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ABSTRACT:  
 
 
Setting action levels or limits for health protection is complicated by 
uncertainty in the dose-response relation across a range of hazards and 
exposures. To address this issue, we consider the classic newsboy problem. 
The principles used to manage uncertainty for that case are applied to two 
stylized exposure examples, one for high dose and high dose-rate radiation 
and the other for ammonia. Both incorporate expert judgment on uncertainty 
quantification in the dose-response relationship. The mathematical technique 
of probabilistic inversion also plays a key role. We propose a coupled 
approach, whereby scientists quantify the dose-response uncertainty using 
techniques such as structured expert judgment with performance weights and 
probabilistic inversion, and stakeholders quantify associated loss rates. 
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1.  INTRODUCTION 
 
 Setting action levels or exposure guides for hazardous substances involves balancing and 
distributing risks and benefits. Policy makers and regulators wish to make such decisions in a 
rational and fair manner. However, current science tells us that the relation between the dose of a 
hazardous substance and the adverse response is uncertain, sometimes very uncertain. Any 
choice the regulator makes can be perceived as favorable to the interests of some stakeholders 
and hostile to the interests of others, and any choice will be open to accusations of bias and 
favoritism. Existing tools can be applied to better define exposure limits in the face of large 
uncertainties, in a transparent and defensible manner, toward the goal of overall health 
protection.  
 Some believe uncertainty is not relevant to regulation because decisions will be taken on the 
basis of a “best estimate" without regard for underlying uncertainties. Others attempt to account 
for uncertainty by downwardly adjusting an empirically derived best estimate using deterministic 
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factors with a simple narrative. Standard toxicity values used to convert exposures to estimated 
cancer risks, or indices of non-cancer effects, have traditionally applied default factors of 10 or 3. 
These “uncertainty factors” are designed to address uncertainties in interspecies extrapolation, 
human variability, database deficiencies (such as lack of reproductive and developmental toxicity 
studies), and use of a lowest observed adverse effect level (LOAEL) rather than a no observed 
adverse effect level (NOAEL). Neither approach enjoys a firm scientific basis.  
 Decision theorists, on the other hand, have long had the tools to appropriately account for 
uncertainty. These tools can be applied to the development of exposure limits or action levels for 
environmental contaminants. Although the process has been illustrated in a number of other 
applications, for example, to guide water management in the Netherlands(1), these tools have not 
yet found their way into mainstream decision making for hazardous substances.   
 A simple example can help frame the issue of managing risk with uncertainty in the dose-
response relation. You have a headache, and you have a box of pills. Instead of prescribing how 
many pills you should take, the box gives a probability distribution over the number of pills 
needed to cure a headache. How many pills do you take? The answer depends on the 
consequences of taking too many or too few. If one pill too many causes severe nausea but too 
few means you suffer a bit longer, you would choose a smaller number to be relatively certain of 
not becoming nauseous. However, if too many has no adverse affect other than wasting pills, but 
one pill shy has no positive effect, then you would likely choose a relatively high number. In 
deciding how many to take, you must balance the regret of taking too few with the regret of 
taking too many.  The same applies when regulating under uncertainty.  Greater or lesser 
uncertainty should guide the way risk is regulated to support overall public protection.  
 The principle for managing under uncertainty is elegantly captured by the classic newsboy 
problem in operations research. To demonstrate how the concept applies to exposure guides, this 
paper considers two examples, one for radiation and the other for an acute chemical exposure. 
The method requires from scientists the quantification of uncertainty in dose-response models, 
and from stakeholders the quantification of loss rate ratios.  Mathematical techniques such as 
probabilistic inversion and iterative proportional fitting are also valuable for better quantifying 
dose-response uncertainty to support health-based exposure limits and action levels.  Methods 
for quantifying loss rate ratios and dose-response uncertainty are available in the literature, and it 
is not the purpose of this paper to make specific recommendations in this regard. Rather, the goal 
is a proof of concept for using such quantifications to regulate under uncertainty.   
 
