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Chapter 1

Introduction

1.1 Cancer

Cancer develops when cells in a part of the body begin to grow out of control.
Although there are many kinds of cancer (over 200 types), they all start
because of out-of-control growth of abnormal cells, which results in serious
health problems: at the moment, cancer is the leading cause of death among
Americans under the age of 85. To get an idea, one in three people will
develop cancer, and one in four will actually die of cancer.

Malignant tumors (figure 1.1) are collections of those cancerous cells that
are growing faster or dividing faster than the normal cells around them.

The three modalities currently used for the treatment of cancer are surgery,
chemotherapy and radiation therapy.

1.2 Radiation therapy

It is estimated that more than 50% of cancer patients will receive radiation
therapy at some point during their treatment. Radiation therapy (also called
radiotherapy, x-ray therapy, or irradiation) specifically acts against cells that
are reproducing rapidly. Normal cells are programmed to stop dividing (re-
producing) when they come into contact with other cells. In the case of a
tumor, this stop mechanism is missing, causing cells to continue to divide
over and over. It is the DNA of the cell that makes it capable of reproduc-
ing. Radiation therapy uses a certain type of high energy rays (x-rays or
gamma rays) to damage the DNA of cells, thereby killing the cancer cells,

11



12 Chapter 1. Introduction

Figure 1.1: An enlarged picture of breast cancer cells.

or at least stopping them from reproducing. Radiation also damages normal
cells, but as normal cells grow more slowly, they are better able to repair
this radiation damage than cancer cells. In order to give normal cells time
to heal and to reduce side effects, radiation treatments are typically given in
small daily doses, five days a week, over a six- or seven-week period. Each of
these treatment sessions is called a fraction. A treatment is therefore usually
made of 30 up to 45 fractions.

As a result of new imaging and computer technology, the outcomes for
radiotherapy have steadily improved over the last twenty years.

Radiation therapy is considered to be a “local” therapy, meaning it treats
a specific localized area of the body. This is in contrast to systemic therapies,
such as chemotherapy, which affect the whole body. There are two main
types of radiation therapy: external radiation therapy, where a beam of
radiation is directed from outside the body, and internal radiation therapy,
also called brachytherapy or implant therapy, where a source of radioactivity
is surgically placed inside the body near the tumor.
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Figure 1.2: An Elekta (Philips) Linear Accelerator.

1.3 IMRT

Intensity-modulated radiation therapy (IMRT) is one of the latest and most
advanced techniques of external radiation therapy that uses radiation beams
(usually x-rays). The technology allows for the delivery of higher doses of
radiation within the tumor and lower doses to nearby healthy tissue.

In IMRT, x-ray beams are aimed at a tumor from several (usually three
or five) angles. During treatment, the radiation intensity of each beam is
controlled. As a result, IMRT allows for the delivery of higher doses within
the tumor, while sparing (as much as possible) important healthy tissues in
a way that is impossible with other techniques.

Currently, IMRT is being used to treat cancers of the prostate, head and
neck, breast, thyroid and lung, as well as in gynecologic, liver and brain
tumors, lymphomas and sarcomas. IMRT is also beneficial for treating pe-
diatric malignancies.

Radiotherapy treatment is usually given using a machine called linear
accelerator, or LINAC (figure 1.2).

A medical linear accelerator generates the photons (x-rays) used in IMRT.
The patient lies on the treatment table, while the linear accelerator delivers
beams of radiation to the tumor from various directions. The intensity of each
beam’s radiation dose is dynamically varied according to a treatment plan
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Figure 1.3: A multi-leaf collimator with 54 leaves: this device is used in
radiotherapy for defining the shape of a treatment field. It also allows to
vary the intensities in the field.

by a multi-leaf collimator, also known as an MLC. The multi-leaf collimator
is an apparatus in the head of the treatment machine with thin leaves that
automatically extend or retract to shape the beam (figure 1.3).

1.4 Treatment planning

The goal of radiation therapy treatment planning is to determine the intensity
of the radiation for a certain patient, maximizing the dose to the tumor, while
minimizing the dose to the surrounding healthy tissue.

Medical teams use CT (Computed Tomography, see figure 1.4) and MRI
(Magnetic Resonance Images) scans of the patient, in order to develop a
radiation therapy plan.

These scan images are usually made only once: based on these images
the physicians locate the CTV (Clinical Target Volume, the tumor mass) and
the OARs (Organs At Risk, the healthy tissues to be spared).

In order to account for both internal tumor motion and patient set-up
error, the classical approach to IMRT involves the use of a PTV (Plan-
ning Target Volume): this is achieved placing a planning margin around the
physician-defined CTV. For PTV margins that are in proximity to critical
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Figure 1.4: A computed tomography (CT) scan uses X-rays to make detailed
pictures of structures inside the body. The word “tomography” is derived
from the Greek “tomos” (slice) and “graphia” (describing).
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Figure 1.5: Automatic extraction of the PTV from the delineated CTV by
applying user defined clinical margins. The extracted PTV and CTV are
shown in different colors in the three major planes and in the 3D view.
The margins used in this case are: 10 mm in the lateral and 10 mm in the
cranio-caudal directions but 0 mm (that is, no margin) in the ventro-dorsal
direction.

