. Given a value for the weights
each scenario acquires a score as a single value that can be used for ranking the
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scenarios. The model that we derived is validated against all five levels mentio-
ned in the introduction. In this study the purpose of the model was to create a
screening mechanism for new products e.g. will the model mark unsafe products
as unsafe and the safe products as safe. Complete validation is needed in order
to test whether the model can be used as a screening model for safety of future
nanotechnology-enabled food products.

Level five of validation mentioned in chapter 1 was performed at the interna-
tional workshop held in the UK May 27th and 28th 2010 for experts in the field
nanotechnology enabled food products organized by FERA. Experts participating
at the workshop were divided in three groups and were asked to come up with a
number of safe and unsafe products and fill in the criteria scores for each product.
Afterwards the safety scores are computed using the distribution over the weights
obtained from the model. The ranking of model is then compared to the ranking
the experts gave.

The overview of this chapter is as follow. In section 6.2 we present the criteria
and the model used in this study. And finally, in section 6.3 we show the result and
validation of the model and show that our screening model performs reasonably
using hypothetical nanotechnology enabled food products designed by a group of
experts as an input.

6.2 Steps for employing the model

In this section we work out the six steps to employ MAUT for groups.

6.2.1 Step 1 - criteria employed to characterize the food products

The first step is to identify criteria that play a role in the safety of the nanotech-
nology enabled food products. The criteria that were identified are given in table
reftable:nanocriteria.

Criteria Primary particle size, Secondary particle size, Solubility, and Digestibi-
lity positively effect safety for high values and the other criteria negatively effect
safety for high values.

6.2.2 Step 2 - scenarios: nanotechnology enabled food products

The second step is to select a number of alternatives or in our case, a number of
nanotechnology enabled food products that should be appraised. In the study 26
hypothetical food products were identified by experts at FERA. These 26 hypo-
thetical food produces were constructed in such a way that there is no dominated
product. No scenario is safer on all criteria, or riskier on all criteria. They re-
semble real applications of Nano-enabled food products, but cannot be traced
back to any specific product. The scenarios are labeled from A to Z and were
presented to experts in a random order to prevent ranking bias.
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Table 6.2.1: Criteria used in the model

Criteria Range Unit Comments
Fraction of the food 10−3 − 1 − Criterion for exposure assessment
Fraction of the diet 0− 100 (%) Criterion for exposure assessment
Number of days consumed 0− 365 Days Criterion for exposure assessment
Primary particle size 1− 103 nm Criterion for hazard assessment (relating

to potential absorption and translocation of
ENMs from the GI tract to other parts of the
body)

Secondary particle size 1 > 103 nm Criterion for hazard assessment (relating
to potential absorption and translocation of
ENMs from the GI tract)

Surface area 6− 200 m2/g Criterion for hazard assessment (metric for
estimation of the level of potential interac-
tion of ENMs with biological entities)

Solubility 0− 100 (%) Criterion for hazard and exposure assess-
ment (relating to that fact that fully so-
luble materials will lose any nano-specific
characteristic)

Digestibility {Y,N} − Criterion for hazard and exposure assess-
ment (relating to that fact that diges-
tible materials will lose any nano-specific
characteristic)

Bio persistence {Y,N} − Criterion for hazard and exposure assess-
ment (relating to that fact that non bio-
persistent materials will be metabolised or
excreted)

Surface modification 0− 100 (%) Criterion for hazard assessment (relating to
the fact that surface modifications may lead
to an increase or decrease in reactivity and
thus potential harmful interactions)

6.2.3 Step 3 - Scoring matrix

The third step is to create a scoring matrix whose entries reflect how each food
product performs on a particular criterion. Table 6.2.1 illustrate how each scena-
rio scores on the different criteria.

Table 6.2.2: Experts’ Ranks of Nanotechnology Enabled Products

FP C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

B 1.0E-3 3.0E+0 4.5E+1 3.0E+1 1.0E+2 2.0E+6 1.0E+1 0.0E+0 1.0E+0 2.5E+1
L 9.0E-1 5.0E+0 5.0E+1 3.0E+1 1.0E+2 2.0E+6 1.0E+2 1.0E+0 0.0E+0 0.0E+0
F 1.0E-3 1.0E+0 1.0E+1 1.0E+2 2.5E+2 6.0E+5 1.0E+1 0.0E+0 1.0E+0 5.0E+1
C 6.0E-3 5.0E+0 2.0E+2 3.0E+1 1.0E+2 2.0E+6 1.0E+1 0.0E+0 1.0E+0 0.0E+0
V 1.0E-3 2.5E+1 2.5E+1 1.0E+3 1.0E+3 6.0E+4 1.0E+1 0.0E+0 1.0E+0 1.0E+2
H 9.0E-1 4.0E+1 1.0E+1 1.0E+2 2.5E+2 6.0E+5 1.0E+2 1.0E+0 0.0E+0 5.0E+1
K 1.0E-3 1.0E+1 5.0E+1 3.0E+1 3.0E+1 2.0E+6 1.0E+1 0.0E+0 1.0E+0 5.0E+1
Z 1.0E-3 9.0E+0 3.6E+2 3.0E+1 3.0E+1 2.0E+6 1.0E+1 0.0E+0 1.0E+0 2.5E+1
Y 1.0E-2 7.0E+0 5.6E+1 1.0E+2 1.0E+2 6.0E+5 2.0E+1 0.0E+0 1.0E+0 2.5E+1
G 1.0E-3 8.0E+0 2.4E+2 1.0E+2 1.0E+2 6.0E+5 1.0E+1 0.0E+0 1.0E+0 7.5E+1
O 1.0E-3 1.5E+1 2.8E+2 1.0E+2 2.5E+2 6.0E+5 1.0E+1 0.0E+0 1.0E+0 2.5E+1
R 1.0E+0 3.0E+0 2.9E+2 3.0E+1 1.0E+2 2.0E+6 1.0E+2 1.0E+0 0.0E+0 0.0E+0
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T 1.0E-3 2.0E+0 3.3E+2 1.0E+3 1.0E+3 6.0E+4 0.0E+0 1.0E+0 0.0E+0 7.5E+1
X 1.0E+0 6.0E+0 3.1E+2 1.0E+2 2.5E+2 6.0E+5 1.0E+2 1.0E+0 0.0E+0 8.0E+0
M 7.0E-3 9.0E+0 1.0E+0 1.0E+3 1.0E+3 6.0E+4 1.0E+2 1.0E+0 0.0E+0 0.0E+0
J 1.0E-3 1.0E+1 2.6E+2 1.0E+3 1.0E+3 6.0E+4 8.0E+1 1.0E+0 0.0E+0 0.0E+0
A 1.0E+0 1.4E+1 1.0E+0 3.0E+1 3.0E+1 2.0E+6 1.0E+2 1.0E+0 0.0E+0 5.0E+1
Q 1.0E-3 3.5E+0 2.0E+0 1.0E+2 2.5E+2 6.0E+5 0.0E+0 1.0E+0 0.0E+0 1.0E+2
E 8.5E-1 2.0E+0 8.0E+0 1.0E+2 1.0E+2 6.0E+5 1.0E+2 1.0E+0 0.0E+0 7.5E+1
N 1.0E-3 5.0E+0 1.8E+2 1.0E+3 1.0E+3 6.0E+4 1.0E+1 0.0E+0 1.0E+0 1.0E+2
I 9.5E-1 6.0E+0 1.9E+2 1.0E+2 1.0E+2 6.0E+5 1.0E+2 1.0E+0 0.0E+0 5.0E+1
P 1.0E-3 8.0E+0 2.8E+2 3.0E+1 1.0E+2 2.0E+6 0.0E+0 1.0E+0 0.0E+0 2.5E+1
D 1.0E+0 1.1E+1 2.4E+2 3.0E+1 3.0E+1 2.0E+6 1.0E+2 1.0E+0 0.0E+0 2.5E+1
U 1.0E-3 3.5E+1 3.0E+2 1.0E+2 2.5E+2 6.0E+5 0.0E+0 1.0E+0 0.0E+0 0.0E+0
S 5.0E-3 7.5E+0 1.5E+1 3.0E+1 1.0E+2 2.0E+6 0.0E+0 1.0E+0 0.0E+0 2.5E+1
W 5.0E-3 5.0E+0 5.0E+0 1.0E+3 1.0E+3 6.0E+4 0.0E+0 1.0E+0 0.0E+0 1.0E+2

FP - Food Product
C1 - Fraction of the food
C2 - Fraction of the diet
C3 - Number of days consumed
C4 - Primary particle size
C5 - Secondary particle size
C6 - Surface area
C7 - Solubility
C8 - Digestibility
C9 - Biopersistence
C10 - Surface modification

6.2.4 Step 4 - identifying and recruiting the experts

We identified and invited 53 experts all over the world with expertize on the
subject matter of this study. From the 53 experts invited 26 experts accepted
our invitation and 21 of these experts actually participated in the study. The
backgrounds of the participating experts varied; six experts where from academia,
research institutes and non-profit organizations, 3 were regulators, and 12 were
governmental scientists (i.e. risk assessors, molecular biologists, toxicologists,
chemists).