 
2.  THE NEWSBOY PROBLEM 
 
 A newsboy buys newspapers at the beginning of each day. If he buys more than he can sell in 
the day, he must dump the leftovers at a loss. If he buys fewer than he can sell, he loses profit. 
How many should he buy?  To formulate this problem mathematically, let X be the number of 
newspapers that could be sold, with the cumulative distribution function F: 
 

F(r) = PROB(X ≤ r)  (1) 
 
 The newsboy must adopt a value, xo, for decision making. Suppose the costs of under- and 
over-estimating X can be characterized as:    
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Loss rate if realization is too low:  If xo > X,  pay  L × (xo - X) 
Loss rate if realization is too high:  If xo < X,  pay  H × (X – xo) 

 
The newsboy's expected loss if he orders xo papers is:  
 

E(L (X,x o)) = H ∫ X > xo (X – xo) dX + L ∫ X < xo (xo – X) dX (2) 
 
Setting the derivative of (2) with respect to xo equal to zero, the value that minimizes his 
expected loss is found to be: 
 

xo = F-1(H/(H+L)) (3) 
 
which depends only on the ratio of H and L. Thus, if the loss rate for too-high realizations is 
much greater than the loss rate for too-low realizations, then H / (H + L) is close to 1 and our 
estimate would be a very high percentile of the distribution for X.   (Note it is not necessary that 
the loss rates be constant. The technique applies to any loss function; however, the solution (3) 
would become more complicated if the loss rates are not constant.)   
 To determine the cumulative distribution function F, the newsboy can use historical data, if 
available. Otherwise, he relies on experts to assess this, according to protocols widely in use. The 
loss rates he must assess himself, since he is the one who suffers the losses. Suppose he buys 
each paper for $0.50 and sells it for $1.00, but dumps any unsold paper for $0.40. If the newsboy 
follows a narrow economic reasoning, his loss rate ratio would be 50 / (50 + 10) = 0.833. One 
missed sale would be just as painful as 5 dumped newspapers. He might also reflect that each 
missed sale is also a disgruntled customer who might defect to the competition.  Taking these 
strategic factors into account, suppose he eventually decides that 10 missed sales is equivalent to 
75 dumped newspapers. He then solves H × 10 = L × 75 to find the ratio of H/L (see Fig. 1). The 
number xo that minimizes expected loss is the H/(H+L) = 88.2 percentile of his uncertainty 
distribution for how many papers could be sold.   
 
 To illustrate with some numbers, if the amount of sellable newspapers is normally distributed 
with mean 1,000 and standard deviation 200, the newsboy should order 1,237. However; if the 
standard deviation is not 200 but 400, he should order 1,475. Note that the expected number of 
sellable newspapers is the same in both cases, only the uncertainty changes.  
 The difference in price between the initial outlay for the expected number of sellable papers 
(1,000) and the optimal order quantity (1,475) may be called the first uncertainty premium. It is a 
price which the newsboy should pay initially to minimize his expected loss. A second 
uncertainty premium is discussed below. 
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Fig. 1. Loss ratios for newsboy: H × 10 = L × 75.    

Uncertainty for number that could be sold 

 
 
 An article in the Harvard Business Review illustrates how a savvy newsboy can improve his 
bottom line (Fisher et al.(2)).  The authors remark: 
     

The real problem, though, is that most companies do a poor job of incorporating 
demand uncertainty into their production-planning process. They are aware of 
demand uncertainty when they create a forecast – witness the widespread 
reliance on safety stocks – but they design their planning processes as if that 
initial forecast truly represented reality. They do this for two reasons. First, it’s 
complicated to factor multiple demand scenarios into their planning, most 
companies simply don't know how to do it. Second, the dramatic increase in 
demand unpredictability is fairly recent, so most companies haven't yet changed 
their planning systems to adapt to it. 