OARs, somewhat smaller margins are selected a priori in an effort to better
spare the healthy organs, sometimes even at the expense of a lower PTV
dose. Figure 1.5 shows an example of CTV and PTV definition on a real
scan.

The ideal objective is a very high dose in the PTV and no dose outside
the PTV. This is physically not possible. Determining an IMRT plan by
trial and error is also not possible due to the complexity and the degrees of
freedom of the system. Instead of the physicians defining beam directions,
beam energy profile, their margins, etc., and then computing and display-
ing dose distributions to assess whether the treatment plan will lead to an
acceptable outcome (“forward” planning), they do the opposite (“inverse”
planning). They state their clinical objectives mathematically and let the
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Structure Function Prescription Importance
PTV min dose 70 Gy 100
PTV max dose 75 Gy 50

Bladder max dose 60 Gy 80
Bladder max dose-volume 40 Gy in 50% 70

Table 1.1: Example of treatment plan constraints.

IMRT optimization process determine the beam parameters that will lead to
the desired solution.

The physicians usually set the following requirements for a plan:

• Minimum dose for the PTV. This is usually the most important con-
straint: the tumor is required to get a minimum prescribed dose so that
the cancerous cells are killed.

• Maximum dose for the PTV. This constraint is set in order to pre-
vent high radiation peaks in the PTV that may result in unnecessary
damage, such as cells burning and the occurrence of holes.

• Maximum dose for the OARs. These are set in order to spare, as much
as possible, healthy organs located in proximity of the tumor.

• Dose-volume constraints for the OARs, of the form “no more than
a certain percentage of a certain structure may receive more than a
certain dose”.

Doses are measured in grays (abbreviated as Gy). One gray is equal to
an absorbed dose of 1 joule per kilogram of absorber tissue. To give an idea
of the magnitude of prescribed doses in real treatments, minimum doses for
the PTV are often in the order of 60 up to 75 Gy; in comparison, the average
cumulative radiation doses on humans coming from natural, medical, and
occupational sources are estimated to be about 0.002 Gy per year.

For each of the aforementioned constraints, the physicians also set a
weight (or priority) that measures the relative importance given to the con-
straint.

Table 1.1 reports an example of treatment plan constraints.
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Chapter 2

Models

2.1 Forward model

In order to be able to optimize the dose delivered to a patient as a function
of the fluence profile, a discretization of the system has to be performed.
The patient’s body is discretized into m “voxels”. A voxel (a combination
of the words “volume” and “pixel”) is a volume element in a regular grid in
the three-dimensional space. It is analogous to a pixel, which represents 2D
image data. All voxels are grouped into a single m-by-1 (column) vector. To
get an idea, voxels have in some cases size of 0.4
textcm3, and for some treatments m may be in the order of 10,000.

We will work in a two-dimensional geometry1, even if the results can be
easily extended to the three-dimensional case. Suppose for the moment that
only one beam is used in the treatment. The fluence profile of the beam is
also discretized; we will indicate by x the M -by-1 (column) vector expressing
the energy of the M beamlets of the beam.

The dose delivered to each voxel when fluence profile x is used, is indicated
with the m-by-1 (column) vector D(x). It can be shown that this dependence
is linear in the sense that

D(x) = Hx,

where H is a m-by-M matrix. We will not explain in details why this relation
is linear and on how matrix H can be calculated. The interested reader is
referred, as a starting point, to [2]. It is worth mentioning however that H

1Therefore we will consider only one “slice” of the patient; in this case, to be precise,
we should use the term “pixel” rather than “voxel”.

19



20 Chapter 2. Models

Figure 2.1: Depth (left) and off-axis (right) component of the dose hold
structural properties that are somehow lost in the composition (right).

is not explicitly calculated in the algorithm, as we have

H = P · K.

In practice, only P and K are calculated. Matrix P is related to the “depth
dose”, the component of the dose describing the dose decay along the beam
axis; matrix K is, on the other hand, related to the “off-axis dose”, the
component of the dose describing the dose profile perpendicular to the beam
axis. Figure 2.1 illustrates this idea.

The strong structure of each component translates into highly-structured,
sparse matrices P and K: this is the reason why it is (computationally)
convenient to keep these two matrices separate.

In the case of multiple beams (from different angles), matrices P and K

will have a block-structure (one block for each beam direction), but all the
results still apply.

2.2 Sources and models of errors

Measurements of the location of the tumor and OARs are prone to errors.
There are many reasons why errors occur, but they are usually divided into
two categories: random and systematic errors.

2.2.1 Systematic error

A systematic error is any biasing effect in the environment, methods of ob-
servation or instruments used, which introduces errors into an experiment
and is such that it always effects the results of an experiment in the same
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direction. Systematic error may appear, for example, because there is some-
thing wrong with the instrument (CT, LINAC, etc.) or its data handling
system, or because the instrument is wrongly used by the physician. The
so called “set-up error” is the most common systematic error appearing in
IMRT: remember that usually only one CT scan is made at the beginning of
the treatment. If the tumor is “dislocated” for a few centimeters from its real
position, the treatment is misplanned. (The CTV/PTV has to be drawn by
the physician, and the planning is made on the basis of his/her definition.)
Figure 2.2 illustrates the problem.