6.2.5 Step 5 - survey format

The set of responses toD for all stakeholders or experts s ∈ S is denoted by rD see
chapter 1. In our study about nanotechnology enabled food products we had ten
criteria, so we needed a larger number of food products or choicer alternatives
A = {a1, . . . , a26}, (26), from which experts could choose. As a consequence
we could not rely on simple paired comparison, because people tend to slack
when faced with a large number of comparisons. In this case 26 nanotechnology
enabled food products would result in 325 paired comparisons. Instead, we asked
experts to rank their five safest and five unsafest (riskiest) Nano-enabled food
products.
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6.2.6 Step 6 - the model

The sixth step is the representation of safety as a function of the criteria and
weights. We formulated safety as a weighted linear combination of the criteria. By
adopting a simple model of the utility of a food products in terms of its attribute
scores, we simultaneously lighten the assessment burden and enable validation
of the model. The score (utility) of food product i for stakeholder s is modeled
as:

us (ai) =

10∑
j=1

ωs,j × ci,j ;
10∑
j=1

ωs,j = 1; ωs,j > 0. (6.2.1)

where ωs,j is the weight for attribute j for stakeholder s and ci,j is the score of
food product i on attribute j defined by the scoring matrix in step 3. The descrip-
tion for the criteria used is given by table 6.2.1. In the model we’ve standardized
the ranges of the criteria represented in table 6.2.1 to be within the zero one scale.
If this model is adequate, the distribution of utility functions over the set of sta-
keholders may be captured as a distribution over attribute weights (ω1, . . . , ω10).

6.3 Results and Validation

We noticed a clear pattern in the experts’ responses (see figure 6.3.1).
Of the 21 experts, 15 ranked food product "M" as most safe. Further, we notice

that food products were rarely ranked both safe and unsafe.

6.3.1 Model Adequacy

A model for decision making must first be verified and validated. Both model
verification and validation are performed using IPF as PI technique. Model ve-
rification is often performed by checking how well the model recovers the data.
In our case the data consists of the probabilities of rankings. We used linear re-
gression as a goodness of fit measure. The dependent and independent variables
represent the observed and recovered probabilities of rankings, respectively. The
slope of the regression tells how accurate the recoveries are on average, and the
coefficient of determination indicates how much of the variation of the observed
probabilities is explained by the recovered probabilities. We fitted the model to
the safe and/or unsafe ranks and discovered that the fit of either the safe or un-
safe ranks is better than the fit of all the rankings. This can be concluded from
figures 6.3.1, 6.3.2, 6.3.3. This suggests that experts evaluate the criteria diffe-
rently for safe and unsafe alternatives. Indeed, as shown in figures (6.3.21 and
(6.3.19) the criterion solubility is weighed at 5% for the safe rankings, but be-
comes 10% for the unsafe rankings. Similarly, primary particle size is weighted
at 12% for the safe rankings, but at 8% for the unsafe rankings. Such shifts of
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Table 6.3.1: Experts’ Ranks of Nanotechnology Enabled Products

Food
Pro-
duct

Rank
1

Rank
2

Rank
3

Rank
4

Rank
5

Rank
22

Rank
23

Rank
24

Rank
25

Rank
26

B 0 0 0 0 0 2 4 2 0 0
L 1 2 2 1 3 0 0 0 0 1
F 0 0 1 0 0 0 0 0 0 0
C 0 0 0 0 0 2 2 3 5 3
V 0 0 0 0 0 1 1 1 1 0
H 0 1 2 2 2 0 1 0 0 0
K 0 0 0 0 0 2 2 4 3 1
Z 0 0 0 0 0 1 1 1 6 10
Y 0 0 0 0 0 1 3 2 0 0
G 0 0 0 0 0 5 2 3 2 3
O 0 0 0 0 0 3 2 2 1 0
R 0 1 0 3 1 0 0 0 1 0
T 2 1 4 2 0 0 0 1 1 0
X 0 1 2 0 3 0 0 0 0 0
M 15 4 0 2 0 0 0 0 0 0
J 1 5 1 1 2 0 0 0 0 0
A 0 2 0 1 1 0 0 0 0 0
Q 1 2 1 1 1 1 0 0 0 0
E 0 0 3 3 0 0 0 0 0 0
N 0 0 0 0 0 1 1 1 0 1
I 0 0 0 0 3 0 0 0 0 0
P 0 0 0 0 0 1 1 0 1 0
D 0 0 0 0 1 0 0 0 0 1
U 0 0 0 1 2 1 0 1 0 1
S 0 0 1 1 1 0 1 0 0 0
W 1 2 4 3 1 0 0 0 0 0

weights are perfectly consistent with Savage rationality, but cannot be captured
by simple MAUT of MCDM models.

Model validation checks the predictive ability of the model. This is also called
out-of-sample validation. In an ideal setting we would have access to a large
amount of discrete choice data. In this situation we would have a set of training
data used to fit the model and a set of validation data to evaluate the model.
Unfortunately when experts’ input is used this isn’t the case. In these situation
existing data is split into a set of training data and test data. The best or optimal
split of the data is still unknown and should be figured out for each application.

In this research we looked three possible splits or validation strategies namely:

1. Strategy 1 - the training set consists of ranks (both safe and unsafe) attes-
ted by more then two experts and the validation set consists of the ranks
attested by one or two experts

2. Strategy 2 - the rank data (both safe and unsafe) is ordered from the most
safe rank to the most unsafe rank and is the split in to pieces. The first piece
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Figure 6.3.1: Fit Safe Ranks

Figure 6.3.2: Fit Unsafe Ranks

of size 2/3, containing the most safe ranks, is the training set. The other
piece of size 1/3, containing the most unsafe ranks, is the validation data

3. Strategy 3 - the rank data (both safe and unsafe) is ordered by number of
experts attesting a scenario from low to high and is then split in to two
pieces. The first piece of size 2/3, containing the ranks with the lowest
number of expert attesting, is the training set. The other piece of size 1/3,
containing the ranks with the highest number of expert attesting, is the
validation set.
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Figure 6.3.3: Fit All Ranks

The training data of strategy 1 yields a perfect fit for either the safe and/or
unsafe ranks (see figure 6.3.4). There are only six dots in figure 6.3.4, because
some ranks are attested by the same number of experts. Only 25 ranks that have
a relative frequency higher than 0.1 were used to generate the ranks that have a
relative frequency between 0 and 0.1. These 25 ranks constitute 25% of the data.

Figure 6.3.4: Fit of Rank Percentages from Strategy 1

At a first glance, the prediction of strategy 1 seems inaccurate (see figure
6.3.5). After averaging these predictions the result seem to be closer to the obser-
ved relative frequencies see (figure 6.3.6).
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Figure 6.3.5: Out-of-Sample Validation Strategy 1

Figure 6.3.6: Out-of-Sample Validation Strategy 1 (Averaging Rank Percentages)

The training data of the strategy 2 gives a less perfect fit then the training data
from the first strategy, see figure 6.3.7.

From figure 6.3.8 it follows that the second strategy has a higher coefficient of
determination then the first validation strategy (figure 6.3.5), but still gives bad
predictions. Averaging the predication does not give a better picture see figure
6.3.9.

The fit of strategy 3 gives is the worst fit of them all, see figure 6.3.10. It seems
that fitting the ranks that were attested by less than three experts is a problem
for the PI method used. It would be strongly advised not to use this strategy for
predictions, because it did not fit the training data.