 
The authors further report that correctly factoring uncertainty into the planning process resulted 
in a 67% increase in profits for their sportswear company.  
 A variation on this problem to be used in illustrating the concept here is as follows. Suppose 
we have expressed risk R(c,Z) as a function of an exposure value c and a random variable Z, 
where R is monotonically increasing in c. Suppose that a level r has been set, and that expected 
loss is given by the bilinear function: 
 
 E(L(R(c,Z))) = H ∫ R(c,Z)>r (R(c,Z) – r) dZ + L ∫ R(c,Z)<r (r - R(c,Z)) dZ. 
 
Our problem is to choose c to minimize this expression. Differentiating with respect to c, the 
solution is a value c* satisfying: 
 

Order quantity, xo 

X= 10 

Bilinear loss 
function 

Y = 75 

Minimize expected loss: xo = F-1( Y / (Y+X) ); F is the cumulative distribution function 
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                                                        H  
 FR(c*)(r) = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯        ,         (3.a)           
                   H  + L(E(∂cR(c*) | R(c*) < r) /  E(∂cR(c*) | R(c*) > r)) 
 
 
where FR(c*) is the cumulative distribution function of the risk when the exposure c* is realized. 
The term 
 
 E(∂cR(c*) | R(c*) < r) 
 ⎯⎯⎯⎯⎯⎯⎯⎯ 
 E(∂cR(c*) | R(c*) > r) 
 
measures the non-linearity in risk, relative to r, as a function of exposure. It is approximately 
unity if R(c,Z) is approximately linear in the neighborhood of c*. In this case (3.a) and (3) 
coincide, and we choose the value c* which makes the pre-determined value r the newsboy 
solution. This approximation is used in the examples of Section 3. The difference in initial outlay 
between (3.a) and (3) may be called the second uncertainty premium.  Limited experience to date 
suggests that the first uncertainty premium is generally larger than the second. 
 
 
3.  FOUR-STEP APPROACH AND EXAMPLES  
 
 In applying the newsboy concept to support the development of exposure guides,  
governmental agencies tasked with protecting public health do not measure their success by 
bottom-line profits.  Nevertheless, they face similar problems in dealing with uncertainty, 
namely: uncertainty in the effects of regulatory decisions and unfamiliarity with planning under 
uncertainty. We suggest a four-step newsboy-based framework for determining an action level or 
exposure limit when the dose-response relationship is uncertain: 

1. Decide what you would do if you knew the dose-response relation with certainty. (For 
example, you would regulate at a maximum allowable risk level and find the dose 
corresponding to that risk.) 

2. Quantify the uncertainty in the dose-response relation.  

3. Determine your loss rates for too-high and too-low realizations.  

4. Choose the quantile of the dose distribution that minimizes expected loss. 

These steps are illustrated with two fictive but realistic examples. The first addresses low-
linear energy transfer (LET) radiation, for which the dose-response relation has been assumed to 
take a very simple form. The second addresses acute exposure to a chemical, for which 
sophisticated mathematical techniques are indicated for Step 2. Mathematical approaches are 
outlined following the example for this chemical. 
 
3.1.  Lifetime Cancer Risk from High Dose, High Dose-Rate, Low-LET Radiation 

 
In situations like space travel and nuclear disasters, individuals can be exposed to high 

doses of low-LET radiation (e.g., gamma rays) at a high dose rate. Table I shows the estimated 

 5



Appearing in Risk Analysis,  vol.28 no.1, 2008 

lifetime cancer mortality per 100 people from an acute exposure of 1 Gray (Gy) as absorbed dose 
(or 100 rad), or 1 sievert (Sv) as equivalent dose (or 100 rem), for various cancer sites. Values in 
the first two columns come from the joint European Union-U.S. Nuclear Regulatory Commission 
(EU-NRC) expert judgment study for accidents at nuclear power plants;(3) confidence bounds are 
given in the third column. The next five columns reflect best estimates from other studies, 
including the Biological Effects of Ionizing Radiation (BEIR) V report.(4)   

 
 