2.2.2 Random error

Random error on the other hand is an error that does not result from a
measurement method that is inherently wrong, but that occurs due to natural
variation in the process. In our case, random error occurs during each fraction
because, for example, the patient is not always perfectly placed on the table.
Another source of random error are, for example, the breathing movements
of the patient, or the level of filling of his/her bladder: these phenomena
could shift some organs from their “average” position.

2.2.3 Effect of errors

It is intuitive that random errors tends to cancel each other out, while sys-
tematic errors are more difficult to handle. As an example, suppose that the
position of the patient during each fraction is affected (only in one direction,
as a first example) by random and/or systematic error; moreover suppose
that both errors have standard normal distribution. Figure 2.2 displays an
example of the effect of each error, and the combination of the two type of
error.

2.3 Probabilistic model

As mentioned before, the classic approach to take into account the uncer-
tainty in the patient position is to enlarge the area to be irradiated (from
CTV to PTV). This approach, however, does not take into account OARs
location uncertainty, but most importantly it does not take into account the
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Figure 2.2: Top-left: no error. Top-right: systematic error. During each
fraction the error is the same. Bottom-left: random error. During the course
of the treatment, the average of the error tends to be zero, especially if the
number of fractions is high. Bottom-right: combination of systematic and
random error.
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jr or js Direction Shift (in cm) Probability
0 - 0 0.4
1 Left 1 0.2
2 Right 1 0.2
3 Anterior 1 0.1
4 Posterior 1 0.1

Table 2.1: Scenarios (and their probabilities) of body dislocation.

correlated motions of CTV and OARs. Therefore, overlaps between PTV
and OAR may occur, resulting in optimization problems.

The probabilistic approach that we investigate here tries, on the contrary,
to incorporate such correlated uncertainty directly into the optimization. We
follow the work proposed in [1], trying to extend that model in order to take
into account both random and systematic error.

In this approach we discard the definition of PTV: the physician will
therefore set minimum and maximum dose constraints directly for the CTV
rather than for the PTV. The physician is also required to assess the scenarios
of the random/systematic errors that may occur during the treatment. The
number of scenarios is indicated with n, and an example of scenarios are
given in table 2.1. Random scenarios are indexed by jr, while systematic
scenarios by js. Both jr and js take value in {0, . . . , n − 1}, where index 0
refers to the scenario with no dislocation.

If the n scenarios are supposed to independently model both random and
systematic scenarios, then the total number s of scenarios that may occur
during different patient treatments is at most n2. For example, considering
the scenarios given in table 2.1 to be valid both (but separately) for random
and systematic errors, we have s = 13 (< n2 = 25). See figure 2.3 for a
graphical representation of this idea.

2.3.1 A tempting idea

We assume, from now on, that the number of fractions (indicated with N)
is determined in advance by the physicians, and therefore is an input of
the optimization process. Also the number and the angle of the beams are
supposed to be determined in advance. The variable to be optimized is
therefore the (column) vector of beamlet intensities, indicated with x. The
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Random scenarios Systematic scenarios

jr=
0

jr=
1

jr=
2

jr=
3

jr=
4

js=
0

js=
1

js=
2

js=
3

js=
4

Figure 2.3: If the scenarios of table 2.1 model both (independently) random
and systematic errors, the actual scenarios that may occur in the course
of several treatments are the ones given on the right. Note that during
one particular treatment (made of several fractions) not all 13 scenarios can
occur, but only 5 of them (for example, if js = 3, the ones within the dashed
line).

size of x is indicated by M (number of beamlets).

Indicate with a
(i)
js,jr

the 1-by-M (row) vector, indexed by beamlets, giving
the (deterministic) dose delivered to voxel i in systematic-scenario js and

random-scenario jr if the beamlets have unit intensity. Doses a
(i)
js,jr

can be
calculated using the forward model described in section 2.1. Remember that
because of linearity, the dose delivered to voxel i in systematic-scenario js and
random-scenario jr if the beamlets have profile x, would simply be a

(i)
js,jr

x.
At this point one would be tempted to do the following reasoning: if

we want to impose, for example, the constraint “the CTV should receive a
minimum (total) dose of mTmin Gy”, we could impose the following linear
constraints:

a
(i)
js,jr

x ≥ mTmin

N
(js, jr = 0, . . . , n − 1;∀i ∈ CTV). (2.1)

Translating into words: we impose the fraction dose (no matter the system-
atic and random scenario occurring) to exceed one Nth of the minimum total
dose. Doing so, the total dose delivered after N fractions will definitely be
greater than mTmin, as required.

To a closer look, however, these constraints are too restrictive, as this
approach completely discards the information we have about the probabilities
of occurrence of each scenario: we are imposing constraints on the “marginal”
fraction dose rather than on the “joint” total dose.
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Having such constraints could, however, be important from a medical
point of view, since they would introduce some control over the homogeneity
of the delivered doses among fractions. For the moment we will follow another
route in order to model the “minimum/maximum organ dose”, but we will
come back to this idea in section 2.4.3.