The last out-of-sample validation gives a much better predications compared
with the previous strategies, see figures 6.3.11, 6.3.12.
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Figure 6.3.7: Fit of Rank Percentages from Strategy 2

Figure 6.3.8: Out-of-Sample Validation Strategy 2

Figure 6.3.12: Out of Sample Validation Strategy 3 (Averaging Rank Percentages)
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Figure 6.3.9: Out-of-Sample Validation Strategy 2 (Averaging Rank Percentages)

Figure 6.3.10: Fit of Rank Percentages from Strategy 3

We will use strategy 1 as our out-of-sample validation. Although it gives the
worst prediction compared to strategy 2 and strategy 3 it fitted the training data
perfectly.

6.3.2 Criteria Weights

Next we will compare the weights, scores and ranking obtained from fitting the
top, bottom ranks using all the ranks as well as the ranks attested by more than
two experts. From figures (6.3.13, 6.3.14, 6.3.15, 6.3.16, 6.3.17, 6.3.18) it fol-
lows that experts used different criteria assessing either safe or unsafe scenarios.
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Figure 6.3.11: Out-of-Sample Validation Strategy 3

Figure 6.3.13: Weights Safe Ranks
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Figure 6.3.14: Weights Safe Ranks Attested by More than Two Experts

Figure 6.3.15: Weights Unsafe Ranks
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Figure 6.3.16: Weights Unsafe Ranks Attested by More than Two Experts

Figure 6.3.17: Weights Safe and Unsafe Ranks

We obtained complete joint distributions over the weights from which we can
not only compute the average values for the weights, but also summary statistics
of the distribution like the standard deviation and correlation. Figures (6.3.19,
6.3.20, 6.3.21, 6.3.22, 6.3.23, 6.3.24) illustrate the uncertainty of these weights.
The low and high values are computed by subtracting and adding one standard
deviation to the means of the weights, respectively . The equal weights are put
in the plots the show that the weights we obtain are indeed different. Equal
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Figure 6.3.18: Weights Safe and Unsafe Ranks Attested by More than Two Experts

weighting will also result in a different scoring of the nanotechnology enabled
food products.

Figure 6.3.19: Mean and Standard Deviation Weights Safe Ranks
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Figure 6.3.20: Mean and Standard Deviation Weights Safe Ranks Attested by More than Two
Experts

Figure 6.3.21: Mean and Standard Deviation Weights Unsafe Ranks
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Figure 6.3.22: Mean and Standard Deviation Weights Unsafe Ranks Attested by More than
Two Experts

Figure 6.3.23: Mean and Standard Deviation Weights Safe and Unsafe Ranks
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Figure 6.3.24: Mean and Standard Deviation Weights Safe and Unsafe Ranks Attested by
More than Two Experts

To complete the analysis of the weights we present the correlation matrix from
fitting all the ranks attested by more than two experts (see figure 6.3.25). Only
at this fitting we found moderate positive correlation between the weights. The
negative correlations are induced from the constraint that the weights have to
sum up to one.

6.3.3 Safety Scores

The scores of the food products are also obtained from the different fittings that
are presented in figures (6.3.26, 6.3.27, 6.3.28, 6.3.29, 6.3.30, 6.3.31). Notably,
the top three safe food products are the same in each ranking namely, M , J and
W and that Z always is the least safe.

6.3.4 Fresh Expert / Alternative Validation

We had the opporunity to test our model at the workshop on Risk Assessment of
Nanotechnology-enabled Food Products organized by Dr. V. Flari3. Experts who par-
ticipated at the workshop on Risk Assessment of Nanotechnology-enabled Food
Products were randomly divided in three groups. These groups were asked to
formulate a number of food products given the criteria we’ve used and record
whether or not these food products are safe. These products were then plugged
into the model to compute their safety score for the different fittings. After we

3Dr. V.A. Flari, Policy and Regulation Programme B, Food and Environment Research Agency, Sand
Hutton, York, YO41 1LZ
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Figure 6.3.25: Correlation Coefficients Weights Safe and Unsafe Ranks > 0.1

computed the scores, each group collaborated advised us whether the ordering
they had in mind were preserved comparing their orderings with the orderings of
the different fittings. The following table shows the results of this exercise.

The degree of external validation was less than perfect, but very substantial,
although it varied according to the particular model fitting used (figure 6.3.32).
The model assuming equal weights predicts correctly 6/12 of the rankings, whe-
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Figure 6.3.26: Mean and Standard Deviation Scores Safe Ranks

Figure 6.3.27: Mean and Standard Deviation Scores Safe Ranks > 0.1

reas the highest level of agreement, (rank order of 9/12 products correctly predic-
ted), was achieved when the model was fitted on the experts ranking preferences
of products they considered as "potentially safe".

Regardless of the model fitting and the level of agreement, the actual scores of
the newly designed products from workshop participants were "clumped" within
a particular scoring range. As a result, the scores did not reflect fully the degree of
safety as implanted in the designed products by participants. Most probably this
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Figure 6.3.28: Mean and Standard Deviation Scores Unsafe Ranks

Figure 6.3.29: Mean and Standard Deviation Scores Unsafe Ranks > 0.1

happened because the model does not accommodate for particular aspects of the
designed products that workshop participants took into account when designing
"potentially safe" and "potentially unsafe" hypothetical products.

128



6.3 6.3. RESULTS AND VALIDATION 129

Figure 6.3.30: Mean and Standard Deviation Scores Safe and Unsafe Ranks

Figure 6.3.31: Mean and Standard Deviation Scores Safe and Unsafe Ranks > 0.1
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Figure 6.3.32: Expert Validation of Model
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6.4 Conclusions

Probabilistic inversion methods can be used to asses the safety of nanotechnology
enabled food products using expert knowledge. The present application demons-
trates that utility models like MCDM and MAUT can be subject to validation. We
found that the MAUT model performed reasonably well in predicting results out-
of-sample, and in predicting results of fresh experts and fresh alternatives. We
also found that the weighting of criteria differed somewhat for safe and unsafe
rankings. Although this method has been applied several times more experience
with other type of applications is needed. In particular, questions regarding the
optimal format of the discrete choice data, the best approach to out-of-sample
validation are still largely open. Equally important is how best to model safety in
terms of physical attributes. An other point that was discussed during the work-
shop is how often the model should be updated. This really depends on a number
of factors like the rate of which new products enter the market as well informa-
tion about the nano-materials. We propose an update of once per year in the near
future.
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Chapter7
Conclusion

In this thesis we took a new approach for solving discrete choice problems. In dis-
crete choice a distribution over utility functions is sought based on discrete choice
data. Discrete choice problems are reformulated to deal with non conventional
choice data and to allow for non-strict preferences in this data. Failing to distin-
guish between strict and non-strict preference easily leads to mis-interpretation
of the results. The general advice is therefore to configure that the elicitation pro-
tocol of a discrete choice study allows stakeholders to express their indifferences,
or alternatively to configure the elicitation in such a way that the possibility of
indifference can be neglected.

Instead of solving discrete choice problems with conventional techniques, this
thesis applies probabilistic inversion. With probabilistic inversion we infer the
complete joint distribution over the utility functions without assuming a depen-
dency structure between utility values. This is achieved by assuming a diffuse
staring distribution, and adapting it iteratively to comply with the discrete choice
data. Independence is often assumed as the dependency structure. This is not
always appropriate, and sometimes imposes a significant "information penalty";
that is, the independence assumption can be satisfied, but only by adding signifi-
cant information with respect to a non-informative distribution. And also in some
situations where the dependency structure is assumed upfront might lead to no
solution to the discrete choice problem even when the choice data allows for it.

With the joint distribution we can infer not only the moments and dependen-
cies of the utility values, but also compute the probability that choice alternative
i is ranked in any give position. With the insight offered by the joint distribution
we were able to perform additional model validation. Typically model validation
for discrete choice is performed by checking for expert consistency and checking
how well the discrete choice data can be recovered or fitted by the model used.
This thesis introduces further steps of validation. Not only can we fit the model
if the discrete choice problem is feasible, but we can also study the predictability
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capacity of the model. In other words assuming that the choice data represents
the preferences of the population in question we might be able to predict stake-
holders’ preferences for new alternatives not present in the original data.