Estimated Radiation Exposure-Induced Deaths (REID) from Cancer, per 100 
Cancer 

Site 
EU-NRC Expert Judgment 

Median, 90% Confidence Bound

BEIR 

V 

BEIR 

VII 
ICRP 60 UNSCEAR COSYMA 

Bone 0.035 <0.001, 0.88 - - - - 0.01 

Colon 0.98 0.011, 3.35 - 0.61 3.24 0.6 2.24 

Breast 0.78 0.11, 3.78 0.35 0.37 0.97 0.6 0.80 

Leukemia 0.91 0.026, 2.33 0.95 0.61 0.95 1.0 0.52 

Liver 0.086 <0.001, 2.02 - 0.16 - 0.9 - 

Lung 2.76 0.59, 8.77 1.7 2.10 2.92 2.1 0.90 

Pancreas 0.17 <0.001, 1.26 - - - - - 

Skin 0.039 <0.001, 0.37 - - 0.03 - 0.01 

Stomach 0.30 <0.001, 4.01 - 0.22 0.51 1.2 - 

Thyroid 0.059 0.001, 0.71 - - - - 0.17 

Other/solid 2.60 <0.001, 10.8 2.6 1.3/5.1 - - - 

All cancers 10.2 3.47,  28.5 7.9 see note 12.05 9 5.02 

 

Table I.  Comparison of elicited high dose and high dose-rate lifetime low-LET radiation exposure-
induced deaths (REID) from cancer at various sites for a general EU/U.S. population with those derived 
from other sources (10-2Gy-1).(3)  BEIR V and VII calculate excess deaths for the extant (current) 
U.S. population and account for competing risks.(4,8) Values for ICRP 60(9) are as extracted in 
UNSCEAR.(10)  The UNSCEAR REID reflects the extant Japanese population of both genders and all 
ages, using an attained-age model); the COSYMA REID is taken from Ehrhardt et al.(11). The BEIR V and 
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VII values represent the average for males and females per the committee’s preferred models.  For breast 
cancer, values reflect half the estimates for females (as estimates per total population). “Other/solid” 
addresses additional sites or groups not captured by the preceding categories (further values exist but for 
other systems, e.g., respiratory); the BEIR V value is as summarized in BEIR VII; for BEIR VII, 1.3 is for 
other cancers and 5.1 is for solid cancers; to approach a total, these can be added with the leukemia value 
(summing to just above 7).     

 
 Recent analyses acknowledge limitations in current uncertainty characterization for 
radiological risk estimators.(5) The quantification underlying values in Table I column 3 
represents perhaps the best effort to date to capture the scientific uncertainty in this area. Note 
that the spread of best estimates is much narrower than the 90% central confidence intervals 
from the structured expert judgment study. The spread of best estimates is not intended to (and 
indeed does not) characterize the uncertainty in cancer induction rates. From the EU-USNRC 
study data summarized in this table, the high dose, high dose rate, all-cancer mortality risk to an 
exposed individual has an uncertainty distribution that is adequately described as log normal 
with median 0.102, mean 0.126 and error factor 2.94. The four-step newsboy approach is applied 
as follows: 
 

Step 1: What would we do if the dose-response relation were known with certainty? 
 
 Suppose it is decided that under the circumstances for which a given regulatory policy rule is 
being designed, the maximum allowable additional lifetime risk of radiation exposure-induced 
death (REID) is 0.05. This target is the result of a deliberation falling outside the purview of this 
study. (For comparison, it represents about 5 times the U.S. average risk estimated from natural 
background radiation(6) or about 2.5 times the general U.S. background rate including medical 
exposures, reflecting recent increases in the use of computed tomography [CT] scans(7)).  For this 
example deliberation, presumably the losses of higher exposure limits in terms of risks to 
exposed individuals are balanced against the losses implied by the inability to accomplish the 
mission for the sake of which the risks are assessed. 
 
 Step 2: Quantify the dose-response uncertainty. 
 