2.3.2 Expected value and variance of the fraction dose

Suppose that the systematic error (for one particular treatment) is known,
and therefore that the n (out of the s) scenarios that are likely to occur are
determined. In other words, fix js: looking back at figure 2.3, this means
that we know that we are dealing, for example, with only the five scenarios
within the dashed line.

Now, for each voxel i and for each systematic-scenario js, it is convenient
to build the n-by-M matrix

A
(i)
js

=







a
(i)
js,0
...

a
(i)
js,n−1






.

Indicate with S(l) the random variable that returns the index of the
random-scenario occurring in fraction l (l = 1, . . . , N), according to the
distribution specified by the physician:

S(l) =











0 with probability p0
...

...
n − 1 with probability pn−1.

Indicate2 with Di,l(x) the dose delivered to voxel i during fraction l if
the beamlets have profile x; in our probabilistic formulation (contrary to the
classic static formulation) this is a random variable, and we can write

Di,l(x) = eT
S(l)A

(i)
js

x =











eT
0 A

(i)
js

x with probability p0
...

...

eT
n−1A

(i)
js

x with probability pn−1

(2.2)

2Here we will omit, for better readability, the dependence on js.
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where ek indicates the (k+1)-th standard basis (column) vector of R
n. From

this, it is easy to write an expression for the expected value of this random
variable:

E[Di,l(x)] =
n−1
∑

jr=0

pjr
eT

jr
A

(i)
js

x = pT A
(i)
js

x,

where p is the n-by-1 (column) vector of scenario probabilities (p0, . . . , pn−1)
T .

It is also easy to write an expression for the variance of this dose:

Var[Di,l(x)] = E[(Di,l(x) − E[Di,l(x)])2]

=
n−1
∑

jr=0

pjr
(eT

jr
A

(i)
js

x − pT A
(i)
js

x)2

=
n−1
∑

jr=0

(
√

pjr
(eT

jr
− pT )A

(i)
js

x)2

= ||RA
(i)
js

x||2,

where

R =











√
p0 0 · · · 0

0
√

p1
...

...
. . . 0

0 · · · 0
√

pn−1





















1 − p0 −p1 · · · −pn−1

−p0 1 − p1
...

...
. . . −pn−1

−p0 · · · −pn−2 1 − pn−1











.

2.3.3 Approximation of the distribution of the total dose

Indicate with Di(x) the dose delivered to voxel i during the whole treatment
if the beamlets have profile x. Again, this is a random variable, and we
assume that fraction doses are additive:

Di(x) =
N
∑

l=1

Di,l(x).

The doses Di,l(x) delivered during the various fractions (l = 1, . . . , N)
are assumed to be independent and are identically distributed. Therefore
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the expected value of the total delivered dose is simply3:

E[Di(x)] = E

[

N
∑

l=1

Di,l(x)

]

(2.3)

=
N
∑

l=1

E[Di,l(x)] (2.4)

=
N
∑

l=1

pA
(i)
js

x (2.5)

= NpA
(i)
js

x. (2.6)

For the variance we have4:

Var[Di(x)] = Var

[

N
∑

l=1

Di,l(x)

]

(2.7)

=
N
∑

l=1

Var[Di,l(x)] (2.8)

=
N
∑

l=1

||RA
(i)
js

x||2 (2.9)

= N ||RA
(i)
js

x||2. (2.10)

It is well-known (see figure 2.4 for an example) that the sum of (many)
independent and identically distributed (i.i.d.) random variables approxi-
mates a normal random variable. In our framework, N is in the order of 45,
so this approximation is plausible.

A normal random variable is completely determined given its expected
value and standard deviation. Therefore, using (2.6) and (2.10), we can write

Di(x) ≈ Z(NpA
(i)
js

x,
√

N ||RA
(i)
js

x||), (2.11)

where Z(µ, σ) indicates a normal random variable with mean µ and standard
deviation σ.

3Remember that the expected value operator E[·] is linear in the sense that E[aX +
bY ] = aE[X] + bE[Y ] for any two random variables X and Y (which may or may not be
independent) and any real numbers a and b.

4Here we use the fact that if X and Y are independent random variables, then Var[X +
Y ] = Var[X] + Var[Y ].
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−2 −1 0 1 2

N=1

−3 −2 −1 0 1 2 3

N=2

−4 −2 0 2 4

N=3

−20 −10 0 10 20

N=45

Figure 2.4: The sum of many independent identically distributed random
variables (of finite variance) will tend to be distributed according to a Normal
random variable. As an example, we present the distribution of the sum of 2
(top-right), 3 (bottom-left) and 45 (bottom-right) independent copies of the
random variable with distribution given in the top-left subfigure.
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2.4 Constraint models

2.4.1 Minimum and maximum dose constraints

Suppose that we want to mathematically express: “the CTV should receive
a total minimum dose of mTmin Gy” in our probabilistic framework. A first
idea would be to express this in terms of expected total dose:

E[Di(x)] ≥ mTmin (∀i ∈ CTV).