7.1 Model Validation

7.1.1 Consistency with Discrete Choice Data

This first step of validation is performed to check stakeholders’ consistency. For
the NCEAS study(chapter 4) stakeholders’ consistency was checked by allowing
dominated scenarios. In the health states study(chapter 5) stakeholders’ consis-
tency is checked by rank reversals. The stakeholders that had rank reversals were
excluded from the study. We didn’t check expert consistency for the last study
presented in the thesis (chapter 6), but expert consistency could be checked as
well by allowing dominated scenarios.

7.1.2 Consistency with Savage Rationality

Consistency with Savage rationality is checked by fitting the data to unmodeled
scores. The assumption behind this validation is that when the data can fit the un-
modeled scores then there exists a distribution over the utility values that satisfies
the preferences.

This type of validation hasn’t been carried out for the study on prioritizing
marine ecosystem vulnerabilities. For the study on strategic risk planning in pu-
blic health we were able to fully recover the attested ranks from the consistent
experts. In case of the study on risk assessment of nano-enabled food products
the we were not able to recover all the attested ranks. However when we ex-
cluded the ranks that were attested by at most 2 experts we fully recovered the
remaining ranks.

7.1.3 In Sample Validation

With in sample validation we try to fit a MCDM or MAUT model to all attested
ranks. We have not fully recovered all the attested ranks for any of the appli-
cations presented in this study. A number of reasons could cause for not fully
recovering all attested ranks.

For example for the first study presented in the chapter 4 the main reason was
the fact that we allowed for dominated scenarios so that we could test experts
consistency. A choice alternative ai that dominates choice alternative aj should
always be preferred to scenario aj . Recovering preferences where scenario aj is
preferred to scenario ai will be impossible for any model that preserves monoto-
nicity.
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In the second study represented (see chapter 6) the in sample validation was
less than perfect when fitting all the attested ranks. On the other hand when
fitting either the safe or unsafe attested ranks we’ve got far more better results.
From the results of the weights we get from fitting the model to both the safe as
unsafe attested ranks it follows that experts used different weights when assessing
safe and unsafe products.

7.1.4 Out Sample Validation

The out of sample validation we apply is to test whether a MCDM or MAUT mo-
del used has predictability capacities. This type of validation is very new to the
field of discrete choice, but seems very crucial when discrete choice models are
being implemented to asses or rank other choice alternatives that were not part
of the elicitation exercise. Even though we did not predict the attested ranks
with perfect precision the number the overall picture seems to be that this type
of validation performed moderately well. Better strategies to perform this type of
validation have yet to be discovered.

7.1.5 Fresh Alternative/Stakeholder Validation

The fresh expert / alternative validation carried out in the risk assessment of
nanotechnology enabled food products study(chapter 6) is new, but showed pro-
mising results. The goal of the study presented in 6 was to create a screening
model based on a number of criteria. This screening model would be conside-
red valid if it flag safe products as safe and unsafe products as unsafe. From the
results of the fresh expert / alternative validation it followed that sometimes the
model would mark safe products as unsafe, but the model does not flag unsafe
products as safe.

7.2 Recommendations and Future Work

The validation techniques proposed and applied in this thesis are not yet fully
articulated, but open up opportunities to better model validation. The guiding
techniques of probabilistic inversion have not been exploited to the fullest. For
example we’ve used a moderate number of samples (around at most 106) for
fitting the data, which is not a large number compared with current simulation
models. On the other hand the number of samples can not be increased without
considering a proper memory management for the PI techniques. Expressing uti-
lity as more general functions of criteria could also be explored and might lead to
improved predictive performance.

Although the utility models studied in this thesis are all of the Multi Attribute
Utility type, the probabilistic inversion and validation techniques are applicable
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to a much wider class of utility models, involving interaction terms between crite-
ria, non-linear functions of criteria, and "change-point models" which can switch
model forms in different regions of he criteria space.

We also recommend the use of the Internet for eliciting stakeholders’ prefe-
rences and communicating the results of the studies. We strongly believe that the
Internet makes participating in discrete choice studies more accessible and less
demanding on the stakeholders. Stakeholders can carefully express or re-enter
their preferences when they see fit for as long as possible. Also when the results
are available they might be able to see them and if the study allows it can also
play around with the discrete data using different models.

Finally we recommend that more research should be conducted to find the
optimal discrete choice format for each problem. The optimal choice of format
depends on a number of things, including the number of choice alternatives, the
availability of the stakeholders, and the purpose of the study. The paired com-
parison is well studied, but is unsuitable for modestly large numbers of choice
alternatives. The alternative formats applied here, i.e. overlapping rankings
and top/bottom rankings, were chosen opportunistically based on problem ow-
ner constraints. A general theory relating the discrete choice data format to the
mathematical utility model to be fitted is currently unavailable.
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AppendixA
Software Used

The term Probabilistic Inversion (PI) has been introduced in chapter 1 as a re-
sampling approach for finding a distribution over the unobserved utility values
given the observed distribution over the responses and or the multi-criteria utility
model. In section A.1 we give background information and an overview of the
numerical methods for PI. And in section A.2 we show how the user can solve
their own discrete choice problem using the software created for PI and an real
life MCDM project.

A.1 Background

The problem of inferring a random utility function P from Q becomes a problem
of "probabilistic inversion". Probabilistic inversion (PI) is similar to ordinary in-
version. In ordinary inversion there is a function g mapping X onto Y . The value
y∗ is observed and the task then is to find an x∗ such that y∗ = g (x∗). In the pro-
babilistic setup the quantities x, y are random vectors instead of numbers. There
are two formulations to solve a problem of probabilistic inversion namely the
measure theoretic approach and the random variable approach [40] from which
we choose the latter.

Definition A.1.1. Let X,Y be random vectors taking values in respectively RN and
RM . Further let G be a measurable function G : RN → RM . X is called a probabi-
listic inverse of G at Y if G (X) ∼ Y,where ∼ means "has the same distribution as".
If C is a set of random vectors Y taking values in RM , then X is an element of the
probabilistic inverse of G at C if G(X) ∈ C.

In case G = (G1, . . . , GM ), and we wish to impose marginal distributions, or
marginal constraints on (G1, . . . , GM ), we are finding a probabilistic inverse of the
set of random vectors belonging to the set C satisfying the marginal constraints.
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The random vectors X,Y can respectively be seen as the input and the output
of model G. If there exists no distribution such that G (X) ∼ Y then we seek a
random vector X such that G (X) is ’as close as possible to’ Y. This will typically
be achieved by minimizing the relative information I (G (X) |Y)[45]. If there is
more than one probabilistic inverse of Y under G, then we require a ’best’ value
in some suitable sense.

Probabilistic inversion problems are usually quite hopeless analytically, but
there are good numerical algorithms. The key to finding a numerical solution is
that we do not invert the function G at all. Instead, we begin with a diffuse initial
distribution over RN such that the target distribution on RM is absolutely conti-
nuous with respect to theG-push-through of this distribution. In other words, any
event which has positive probability under the target distribution must have posi-
tive mass when the initial diffuse distribution is pushed through G. We now draw
a large number of samples, say L, from the initial distribution. For each sample
(x1, . . . , xN ) we compute G (x1, . . . , xN ). By construction, each sample has pro-
bability 1/L. In general the resulting distribution of G values will not comply
with the target distribution. The strategy is now to re-weight the L samples, such
that if the initial distribution is re-sampled using these weights, the result does
comply with the target distribution. If such a set of weights exists, the PI problem
is feasible, otherwise it is infeasible. Infeasibility is hardly uncommon in these
problems, and need not be serious. By minimizing infeasibility we may obtain
distributions that are close to the target distribution.