 For high doses (the region considered here), the probability of death is assumed to be linear 
with dose.(8) The response in lifetime probability of REID at dose q [Gy/min] can be expressed 
with the simple formula: 
 
 Life_Prob_REID(q)  = R(q) = Z × q (4)  
 
where Z is a random variable. Based on the EU-USNRC data summarized in Table I for all 
cancers, Z can be approximated as a log normal variable with median 0.102 and error factor 2.94.  
 

Step 3: Determine losses for too-high and too-low realizations. 
 
 For simplicity, we assume that our loss is expressed as a bilinear function of the risk 
difference between the realized and target risk. In aiming to regulate at a dose, the risk will be 
uncertain. If the risk turns out to be lower than the target of 0.05 (i.e., we are more conservative 
than intended), then we suffer loss in terms of mission impairment at rate L. If the risk turns out 
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to be higher than the target, then we subject those exposed to a greater risk, with loss rate H. We 
do not need to assess these losses: here, it is sufficient to determine, say, that the loss of realizing 
a risk of 0.01 is just as bad as the additional loss of realizing a risk of 0.06; then H/(H+L) = 0.8. 
Whereas the newsboy’s economic problem was quite simple, deriving loss rates from economic 
costs and benefits in a real situation would surely be difficult and fraught with uncertainty.  
Stakeholder preferences could also be elicited with tools economists have developed for this 
purpose; contingent valuation, willingness to pay, discrete choice, etc. Alternatively, the 
regulator may receive a default loss rate ratio from higher hand to be used if resources for case-
specific loss rate quantification are not available.  Our point is not to mandate how loss rate 
quantification should be done, but to indicate how it should be used, and to indicate which 
problem is whose.”  
 
 

Step 4: Choose the quantile of the dose distribution that minimizes expected loss. 
 

 From the preceding information, the expected loss can now be written just as in (2). 
 

E(L (R,q)) = H ∫ R > 0.05 (R – 0.05) dR + L ∫ R<0.05 (0.05 – R) dR  (5) 
  

= H ∫ Zq > 0.05 (Zq – 0.05) dZ + L ∫ Zq < 0.05 (0.05 – Zq) dZ 
 

= Hq ∫ Z > 0.05/q(Z – 0.05/q)  dZ + Lq ∫ Z < 0.05/q  (0.05/q – Z) dZ. 
 
From (3), the solution is the value q such that P{R < 0.05} = P{Z < 0.05/q} = H/(H+L) = 0.8. 
The 80th percentile Z is 0.181, so 0.05/q = 0.181 yields q = 0.28.  This dose is smaller than we 
would obtain using the median (R(q) = 0.102×q; 0.05/0.102 = 0.49) or mean (R(q) = 0.126 × q; 
0.05/0.126 = 0.40) as best estimate.  Had we used (3.a) without the linear approximation, we 
would have found the expected loss minimized at dose 0.2 Gy/min instead of 0.28 Gy/min. 
 An equivalent formulation is: P{Z < 0.05/q} = P{q < 0.05/Z} = 0.8.  From (4) we recognize 
0.05/Z as the random variable whose distribution is the distribution of the dose when the risk 
level of 0.05 is stipulated. The value q that satisfies this equation is the 20th percentile of the 
distribution of the dose realizing risk 0.05. Fig. 2 shows densities for doses realizing risk levels 
from 0.01 to 0.1, while Fig. 3 presents the cumulative distribution of the dose at a risk of 0.05. 
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Dose realizing risk 0.01

Dose realizing risk 0.1

Dose realizing risk 0.05

Dose realizing risk 0.02

Fig. 2. Densities for dose (Gy/min) realizing risk levels of 0.01 to 0.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Cumulative distribution function for the dose for R = 0.05; the 20th percentile is 0.28. 
 
  
3.2.  Acute Mortality Risk from Ammonia  
 
 This second example addresses the problem of setting an acute exposure level for the 
hazardous chemical ammonia. The same four steps are followed as above, but in this case the 
dose-response is not represented by a simple linear relation. The form of the relation is stipulated 
by tradition, but the parameters are uncertain. Uncertainty in the dose-response relation can be 
quantified via a joint distribution over these parameters. 
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Step 1: What would we do if the dose-response relation were known with certainty? 