Using expression( 2.6) this would result in a linear inequality constraint:

NpA
(i)
js

x ≥ mTmin (∀i ∈ CTV).

We can actually do better than this: when dealing with lives, thinking “on
average” is not enough. A treatment plan that is good “on average” is not a
good treatment plan. If we have, for example, E[Di(x)] = mTmin, then half
of the times, that treatment would not deliver enough dose to voxel i.

Remember that we not only have an expression for the expected total
dose, but also an approximation of the distribution of the total dose. There-
fore, by using expression (2.11), we can express the aforementioned constraint
in the following probabilistic terms:

P (Di(x) ≥ mTmin) ≥ δ (∀i ∈ CTV), (2.12)

where δ is a predefined constant, say 0.95, expressing our desired “confi-
dence” in delivering the prescribed dose. Note that because of (2.11), we
approximate (2.12) by

P
(

Z(NpA
(i)
js

x,
√

N ||RA
(i)
js

x||) ≥ mTmin

)

≥ δ (∀i ∈ CTV).

Ideally we would require δ = 1; because of the previous normal approxima-
tion, that would however result in a unfeasible formulation, since any normal
random variable has a strictly positive density throughout the whole R.

Remembering that if Z(µ, σ) is a normal random variable with mean

µ and standard deviation σ, then Z(µ,σ)−µ
σ

is a standard normal random
variable, we can rewrite

P

(

Z(0, 1) ≥
mTmin − NpA

(i)
js

x
√

N ||RA
(i)
js

x||

)

≥ δ (∀i ∈ CTV),



30 Chapter 2. Models

50.0

1.0

51.0

2.0

52.0

3.0

53.0

4.0

543210-1-2-3-4-5

δ

z(δ)

Figure 2.5: Graphical interpretation of z(δ).

which is equivalent to

NpA
(i)
js

x − mTmin√
N ||RA

(i)
js

x||
≥ z(δ) (∀i ∈ CTV), (2.13)

where z(δ) is the number such that P (Z(0, 1) < z(δ)) = δ (see figure 2.5).
Re-shuffling the terms, we get the following inequality:

||RA
(i)
js

x|| ≤
NpA

(i)
js

x − mTmin

z(δ)
√

N
(∀i ∈ CTV), (2.14)

which is a second-order constraint that can be handled in the SOCP (Second-
order Cone Programming) framework (see section 2.6). Note that in order
to get the inequality (2.14), we had to divide each side of inequality (2.13)
by z(δ) which, for δ close to 1 (to be precise for any δ > 0.5) is a positive
number.

Similar calculations allow us to express the constraint “maximum dose
for organ-at-risk OARk” and “maximum dose for the CTV” respectively like

||RA
(i)
js

x|| ≤
mk − NpA

(i)
js

x

z(δ)
√

N
(∀i ∈ OARk) (2.15)
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and

||RA
(i)
js

x|| ≤
mTmax − NpA

(i)
js

x

z(δ)
√

N
(∀i ∈ CTV), (2.16)

where mk and mTmax are, respectively, the total maximum dose for organ
OARk and total maximum dose for the CTV. For each constraint a differ-
ent value for δ could be chosen; however, for now, we have used δ = 0.95
everywhere.

2.4.2 DV constraints

The other kind of constraints that we need to express are the dose-volume
constraints, of the form: “no more than 100·vk% of organ-at-risk OARk may
receive more than dk Gy”. These constraint, in mathematical terms, would
read

1

|OARk|
∑

i∈OARk

I{Di(x)>dk} ≤ vk (k = 1, . . . , h;∀i ∈ OARk), (2.17)

where |OARk| indicates the number of voxels of organ OARk.
But remember that in our probabilistic framework, Di(x) is a random

variable, therefore the term Di(x) ≥ dk should be replaced (as done for the
minimum and maximum constraints, see previous section) by a probability
statement. However, in order to also keep the complexity of the optimiza-
tion as low as possible, in this case we prefer to replace Di(x) ≥ dk with
E[Di(x)] ≥ dk, rather than with P (Di(x) ≥ dk) ≥ δ. Therefore, using
again (2.6) we approximate (2.17) by

1

|OARk|
∑

i∈OARk

I
{NpA

(i)
js

x>dk}
≤ vk (k = 1, . . . , h;∀i ∈ OARk).

Unfortunately indicator functions are discontinuous functions that are not
very well suited for optimization problems. An idea might be to approximate
the indicator function with a continuous piece-wise linear function (see also
figure 2.6.):

I{x>0} ≈ min(max(x, 0), 1).

This approach, however, introduces non-convex constraints.
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Figure 2.6: An approximation of the indicator function.

Another way to handle DV constraint (used for example in [1]), is by
imposing

1

|OARk|
∑

i∈OARk

max(NpA
(i)
js

x − dk, 0) ≤ vk(mk − dk)

(k = 1, . . . , h;∀i ∈ OARk). (2.18)

Luckily it is possible to transform such constraints into convex standard
linear constraints.