There are a number of iterative methods for re-weighting an initial distribution
from which we will mention two, namely IPF(Iterative Proportional Fitting)[44],
[86], [20] and PARFUM (PARameter Fitting for Uncertainty Models)[9], [17],
[50]. IPF was first described by Kruithof [44] and later rediscovered by Deming
and Stephan [16], and many others. Csiszar [13] proved the convergence of IPF
in case of a feasible problem. He shows that if the IPF algorithm converges, then it
converges to the unique distribution (called the I-projection) which is minimally
informative relative to the starting distribution, within the set of distributions sa-
tisfying the marginal constraints. PARFUM was introduced and studied by Cooke
[9] . If the problem is feasible, PARFUM converges to a solution which is distinct
from the IPF solution. Unlike IPF, PARFUM always converges, and it converges to
a solution which minimizes a suitable information functional [17]. The conver-
gence of PARFUM (and its canonical variations) was proved by Matus[58] but has
not yet been published. When the problem is feasible IPF is preferred, because of
its fast convergence. PARFUM is used when the problem is infeasible, because it
insures a solution such that I (G (X) |Y) is minimal.

A.2 User Manual

This describes how to use UNIVERSE to perform probabilistic inversion on dis-
crete choice data in which experts choose, say, 5 top ranked scenarios from a list
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of, say, 20. The scenarios are given as values on, say, 5 criteria. The functional
form considered here is the standard Multi Criteria Decision Making (MCDM) for-
mat. Where Sk(ai) is the score for scenario ai on criteria k, the score for scenario
ai is:

S (ai) =

5∑
k=1

ωkSk(ai);ωk ≥ 0; k = 1 . . . 5;

5∑
k=1

ωk = 1 (A.2.1)

Other functional forms could be handled with equal ease, the MCDM form is cho-
sen because it is the most familiar. Each stakeholder in a population is modeled as
having his/her own specific weights ωk, and probabilistic inversion is used to find
a distribution over the weights that recovers the experts’ observed distribution
over rankings of scenarios.

This is explained using a synthetic SCENRANK data set involving 20 scenarios,
124 experts, and 5 criteria, each taking values 1,2,3,4, or 5. These are nominal
values whose meaning is given in narrative form, for example "very bad, bad,
so?so, good, very good”. In general it is preferable to have criteria in physically
measurable units taking values over similar ranges. Since the "Score” is utility
valued and dimensionless, the units of the weights must be "1 / criteria units”.

Starting with a diffuse distribution over the weights, the goal is to find a distribu-
tion over the weights such that if our experts used a MultiCriteria Decision Model
and sampled their weights from this distribution, then the probabilities of the ob-
served rankings would be "recovered”. Most importantly, we want to validate our
MCDM model out of sample. That is we want to show that the model satisfac-
torily predicts ranking probabilities NOT used to fit the model. The SCENRANK
data is in the spreadsheet

The main program is UNIVERSE developed by R. Neslo at the Department of Ma-
thematics, Delft University of Technology. The work flow uses another program
UNICORN and a graphics package UNIGRAPH. All programs can be freely down-
loaded from http://risk2.ewi.tudelft.nl/oursoftware/3-unicorn.

1. Transform original data to percentage rankings

Suppose you have 20 scenario’s and a group of stakeholders has each ranked their
top 5.

The original data may look like figure A.2.1 (from SCENRANK study, 20 scenarios,
124 experts).
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Figure A.2.1: Raw Data fragment

The scenarios are named A . . . T , the numbers below the scenarios are the values
assigned to the 5 criteria in this study. I.e. scenario A assigns value "1” to the first
criteria, "2” to the second, "5” to the third, etc. You must first transform this data
to give the ranking probabilities, as shown below. This says, e.g. that 0.06504 of
the 124 experts ranked scenario A in the first position (figure A.2.1).

Figure A.2.2: Rank data

2. Remove zeros
A zero in the above table means that none of the 124 experts ranked scenario G
in the first position, and zero’s cause problems for the processing. The probability
of this event is not really zero, we shall say that "1/2 of an expert ranked G in
first place”. (1/2) (1/124) = 0.00403. For the first ranked scenarios we assign
probability 0.00403 to scenarios G and H and renormalize the probabilities:
The first ranked variables (re-normalized) are used for the model validation, and
are called validation variables.
3. Define variables for fitting (training variables)
We want to fit our model to the ranking probabilities that were attested by at
least 4 of the 124 experts, NOT COUNTING the first ranks in table A.2.1. Thus
the probabilities of ranking at least 0.032258. The choice of validation set is not
well guided by method at this point; however one point of guidance seems to be
this: don’t use variables that are attested by a small number of experts as fitting
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Table A.2.1: Renormalized probabilities

original re-normalized

A1 0.065041 0.064516
B1 0.01626 0.016129
C1 0.01626 0.016129
D1 0.04065 0.040323
E1 0.04878 0.048387
F1 0.02439 0.0242
G1 0 0.004032
H1 0 0.004032
I1 0.138211 0.137097
J1 0.178862 0.177419
K1 0.065041 0.064516
L1 0.00813 0.008065
M1 0.056911 0.056452
N1 0.03252 0.032258
O1 0.04878 0.048387
P1 0.01626 0.016129
Q1 0.121951 0.120968
R1 0.065041 0.064516
S1 0.02439 0.024194
T1 0.03252 0.032258

(training) or validation variables, as the results can be noisy. Once fitted, we use
this model to predict the numbers in Table 3 – this is out-of-sample validation.
Various fields of artificial intelligence refer to the variables used to fit the model
as the training set. The training set is in table A.2.2:
4. Make sample file for UNIVERSE
Universe takes as input a large sample file and changes this file to make things
come out right.
In this case, we want to define a score for each scenario; for scenario A that will
be:
(because A has scenario scores of (1,2,5,4,3)
Score (scenario A) =

5∑
i=1

wi ∗ S(A, i) = w1 ∗ 1 + w2 ∗ 2 + w3 ∗ 5 + w4 ∗ 4 + w5 ∗ 3. (A.2.2)

We must generate a large sample file of the w’s and define the scores for each
scenario in each sample. Then for each scenario and each rank, we have to de-
fine an indicator variable that is 1 if that scenario has the given rank on each
sample. Finally, UNIVERSE will change the sample file by re-weighting it so that
the probabilities in Table 3 are realized (as close as possible). We can then check
whether this re-weighted sample complies with the probabilities in the validation
set (table 4).
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Table A.2.2: Fitting set

Scenario Experts
I2 0.0569106
K2 0.0569106
M2 0.0731707
Q2 0.0731707
R2 0.0813008
S2 0.0894309
I3 0.1056911
J3 0.0894309
M3 0.0325203
Q3 0.0569106
S3 0.0650407
A4 0.0731707
E4 0.0569106
I4 0.0731707
J4 0.0569106
K4 0.0813008
M4 0.1056911
Q4 0.0569106
S4 0.0650407
A5 0.0569106
E5 0.0731707
F5 0.0650407
I4 0.097561
J5 0.0650407
K5 0.0731707
Q5 0.0731707
R5 0.0650407

This step will require some programming, or you can use the uncertainty analysis
package UNICORN to do it. Note UNICORN supports copy pasting of functions, so
to make the functions shown below, it suffices to make one of each type, then copy
paste it and change what needs to be changed. The unicorn file ScenRank.unc is
available as an example.
First you make the random variables, these are unnormalized versions of the
weights. I.e. you just make 5 uniform [0, 1] random variables. Then we specify
functions of these variables, the first 5 functions convert the vi’s to normalized
weights (i.e. make them sum to one):
Make weights:
1. w1 : v1/(v1 + v2 + v3 + v4 + v5)
2. w2 : v2/(v1 + v2 + v3 + v4 + v5)
3. w3 : v3/(v1 + v2 + v3 + v4 + v5)
4. w4 : v4/(v1 + v2 + v3 + v4 + v5)
5. w5 : v5/(v1 + v2 + v3 + v4 + v5)
Define the scenario scores as in (A.2.2)
6. a : 1 ∗ w1 + 2 ∗ w2 + 5 ∗ w3 + 4 ∗ w4 + 3 ∗ w5
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Figure A.2.3: Unnormalized versions of the weights