 
 Suppose our regulatory policy rule is:  The maximum allowable concentration is such that the 
probability of death within 24 hours due to a 60-minute exposure is 10-5.  (For context, 10-4 is the 
upper level of the U.S. Environmental Protection Agency (EPA) target range for incremental 
lifetime risk from contaminated sites, above which action is typically considered, while 10-6 
represents the lower level or point of departure.(12)   With the U.S. average lifetime cancer risk 
from natural radiation alone estimated at 10-2, the target increment of 10-4 to 10-6 means cancer 
risk is being managed to a low fraction of natural background.) 
 If we knew the dose-response relation for ammonia with certainty, we would simply compute 
the parts per million (ppm) that implemented the regulatory rule.  The Dutch government, for 
example, stipulated a dose-response relation for ammonia under the above conditions as the 
probit function:   
 
 Φ-1(r) + 5 =  A + B × ln(Cn × t)  =  -9.35 + 0.71 × ln(C2 × t) (6) 
 
whereΦ is the standard normal cumulative distribution function, r is the probability of death, C is 
the concentration in ppm, and t is the exposure time in minutes.(13,14,15)  (See Finney(16) for the 
basis of why dose-response functions are often expressed in this form.) 
 Ten published probit relations as applied to acute ammonia exposure are collected in 
Table II. The values that realize risk levels of 10-5, 10-4, 10-2, and 10-1 are shown in the four right 
columns. The NOAEL identified in the EPA Integrated Risk Information System (IRIS) database 
as the point of departure for the inhalation reference concentration is 9.2 ppm (reflecting 
repeated daily exposures;(17) no dose-response relation is given).  Note that the spread of 
concentrations in Table II at a risk level of 10-5 intersects the spread for the 10-1 risk level. 
 
 

Ammonia Probit 

Parameters 

Fatal Concentration (ppm)  

from a 60-Min Exposure in 1 Day Source 

A B n 0.00001 0.0001 0.01 0.1 

Lees(18) -9.82 0.71 2 218 321 855 1784 

Goossens et al.(15)  -35.02 2.01 2 941 1078 1525 1977 

CCPS(19) -35.9 1.85 2 2576 2986 4351 5770 

TNO(20) -16.5 1 2 714 938 1881 3171 

Canvey Island(21) -46.95 2.205 2.75 587 642 808 960 
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IchE(22) -16.14 1 2 596 783 1572 2649 

Purple Book(23)  -14.92 1 2 324 426 854 1439 

Perry and Articola(24) -28.33 2.27 1.36 630 753 1185 1665 

Green Book(25) -15.12 1 2 358 471 944 1591 

Rijnmond(26) -30.57 1.385 2.5 1642 1923 2874 3885 

 

Table II.  Probit values for acute exposure to ammonia: Φ-1(r) + 5 = A + B × ln(Cn × t), where Φ is the 
standard normal cumulative distribution function, r is the probability of death, C is the concentration in 
ppm, and t is the exposure time in minutes (min).   
 

Step 2: Quantify the dose-response uncertainty 
 
 Evidently the dose-response relation is not known with certainty. When experts are asked 
What concentration over 60 minutes would lead to death for 10% (or 50%, or 90%) of the 
exposed reference population within 24 hours?, they are not certain of the answer. Table III 
presents the median assessments and the 5% to 95% confidence range from a structured expert 
judgment study conducted in the Netherlands.(15)  The performance-based weighted 
combinations of the experts’ judgments are shown; the equal-weight combinations gave 
substantially wider distributions. 
 