2.4.3 Additional constraints

Minimum scenario dose

As mentioned before, a physician may require some homogeneity control over
the fraction dose delivered to the CTV: recycling the idea presented in section
2.3.1, this could be done imposing

a
(i)
js,jr

x ≥ α
mTmin

N
(js, jr = 0, . . . , n − 1;∀i ∈ CTV).

where the α is a number smaller than 1 (say 0.8) introduced in order not to
“overrule” constraint (2.14).

Fluence profile constraints

The vector x of fluence energy profile should obviously be positive:

x ≥ 0.
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If this is the only constraint on the fluence, however, the solution given by the
optimization will most likely show high peaks and large energy differences
between adjacent beamlets. This is not acceptable from a medical point of
view. To solve this problem, extra constraints are imposed. One idea is to
limit to ǫ the difference that the energy that adjacent beamlets are allowed
to have. One way to express this is by defining the M -by-M matrix

T =

















0 0 · · · · · · 0

−1 1 0
...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 −1 1

















,

the M -by-1 (column) vector

e =

















1
...
...
...
1

















and by imposing
−ǫ · e ≤ Tx ≤ ǫ · e.

Another idea is to make the fluence profile smooth by imposing that the
(discrete) second derivative is close to zero.

The aforementioned constraints are valid in case of a single beam. In case
of multiple beams, the matrices involved will be block matrices, where the
number of blocks equals the number of beam angles and each block has the
structure explained before. Figure 2.4.3 gives a comparison of fluence profile
solutions with and without “smoothing constraints” imposed.

2.5 Objective function and formulation

The objective function we will minimize is

n−1
∑

js=0

wTmin(js)rTmin(js)+
n−1
∑

js=0

wTmax(js)rTmax(js)+
h
∑

k=1

wkrk+
h
∑

k=1

wkqk (2.19)
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Figure 2.7: On the left, an example of an optimal fluence profile that we
would get without imposing the smoothing constraints. On the right, an
example of an optimal fluence profile obtained imposing the smoothing con-
straints.

subject to the following constraints5:

||RA
(i)
js

x|| ≤
NpA

(i)
js

x − uTmin(js)

z(δ)
√

N
(∀js;∀i ∈ CTV) (2.20)

mTmin − uTmin(js) ≤ rTmin(js) (∀js) (2.21)

rTmin(js) ≥ 0 (∀js) (2.22)

||RA
(i)
js

x|| ≤
uTmax(js) − NpA

(i)
js

x

z(δ)
√

N
(∀js;∀i ∈ CTV) (2.23)

uTmax(js) − mTmax ≤ rTmax(js) (∀js) (2.24)

rTmax(js) ≥ 0 (∀js) (2.25)

||RA
(i)
js

x|| ≤
uk − NpA

(i)
js

x

z(δ)
√

N
(js = 0;∀k;

∀i ∈ OARk) (2.26)

uk − mk ≤ rk (∀k) (2.27)

rk ≥ 0 (∀k) (2.28)

Na
(i)
js,jr

x ≥ αmTmin (∀js, jr;∀i ∈ CTV)(2.29)

1

|OARk|
∑

i∈OARk

max(NpA
(i)
js

x − dk, 0) ≤ fk (js = 0;∀k;

∀i ∈ OARk) (2.30)

fk − vk(mk − dk) ≤ qk (∀k) (2.31)

qk ≥ 0 (∀k) (2.32)

−ǫ · e ≤ Tx ≤ ǫ · e (2.33)

x ≥ 0 (2.34)

5Here, to keep the notation more compact, when we write ∀js, ∀jr and ∀k we mean,
respectively, js = 0, . . . , n − 1, jr = 0, . . . , n − 1 and k = 1, . . . , h.
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Note that constraint (2.14) has been replaced by constraints (2.20), (2.21)
and (2.22): uTmin has been introduced as an intermediate variable, so that
rTmin (present also in the objective function) represents the penalizing excess
dose mTmin−uTmin. The same applies to (2.16) (replaced by (2.23), (2.24) and
(2.25)), (2.15), (replaced by (2.26), (2.27) and (2.28)) and (2.18) (replaced
by (2.30), (2.31) and (2.32)).

Moreover, note that in constraints (2.26) and (2.30) (the ones regarding
the OARs) we are working only on the systematic scenario js = 0, namely the
scenario that implies no systematic error (check again, for example, figure
2.3). This is done to keep the computational burden as low as possible.
However, if the resulting solution is not satisfactory, the above formulation
can be easily extended to include all systematic scenarios not only in the
CTV constraints, but also in the OAR constraints.

The w’s in the objective function (2.19) are weight factors related to
the importance weights described in section 1.4 (see, for an example, table
1.1). Because of the formulation we used for the CTV, however, wTmin and
wTmax now depends on js. Also note that until now we are treating each
systematic scenario equally, as the information we have on p (the vector of
scenario probabilities) has only been included in the conic constraints (the
ones modeling random scenarios). Therefore one idea is to choose:

wTmin(js) ∝ pjs
.