7.b : 1 ∗ w1 + 4 ∗ w2 + 2 ∗ w3 + 3 ∗ w4 + 5 ∗ w5

8. c : 1 ∗ w1 + 4 ∗ w2 + 5 ∗ w3 + 3 ∗ w4 + 2 ∗ w5

9. d : 1 ∗ w1 + 5 ∗ w2 + 4 ∗ w3 + 3 ∗ w4 + 2 ∗ w5

10. e : 2 ∗ w1 + 3 ∗ w2 + 1 ∗ w3 + 4 ∗ w4 + 5 ∗ w5

11. f : 2 ∗ w1 + 3 ∗ w2 + 4 ∗ w3 + 5 ∗ w4 + 1 ∗ w5

12. g : 2 ∗ w1 + 4 ∗ w2 + 3 ∗ w3 + 5 ∗ w4 + 1 ∗ w5

13. h : 2 ∗ w1 + 5 ∗ w2 + 1 ∗ w3 + 4 ∗ w4 + 3 ∗ w5

14. i : 3 ∗ w1 + 1 ∗ w2 + 2 ∗ w3 + 5 ∗ w4 + 4 ∗ w5

15. j : 3 ∗ w1 + 1 ∗ w2 + 5 ∗ w3 + 2 ∗ w4 + 4 ∗ w5

16. k : 3 ∗ w1 + 2 ∗ w2 + 4 ∗ w3 + 1 ∗ w4 + 5 ∗ w5

17. l : 3 ∗ w1 + 5 ∗ w2 + 1 ∗ w3 + 2 ∗ w4 + 4 ∗ w5

18. m : 4 ∗ w1 + 2 ∗ w2 + 3 ∗ w3 + 1 ∗ w4 + 5 ∗ w5

19. n : 4 ∗ w1 + 3 ∗ w2 + 2 ∗ w3 + 5 ∗ w4 + 1 ∗ w5

20. o : 4 ∗ w1 + 3 ∗ w2 + 5 ∗ w3 + 1 ∗ w4 + 2 ∗ w5

21. p : 4 ∗ w1 + 5 ∗ w2 + 3 ∗ w3 + 1 ∗ w4 + 2 ∗ w5

22. q : 5 ∗ w1 + 1 ∗ w2 + 2 ∗ w3 + 3 ∗ w4 + 4 ∗ w5

23. r : 5 ∗ w1 + 1 ∗ w2 + 3 ∗ w3 + 4 ∗ w4 + 2 ∗ w5

24. s : 5 ∗ w1 + 2 ∗ w2 + 4 ∗ w3 + 1 ∗ w4 + 3 ∗ w5

25. t : 5 ∗ w1 + 4 ∗ w2 + 1 ∗ w3 + 2 ∗ w4 + 3 ∗ w5

Define indicators for first ranked scenarios (validation variables). The func-
tions i1 and i# are special functions in UNICORN – if you use another program
to generate samples, you’ll have to program these. i#{x,a,b,c. . . ,y} returns the
number of the variables a. . . which are greater or equal to x and less or equal to
y. Thus
i#{0,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,a}
returns the number of b, c, . . . t which are ≥ 0 and ≤ a. If this number is 19, that
is equivalent to scenario A being ranked first among the 20 scenarios. This event
is denoted a1 and it occurs if and only if the score of A (no caps in UNICORN)
as given by (1 is the highest of all 20 scores, for the particular sample of w’s.
Function number 26 below is the indicator of this event.
26. a1: i1{18.5,i#{0,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,a},19.5}
27. b1: i1{18.5,i#{0,a,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,b},19.5}
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28. c1: i1{18.5,i#{0,a,b,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,c},19.5}
29. d1: i1{18.5,i#{0,a,b,c,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,d},19.5}
30. e1: i1{18.5,i#{0,a,b,c,d,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,e},19.5}
31. f1: i1{18.5,i#{0,a,b,c,d,e,g,h,i,j,k,l,m,n,o,p,q,r,s,t,f},19.5}
32. g1: i1{18.5,i#{0,a,b,c,d,e,f,h,i,j,k,l,m,n,o,p,q,r,s,t,g},19.5}
33. h1: i1{18.5,i#{0,a,b,c,d,e,g,f,i,j,k,l,m,n,o,p,q,r,s,t,h},19.5}
34. i_1: i1{18.5,i#{0,a,b,c,d,e,g,f,h,j,k,l,m,n,o,p,q,r,s,t,i},19.5}
Unicorn doesn’t allow the name i1!!!)
35. j1: i1{18.5,i#{0,a,b,c,d,e,f,g,h,i,k,l,m,n,o,p,q,r,s,t,j},19.5}
36. k1: i1{18.5,i#{0,a,b,c,d,e,g,f,h,i,j,l,m,n,o,p,q,r,s,t,k},19.5}
37. L_1: i1{18.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,m,n,o,p,q,r,s,t,l},19.5}
In courier, l (el) looks like 1 (one)
38. m1: i1{18.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,n,o,p,q,r,s,t,m},19.5}
39. n1: i1{18.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,o,p,q,r,s,t,n},19.5}
40. o1: i1{18.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,n,p,q,r,s,t,o},19.5}
41. p1: i1{18.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,n,o,q,r,s,t,p},19.5}
42. q1: i1{18.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,n,o,p,r,s,t,q},19.5}
43. r1: i1{18.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,n,o,p,q,s,t,r},19.5}
44. s1: i1{18.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,n,o,p,q,r,t,s},19.5}
45. t1: i1{18.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,n,o,p,q,r,s,t},19.5}
Define indicators for lower ranks (training variables).
The function i#{0,a,b,c,d,e,g,f,h,j,k,l,m,n,o,p,q,r,s,t,i} is the number of scenarios
ranked below i.
i1{17.5,i#{0,a,b,c,d,e,g,f,h,j,k,l,m,n,o,p,q,r,s,t,i},18.5}
is one if and only if the rank of i is 2, i.e exactly 18 scenarios are ranked below i.
46. i2: i1{17.5,i#{0,a,b,c,d,e,g,f,h,j,k,l,m,n,o,p,q,r,s,t,i},18.5}
47. k2: i1{17.5,i#{0,a,b,c,d,e,g,f,h,i,j,l,m,n,o,p,q,r,s,t,k},18.5}
48. m2: i1{17.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,n,o,p,q,r,s,t,m},18.5}
49. q2: i1{17.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,n,o,p,r,s,t,q},18.5}
50. r2: i1{17.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,n,o,p,q,s,t,r},18.5}
51. s2: i1{17.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,n,o,p,q,r,t,s},18.5}
52. i3: i1{16.5,i#{0,a,b,c,d,e,g,f,h,j,k,l,m,n,o,p,q,r,s,t,i},17.5}
53. j3: i1{16.5,i#{0,a,b,c,d,e,f,g,h,i,k,l,m,n,o,p,q,r,s,t,j},17.5}
54. m3: i1{16.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,n,o,p,q,r,s,t,m},17.5}
55. q3: i1{16.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,n,o,p,r,s,t,q},17.5}
56. s3: i1{16.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,n,o,p,q,r,t,s},17.5}
57. a4: i1{15.5,i#{0,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,a},16.5}
58. e4: i1{15.5,i#{0,a,b,c,d,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,e},16.5}
59. i4: i1{15.5,i#{0,a,b,c,d,e,g,f,h,j,k,l,m,n,o,p,q,r,s,t,i},16.5}
60. j4: i1{15.5,i#{0,a,b,c,d,e,f,g,h,i,k,l,m,n,o,p,q,r,s,t,j},16.5}
61. k4: i1{15.5,i#{0,a,b,c,d,e,g,f,h,i,j,l,m,n,o,p,q,r,s,t,k},16.5}
62. m4: i1{15.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,n,o,p,q,r,s,t,m},16.5}
63. q4: i1{15.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,n,o,p,r,s,t,q},16.5}
64. s4: i1{15.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,n,o,p,q,r,t,s},16.5}
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65. a5: i1{14.5,i#{0,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,a},15.5}
66. e5: i1{14.5,i#{0,a,b,c,d,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,e},15.5}
67. f5: i1{14.5,i#{0,a,b,c,d,e,g,h,i,j,k,l,m,n,o,p,q,r,s,t,f},15.5}
68. i5: i1{14.5,i#{0,a,b,c,d,e,g,f,h,j,k,l,m,n,o,p,q,r,s,t,i},15.5}
69. j5: i1{14.5,i#{0,a,b,c,d,e,f,g,h,i,k,l,m,n,o,p,q,r,s,t,j},15.5}
70. k5: i1{14.5,i#{0,a,b,c,d,e,g,f,h,i,j,l,m,n,o,p,q,r,s,t,k},15.5}
71. q5: i1{14.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,n,o,p,r,s,t,q},15.5}
72. r5: i1{14.5,i#{0,a,b,c,d,e,g,f,h,i,j,k,l,m,n,o,p,q,s,t,r},15.5}

Unicorn makes 2 types of sample files <name>.sae is an Excel compliant CSV
file. <name>.sam is just a single list of samples. When UNICORN is run, a sam
file and a sae file are made.
A fragment of the sae file is shown below from Excel There are 16,000 samples
(rows) in this case.