 

Table III. Percentiles for ammonia 
concentration (ppm) causing death within 
24 hours in given percentages of the reference 
population, from a 60-minute exposure.(15) 
 

 
To capture this uncertainty in a tractable 
form, the probit equation is written with 
unknown constants A and B (the exponent 
of the concentration C could also be 

regarded as unknown, but that component is not considered here): 

Percentiles of concentration 

(ppm) producing effect 
Percent of reference 

population affected 
5% 50% 95% 

10% 2295 2700 3105 

50% 3213 4158 4782 

90% 4208 4950 5693 

 
 Φ-1(r) + 5 = A + B × ln(C2 × t) (7) 
 
Now the question is: Which joint distribution over the unknowns (A,B) would reproduce the 
probabilities in Table III when we substitute r = 0.10, r = 0.50, and r = 0.90 in Equation (7)? This 
is called a probabilistic inversion problem. Techniques for finding an optimal distribution given 
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a starting distribution are briefly summarized in Section 3.3. Any number of different 
mathematical models could have been used, but tradition here favors the probit model.  Solving 
(7) for C, we obtain 
 
 [exp((Φ-1(r) + 5 – A)/B)]0.5 

──────────────  = C(r). (8) 

               t 0.5 

 
Sampling from the distribution over (A,B), we find the uncertainty distributions on the C(r) 
values realizing various given risk levels. These are shown in Table IV. 

 

Table IV. Uncertainties in ppm values realizing given risk 
levels, from the structured expert judgment study in 
Goossens et al.(13, 15). The reference population was a 
“general population of a typical industrialized and 
developed nation like the Netherlands” with an assumed 
breathing rate of 15 m3/day (appropriately transformed for 
children), 20% of the population under 10 yrs or over 
70 yrs, and 5% having illness. 
 
To provide context for the numbers in Table IV, the 
National Academies’(27)  acute exposure guideline 
level (AEGL)-3 is “the airborne concentration above 

which it is predicted that the general population (including sensitive individuals) could 
experience life-threatening effects or death”.  The current AEGL-3 value for 60-minute exposure 
to ammonia (derived by probit analysis) is 1,100 ppm. The expert judgment study gave 5%. 50% 
and 95% values for Emergency Response Planning Guidelines (ERPGs) ‘above which there 
would be an unacceptable likelihood of observing life-threatening health effects’ of 500, 1000, 
and 1500 ppm (Goossens et al(13)).  These numbers are consistent with the experts’ assessments 
in Table IV, which give a 5% chance that the concentration value imposing a risk of 10-5 of death 
within 24 hours following a 60 minute exposure is below 963ppm. 

Percentiles 
Risk Level 

5% 50% 95% 

0.00001 963 1550 1640 

0.01 1740 2220 2430 

0.1 2360 2820 3090 

 
Step 3: Determine losses for too-high and too-low realizations. 

 
 For this step, the same approach is applied as in the radiation example. Risk is written as a 
function of concentration C, remembering that this depends on the random vector (A,B) as well: 
 
 R(C) = Φ(A – 5 + B × ln(C2 × 60)). (9) 
 
 E(L (R(C))) = H ∫ R(C) > 0.00001 (R – 10-5) dR + L ∫ R(C)<0.00001 (10-5 – R) dR. (10) 

  
We assume as before that the loss rate ratios satisfy H/(H+L) = 0.8. 
 

Step 4: Choose the quantile of the dose distribution that minimizes expected loss. 
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We solve as before, this time for concentration, by substituting from (9): 
 
 0.8 = P{Φ(A – 5 + B × ln(C2 × 60)) ≤ 10-5} = P{A + B × ln(C2 × 60) ≤  0.735}. (11) 
 
Unlike the radiation example, we cannot solve this equation by finding a quantile of a random 
variable. Rather, we must sample the distribution for (A,B) for different values of C until we find 
one for which (11) holds. The solution is C = 1,236 ppm.  Had we used (3.a) without the linear 
approximation, we would have found the expected loss minimized at dose 1,217 ppm instead of 
1,236 ppm. 

This solution strategy, although valid, is rather clunky. Using (8), we apply the same trick we 
used in the first example; namely, the concentration that makes 10-5 the 80th percentile of the risk 
distribution is the 20th percentile of the concentration distribution realizing a risk of 10-5: 
 
 0.8 = P{Φ(A – 5 + B × ln(C2 × 60)) ≤ 10-5} ⇔  (12) 
 

0.2 = P{exp[(Φ-1(10-5) + 5 – A)/B)]0.5/ t0.5]  ≤ C}.                
 