For example, using the scenarios given in table 2.1 and starting from the
importance weights of table 1.1, we would get:

wTmin(0) = 100

wTmin(1) = 50

wTmin(2) = 50

wTmin(3) = 25

wTmin(4) = 25

and

wTmax(0) = 50

wTmax(1) = 25

wTmax(2) = 25

wTmax(3) = 12.5

wTmax(4) = 12.5.
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2.6 Second-order cone programming

In a second-order cone program (SOCP), a linear function is minimized over
the intersection of an affine set and the product of second-order (quadratic)
cones. SOCPs are nonlinear convex problems that include linear and (convex)
quadratic programs as special cases, but are less general than semidefinite
programs (SDPs). Several efficient primal-dual interior-point methods for
SOCP have been developed in the last few years.

2.6.1 Standard SOCP

The standard form of a SOCP problem is

(SOCP) minimize fT x (2.35)

subject to ||Aix + bi|| ≤ cT
i x + di (i = 1, . . . ,m), (2.36)

where x ∈ R
n, f ∈ R

n, Ai ∈ R
ki×n, bi ∈ R

ki and di ∈ R. Here, as usual, || · ||
indicates the euclidean norm: ||u|| = (uT u)1/2.

Constraints of the form ||Ax + b|| ≤ cT x + d are called second-order
cone constraints because the affinely defined variables u = Ax + b ∈ R

k and
t = cT x + d ∈ R are constrained to belong to Ck+1, the second-order cone
(which is also called ice-cream or Lorentz cone) of dimension k + 1 defined
by:

Ck+1 = {(u, t)|u ∈ R
k, t ∈ R, ||u|| ≤ t}. (2.37)

Moreover we define

C1 = {t ∈ R|0 ≤ t}.

Figure 2.8 illustrates the surface of C3 (k = 2). Note that second-order cone
constraints can be used to represent several convex constraints. For example,
if ki = 0 for all i’s, then the SOCP reduces to the linear program:

(LP) minimize fT x

subject to 0 ≤ cT
i x + di (i = 1, . . . ,m).

Therefore the constraints set in our formulation (SOC constraints and linear
constraints, see again section 2.5) are compliant with the SOCP framework.
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Figure 2.8: The surface of the second-order cone C3 (see equation (2.37)) for
k = 2.

2.6.2 Interior point method

Methods for finding optimum points for a LP problem usually start and re-
main on the boundary of the feasible region: the well-known Simplex method
belongs to this class of algorithms.

SOCP problems can be efficiently solved, on the other hand, via special-
ized Interior Point (IP) methods6. An IP method is a linear or nonlinear
programming method that achieves optimization by going through the mid-
dle of the solid defined by the problem rather than around its surface.

One of the most interesting types of IP methods is the path-following algo-
rithm, which combines excellent behavior in theory and practice. A member
of the this category known as the primal-dual path-following algorithm has
become the method of choice in large-scale implementations.

6Enhancement of the Simplex method to solve SOCP problems is an area of active
research, but commercial quality implementations do not exist yet.
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Figure 2.9: The simplex algorithm (left) begins at a starting vertex and moves
along the edges of the polytope until it reaches the vertex of the optimum
solution. An IP method (right) goes through the middle of the polytope.

2.6.3 Conic duality

Assume m = 1 for the ease of presentation; the constraint of the SOCP
problem given in (2.35) can be rewritten as

||Ax + b|| ≤ cT x + d ⇔
(

A

cT

)

x +

(

b

d

)

∈ Ck+1.

Therefore, an SOCP problem can be formulated as

(CP) minimize fT x (2.38)

subject to Âx − b̂ ∈ Ck+1 (2.39)

where

Â =

(

A

cT

)

and

b̂ = −
(

b

d

)

.

This is referred to as the primal formulation. The dual formulation is:

(CD) maximize bT y (2.40)

subject to ÂT y = f (2.41)

y ∈ C∗ (2.42)
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where
C∗ = {z ∈ R

k+1|zT x ≥ 0 ∀x ∈ C}.

Theorem 1 (Conic Duality) Consider the conic problem (CP) and its dual
(CD). Then:

• the dual to (CD) is equivalent to (CP);

• for any x feasible for (CP) and y feasible for (CD), we have fT x ≥ bT y;

• if either (CP) or (CD) is bounded and strictly feasible, then any primal-
dual pair (x, y) is an optimal solution if and only if fT x = bT y.

Proof 1 See, for example, [3] and [4].

These results can be extended to the case in which the feasible region
Ck+1 of (CP) is replaced by K, the intersection of an affine set and the
direct product of quadratic cones. Because of the previous theorem, if x is
feasible for (CP) and y is feasible for (CD), then the so-called duality gap
fT x − bT y is always positive and zero in the optimal solution. The primal-
dual path following algorithm operates simultaneously on the primal and
dual problems, searching for a path for which the duality gap decreases in
each step. Points of this path are kept inside the feasible region using so-
called barrier functions. A barrier function F (x) : int(K) → R is a function
such that

F (x) → +∞ as x → ∂K.

Such barrier functions are smartly added to the objective function of (CD),
in such a way that they introduce a growing penalty as the path approaches
the boundary of the feasible region. More details on how these algorithms
work can be found, for example, in [5] and [6].