Figure A.2.4: Sae file from UNICORN

You can analyze the output of UNIVERSE in UNICORN by reading it back, but
then you must choose the sam format (historical reasons).
5. Read sam file into UNIVERSE.
Open UNIVERSE, and chose the open drop down menu (figure A.2.5):
Note that we select file type sam. After choosing SCENRANK.sam we get (figure
A.2.6):
The file is loaded. We have to select variables whose distribution is to be constrai-
ned to fit our expert data. That is done by choosing "variables” from the edit
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Figure A.2.5: Opening Samples in UNIVERSE

Figure A.2.6: Variables Overview UNIVERSE
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menu. You select the variables with the mouse. When the set is highlighted, left
click and choose "select”. We select the training variables. When selected, a green
bar appears as shown in figure A.2.7:

Figure A.2.7: Selection of Variables in UNIVERSE

Now go back to Edit and select quantiles:
On opening, it shows the minimum and maximum value of the selected va-
riables. These variables are indicator functions, taking values 0 and 1. We want
to constrain the cumulative distribution function by stipulating a number of quan-
tiles. In case of indicators, there is only one quantile namely 0. The probability
that the indicator is = 0 is 1 minus the probability we want. I.e. if we want the
probability that A is ranked first to be 0.06452, then the probability of the indica-
tor a1 being 0 must be 0.9355. In the language of UNIVERSE (which is for more
general problems) the 0.9355 quantile is zero. To tell UNIVERSE that its handy
to make the following columns in Excel see table A.2.3:
You can then just copy paste this information into UNIVERSE. First specify the
number of quantiles, in this case 1, then hit update and you should see (figure
A.2.8)
6. Run UNIVERSE
Go to the Run menu and select the only available option, "re-weighting”. There
are three re-weighting algorithms, the Default is IPF (Iterative Proportional Fit-
ting). That will work if there IS as set of weights over the samples such that
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Table A.2.3: Handy Columns

I2 0.056911 0.94309 0
K2 0.056911 0.94309 0
M2 0.073171 0.92683 0
Q2 0.073171 0.92683 0
R2 0.081301 0.9187 0
S2 0.089431 0.91057 0
I3 0.105691 0.89431 0
J3 0.089431 0.91057 0
M3 0.03252 0.96748 0
Q3 0.056911 0.94309 0
S3 0.065041 0.93496 0
A4 0.073171 0.92683 0
E4 0.056911 0.94309 0
I4 0.073171 0.92683 0
J4 0.056911 0.94309 0
K4 0.081301 0.9187 0
M4 0.105691 0.89431 0
Q4 0.056911 0.94309 0
S4 0.065041 0.93496 0
A5 0.056911 0.94309 0
E5 0.073171 0.92683 0
F5 0.065041 0.93496 0
I4 0.097561 0.90244 0
J5 0.065041 0.93496 0
K5 0.073171 0.92683 0
Q5 0.073171 0.92683 0
R5 0.065041 0.93496 0

Figure A.2.8: Quantiles View UNIVERSE

re-weighted sampling exactly recovers the required probabilities. That will not
always happen. In that case the problem is infeasible – that’s not so bad, as the
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"least infeasible set of weights” might be pretty good. To find that, use PARFUM.
100 iterations is usually more than enough. If the starting distribution contains
no samples in one of the intervals which is constrained to have finite probability,
an error message results; this is not a problem for ranked data, but in other cases,
you must make sure that the numbers in the previous table are between the min
and max values.
After running you see (figure A.2.9):

Figure A.2.9: Simulation View Universe

If something goes wrong you will get an error log at the bottom. The graphics
show the relative information and relative error against iteration number. Rela-
tive information shows you how much the distribution is changed from the initial
distribution (higher number means more change). Relative error shows the maxi-
mum of <value of variable on current sample> / <value of variable on previous
sample>.
UNIVERSE has computed weights for each of the samples from unicorn. You can
now go to VIEW and see if the probabilities after re-weighting (After probabilistic
inversion, PI) agree with the stipulated weights. From the screen shot below you
can see that the agreement is nearly perfect in this case (figure A.2.10).
7. Output from UNIVERSE
To get an output distribution from UNIVERSE we have to re-sample the initial
distribution from UNICORN. Of course there is an internal version but to get an
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Figure A.2.10: Probabilities Stipulated vs. Probabilities Recovered after PI

output distribution we have to stipulate how many samples we want. Go back
to RUN and choose re-sampling. Stipulate the number of samples hit "sample”
and then hit "save”. Don’t forget to save, otherwise you won’t have anything.
Although there were 16,000 samples in the sam file, we’ve chosen to sample the
re-weighted file 10,000 times.
When saving you can choose the file type. For an Excel compliant CVS file, chose
sae. If you wish to get the stats from UNICORN, chose sam. In either case you
can get graphic output from UNIGRAPH – also free from the same website as
UNICORN.
8. Output from UNICORN.
Open UNICORN (figure A.2.12) , from FILE choose "New formula Model” and
choose "BATCH” (figure A.2.13), and then "create from sample file”. Select the
sam file just created in UNIVERSE.
If you want stats of certain variables, you have to enter them as functions of input
– this is legacy. Thus if you want to compare scenarios A,B and C, create input
ScenA, ScenB, ScenC, and assign these functions the values a,b,c respectively.
Then run the simulation, UNICORN just takes one pass through the sample and
gathers the stats for the functions. Choose output format rtf, and you can get the
stats in ms word tables. Here’s a screen shot (figure A.2.14):
You can also analyze the results graphically with UNIGRAPH, that easily makes
cobweb plots, scatter plots and the like. Here’s a cobweb plot of of the weights
and scores for A,B and C (figure A.2.15).
By dragging the mouse, we can select samples which pass through certain regions.
In the following all samples were selected in which ScenB was high. We see that
in that case ScenA and ScenB are relatively low and weight w2 has to be rather
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Figure A.2.11

high (figure A.2.16).
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Figure A.2.12: New UNICORN File

Figure A.2.13: Batch Create Variables
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Figure A.2.14: Summary Statistics of the Variables in UNICORN
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Figure A.2.15: Cob web Plot Joint Distribution
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Figure A.2.16: Cob web Plot Conditioned on ScenA and ScenB Relatively Low and Weight
w2 High

9. Out-of-sample Validation
Validation of the utility model is achieved by predicting the ranking probabilities
from the validation set. In this case the validation is quite decent. The ”fitted”
columns show the probabilities given by the experts, and those recovered by PI.
They are quite close. The "predicted” columns show the same for the first rank
probabilities which were NOT used to fit the model. We see that the agreement
is somewhat less, but still quite decent. In many applications the agreement is
not so close. The Weights table A.2.17 shows that w2 has a mean value over the
stakeholders of 0.16; the others are all around 0.2. All weights except w2 are
about equally important.
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Figure A.2.17: Out of sample validation
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[70] Neslo, R., Cooke, R., and Tarantola, S. (2006). A new participatory fra-
mework to build and interpret composite indicators: an application to coun-
try competitiveness. Technical report, Joint Research Center of the European
Commission.

[71] Neslo, R. E., Micheli, F., Kappel, C. V., Selkoe, K. A., Halpern, B. S., and
Cooke, R. M. (2008). Modeling stakeholder preferences with probabilistic
inversion application to prioritizing marine ecosystem vulnerabilities. In Real-
Time and Deliberative Decision Making, NATO Science for Peace and Security
Series C: Environmental Security, pages 265–284. Springer Netherlands.

[72] Neslo, R. E. J. and Cooke, R. M. (2011). Modeling and validating stake-
holder preferences with probabilistic inversion. Applied Stochastic Models in
Business and Industry, 27(2):115–130.