Fig. 4 shows the cumulative distribution function of the dose corresponding to a 10-5 risk, with 
the 20th percentile indicated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Cumulative distribution of the ammonia exposure level in ppm for the risk level of 10-5; the 
20th percentile is about 1,240 ppm. 
 
 
3.3.  Finding a Distribution over the Dose-Response Relation with Probabilistic Inversion 
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 Finding a distribution over (A,B) for situations like ammonia in the example is actually a 
rather simple problem of probabilistic inversion. Techniques developed at the Delft University of 
Technology have been applied many times for similar cases.(28) In fact, the first problem of this 
kind involved obtaining distributions of coefficients in dose-response relations similar to those 
described above.(15)  
 The process involves the following elements.  Experts are asked to state selected percentiles 
(e.g., their 5, 50, and 95 percentiles) for a given exposure (in appropriate units) that would cause 
responses r1, r2,…rn in a reference population. These expert assessments are combined into one 
set of percentile assessments, as in Table III. Consider then the problem of finding a joint 
distribution on (A,B) which, when applied in (8), optimally reproduces the experts’ probabilities. 
In the ammonia example, the experts’ percentiles are given in Table III. The problem can be 
solved with a simple re-weighting Monte Carlo technique. The idea is as follows. 
  First:  

(a) Choose a wide distribution for A and B encompassing all plausible values.   

Then: 

(b) Sample this distribution a large number of times. 

(c) For each sample, i.e., each combination of A and B values, compute (8), but with the 
responses r1,…rn. 

(d) Now re-weight these samples such that the weighted Monte Carlo sample complies 
with the experts’ quantile specifications. 

The joint distribution of A and B in this re-weighted distribution is a probabilistic inverse of the 
experts’ distributions through the model (8). 
 A well-known statistical algorithm called iterative proportional fitting (IPF) can be used to 
find the weights for re-weighting the original sample. If this algorithm converges, then it 
converges to the distribution over (A,B), satisfying the constraints, which is minimally 
informative given the starting distribution.(29) If IPF does not converge, then a recently 
discovered variation on this technique can be used for which the stationary points are solutions, 
if solutions exist, and which minimizes an entropy-based measure of fit.(28,30) The latter reference 
contains many examples and applications of probabilistic inversion. 
 
4.  CONCLUSIONS 
 
 A decision theoretic framework for deciding under uncertainty does not solve problems. 
Instead, it clarifies the elements required for a solution, and it suggests roles well-suited for 
different players. To set action levels or exposure limits under uncertainty, we must first decide 
what levels we would choose or limits we would set without uncertainty. This is not an easy 
problem, but it is a different problem from deciding under uncertainty. Confusing these two 
problems is perhaps the biggest obstacle to dealing with uncertainty. The key to overcoming this 
lies in defining the target risk level at which we aim, then applying systematic techniques to 
address the uncertainty in the underlying dose-response relation.   
 The type of uncertainty that is quantified when toxicological information is limited or 
unknown is typically that of knowledgeable experts. Several different expert judgment methods 
have been applied and have passed muster in peer review. The current state of the art is that a 
number of methods are accepted, but none has emerged as a universal standard. Assessing loss 
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rates among stakeholders has not yet been conducted in the context of regulating under 
uncertainty as described here. However, many approaches could be applied to this task, including 
contingent valuation, willingness to pay, and consumer preference theory.  Research could 
profitably target this area. 
 In short, we know how to quantify uncertainty, and considerable experience exists in this 
arena. We also know how to quantify losses and loss rates, and again considerable experience 
exists, although not in the particular area of dose-response for exposure guides. Finally, we know 
how to use these elements in a transparent and rational process of decision making under 
uncertainty. Given the importance of a transparent, systematic characterization of uncertainty to 
support exposure guides for health protection, the only remaining question is:  why aren't we 
doing it? 
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