[73] Ángela Patricia Vargas Galindo (2007). Probabilistic inversion in priority
setting of food borne pathogens. Master’s thesis, Technical University of Delft.

[74] Pearson, K. (1903). The law of ancestral heredity. Biometrika, 2(2):211–
228.

[75] Perez, J., Jimeno, J., and Mokotoff, E. (2006). Another potential shortco-
ming of ahp. TOP, 14:99–111.

[76] Reidpath, D. D., Allotey, P. A., Kouame, A., and Cummins, R. A. (2003).
Measuring health in a vacuum: examining the disability weight of the daly.
Health Policy and Planning, 18(4):351–356.

[77] Revelt, D. and Train, K. (1998). Mixed logit with repeated choices: Hou-
seholds’ choices of appliance efficiency level. The Review of Economics and
Statistics, 80(4):647–657.

[78] Richter, K. (1966). Revealed preference theory. Econometrica, 34:635Ű645.
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Summary

Discrete Decisions with Model Validation using Probabilistic Inversion

Discrete choice denotes the choice behavior of a group of stakeholders. The as-
sumption widely used in discrete choice is that a distribution over utility values
of the choices can be inferred from a distribution over preferences of the stake-
holders. Despite a wide range of literature on discrete choice and its applications,
there is little attention to the validation of the models used in discrete choice. Va-
lidation aims to promote transparency and the ability to make predictions based
on the decision model.

In this study a mathematical framework is formulated for decisions making
using group preferences. This framework formulates decision models based on
group preferences as a probabilistic inverse problem. The benefits that result from
using this framework are that preferences are better expressed in the decision
models, but more importantly, it provides an opportunity for validation.

The first part of the thesis focuses it’s attention on the assumptions made in
discrete choice and introduces the notion of model validation. One of these as-
sumptions is the so called Independence of Irrelevant Alternatives paradox that will
be covered in chapter 2 of the thesis. In chapter 3 the problem of discrete choice is
formulated as a constraint optimization problem. The optimal distribution from
this constraint optimization problem is not always independent with respect to
the utility values of the choices as often assumed. Further when the number of
alternatives increases conventional solution techniques for constraint optimiza-
tion become intractable, but a approximation of the solution can still be obtained
using Probabilistic Inversion.

The second part of the thesis applies the theory developed to three case stu-
dies and validates the models used in each of the studies. The first application
in chapter 4 concerns the budget allocation of ecosystem conservation in the Ca-
lifornia coastal area[71, 90]. The criteria used in this MCDM model intend to
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capture the vulnerability of the ecosystems. Weights fitted to the model are used
to determine the threat potential of all the remaining ecosystems.

The second application is given in 5. The idea of modeling health states as a
random utility model with underlying physical attributes is not new [81]. Whe-
reas these studies attempt to extract valuations on criteria (criteria weights), this
study aimed to improve an existing model EQ-5D+C for valuing health states
using stakeholders’ preferences on health states directly. The idea is that applying
stakeholders preferences to the model will lead to more transparent and defen-
sible assessment of the MCDM model.

The most recent and last application is given in chapter 6. Our techniques for
MCDM are applied to find a basic screening model for the safety of nanotechno-
logy enabled food products. Although the benefits of using nano-particles in food
products is clear, i.e. fewer quantities needed, the risks have yet to be determi-
ned. Doing a case by case study is not possible, because there is few to no data
available about the safety of nanotechnology enabled food products. With stake-
holders’ preferences and probabilistic inversion we capture knowledge about the
safety of these products and use the preferences to fit a screening model based on
a set on 10 criteria.

Some important results from this research and applications have emerged.
First validation is possible for decision models using group preferences, but fur-
ther research is needed to find the best way of validation. Secondly, there are
other forms of decision models possible with the established framework than the
often used linear models. And finally, more information can be distilled from the
decision models using the established framework of this study.

Rabin Neslo
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Samenvatting

Discrete Beslissingen en Model Validatie met behulp van Stochastische In-
verse

Het onderzoeksgebied discrete choice houdt zich bezig met de keuzes van be-
langhebbenden. De aanname die meestal wordt gebruikt in discrete choice is dat
er een kansverdeling over the nutswaarden van de keuzen kan worden afgeleid
naar aanleiding van een kansverdeling over de preferenties van de belanghebben-
den. Ondanks een breed scala aan literatuur betreffende beslismodellen en hun
toepassingen, wordt er weinig aandacht besteedt aan het valideren van deze
beslismodellen. Validatie heeft als doel het bevorderen van transparantie en de
mogelijkheid voorspellingen te kunnen aan de hand van het model.

In dit onderzoek wordt als eerst een wiskundig kader opgesteld voor beslissin-
gen die gebruik maken van groepspreferenties. Dit kader formuleert beslismod-
ellen aan de hand van groepspreferenties als een stochastisch inverse probleem.
De voordelen die hieruit volgen bieden de mogelijkheid om preferenties beter tot
uiting te brengen in de beslismodellen, maar nog belangrijker : het biedt een
mogelijkheid voor validatie.

Het eerste deel van het proefschrift richt zijn aandacht op de aannames op het
gebied van discrete keuze en introduceert het concept van validatie. Een van deze
aannames is de zogenaamde Onafhankelijkheid van irrelevante alternatieven para-
dox die aan bod komt in hoofdstuk 2 van het proefschrift. In hoofdstuk 3 wordt
het probleem van discrete keuze geformuleerd als een optimalisatie probleem.
De optimale kansverdeling over de nutswaarden blijkt niet in alle gevallen on-
afhankelijk zoals meestal wordt verondersteld. Verder volgt ook dat wanneer het
aantal keuzen toeneemt conventionele oplossings technieken moeilijk een oploss-
ing kunnen vinden, maar dat een oplossing nog steeds kan worden verkregen met
behulp van Stochastische Inverse.
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In het tweede deel wordt de theorie toegepast in drie studies en valideert
de modellen die in elk van de studies worden gebruikt. De eerste toepassing in
hoofdstuk 4 betreft de toewijzing van budgetten voor ecosysteem behoud in het
Californische kustgebied. De criteria die zijn gebruikt in dit model beoogde de
kwetsbaarheden van de ecosystemen vast te leggen. Gewichten voortvloeid uit
het model worden gebruikt om de kwetsbaarheden van de resterende ecosyste-
men te bepalen.

De tweede toepassing is gegeven in hoofdstuk 5. Het idee van het modelleren
van de gezondheid toestanden als een willekeurige gebruiksmodel met een on-
derliggende fysieke eigenschappen is niet nieuw. Overwegende worden in dit
soort type studies getracht om waarderingen van criteria (criteria gewichten) te
bepalen, deze studie richtte zich op het verbeteren van een bestaand model EQ-
5D + C. Het idee is dat het toelaten van belanghebbenden hun keuzepatronen in
het model zal leiden tot meer transparantie en verdedigbaar de beoordeling van
het model.

De meest recente en laatste toepassing wordt gegeven in hoofdstuk 6. Onze
technieken voor worden toegepast om een basis screening model voor de vei-
ligheid van nano-gemodificeerde voedingsproducten te vinden. Hoewel de vo-
ordelen van het gebruik van nano-deeltjes in voedingsproducten duidelijk is,
bijvorbeeld het gebruik van minder hoeveelheden, moeten de risico’s nog wor-
den bepaald. Het doen van toepassingsgerichte studies is niet mogelijk, om-
dat er weinig tot geen gegevens beschikbaar zijn over de veiligheid van nano-
gemodificeerde voedingsproducten. Met expertise van belanghebben en stochas-
tiche inverse kunnen we de kennis omtrent de veiligheid van deze producten
vastleggen en kunnen de voorkeuren worden gebruikt om een screening model
gebaseerd op 10 criteria te bepalen.

Er zijn een aantal belangrijke resultaten uit dit onderzoek en de toepassingen
naar voren gekomen. Ten eerste is validatie mogelijk voor beslismodellen die
gebruik maken van groep preferenties. Ten tweede zijn er ook andere vormen
van beslismodellen mogelijk met het opgezette kader dan de zo vaak gebruikte
lineaire modellen. En ten slotte kan meer informatie worden gedestilleerd uit de
beslismodellen die gebruik maken van het opgezette kader van dit onderzoek.

Rabin Neslo
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