We have used a Matlab-based tool called SeDuMi, which is an efficient
implementation of a primal-dual interior point method for solving SOCP
problems.
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Chapter 3

Computational results

For the computational tests, we have used a modified version of the software
developed in [2], including, in the optimization process, the package SeDuMi.
We have used the two-dimensional phantom presented in figure 3.1. It con-
sists of 1,257 voxels. The number of voxels of each organ is reported in table
3.1.

Note the organ at risk “OAR1” positioned in proximity of the CTV: this
is the organ that will most likely “suffer” the most, due to the high dosage
prescribed for the nearby tumor.

Three beams have been used, positioned at 0, 110 and 250 degrees (see
again figure 3.1). Each beam consists of 10 beamlets, so that M = 30.

The scenarios of body dislocation considered are the ones presented in
table 3.2. The parameters used in the optimization are given in table 3.3.

The other parameters used are:

• N = 45;

• δ = 0.95 (so that z(δ) ≈ 1.64);

• α = 0.8;

• ǫ = 0.1.

Treatment plannings are usually evaluated by looking at Dose-Volume
Histograms (DVH): in this type of histograms, the vertical axis represents
the percent of total tissue volume that receives a dose greater than or equal
to a specified dose.

41
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Figure 3.1: The phantom and the beam directions used in the test.

Structure Number of voxels
CTV 148
OAR1 49
OAR2 29
OAR3 29

Normal tissue 1002

Table 3.1: Number of voxels for each structure.

jr or js Direction Shift (in voxels) Probability
0 - 0 0.5
1 Left 1 0.125
2 Right 1 0.125
3 Anterior 1 0.125
4 Posterior 1 0.125

Table 3.2: Scenarios (and their probabilities) of body dislocation used.
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Structure Prescription Weight

CTV mTmin = 70























wTmin(0) = 100
wTmin(1) = 25
wTmin(2) = 25
wTmin(3) = 25
wTmin(4) = 25

CTV mTmax = 75























wTmax(0) = 1
wTmax(1) = 0.25
wTmax(2) = 0.25
wTmax(3) = 0.25
wTmax(4) = 0.25

OAR1 m1 = 60 w1 = 80
OAR1 v1 = 0.4; d1 = 40 w1 = 10
OAR2 m2 = 60 w2 = 80
OAR2 v2 = 0.4; d2 = 40 w2 = 10
OAR3 m3 = 60 w3 = 80
OAR3 v3 = 0.4; d3 = 40 w3 = 10

Normal tissue m4 = 60 w4 = 80

Table 3.3: Parameters used for the tests.
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Figure 3.2: Optimal fluence profile (x∗) for each beam.

The optimal fluence profile x∗ has been calculated solving the optimiza-
tion problem described in section 2.5. It took 208 seconds (and 42 iterations)
for the problem to be solved. The plot of x∗ is given in figure 3.2. Note how
beam 1 has a considerably lower energy with respect to beam 2 or 3: this is
because beam 1 points directly to OAR1, and high energies would result in
a high dose delivered to that organ-at-risk.

The actual dose distribution (for scenario js = 0 and jr = 0) is reported
in figure 3.4.

Once that the solution has been obtained, 30 treatments (each made of 45
fractions) have been sampled according to the random/systematic scenario
distributions of table 3.2. The DVH of these treatments are given in figure
3.3. Note how the histograms relative to the CTV are close to each other (in
other words, they are less sensitive to the uncertainty): this can be explained
in part by the additional and stronger constraints imposed to this organ. Note
how OAR1 (as foreseen) is, on the other hand, the most sensitive organ, as
it suffers, in some scenarios, from the high dose delivered to the CTV.

As a comparison, we also present the DVH and the dose distribution
obtained by solving the same problem, but using the classical approach of
PTV definition (see again section 1.4). In this case, the PTV has been defined
so that it covers the CTV in every possible random/systematic scenario. This
means, for our particular case (check again table 3.2), enlarging the CTV by
two voxels in every direction. The formulation we used in this case, is the
one given in the Appendix (“Static case”).

Note how, especially for OAR3, the proposed SOCP approach outper-
forms the classical approach, as this organ receives, in general, a lower dose
of radiation. Note moreover how a big percentage of the CTV, in the classical-
approach solution, receives a dose that exceeds the maximum prescribed dose
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Figure 3.3: SOCP approach: DVH resulting from the optimal solution.

−10 −8 −6 −4 −2 0  2  4  6  8  10 

10 

8  

6  

4  

2  

0  

−2 

−4 

−6 

−8 

−10

(2) CTV

(3) OAR1

(4) OAR2 (5) OAR3

Figure 3.4: SOCP approach: dose distribution resulting from the optimal
solution.
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Figure 3.5: Classical approach: DVH resulting from the optimal solution.
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Figure 3.6: Classical approach: dose distribution resulting from the optimal
solution.
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Chapter 4

Conclusions

We have described, implemented and tested a method that uses second order
cone programming for the resolution of the problem of radiation therapy
treatment planning. This SOCP approach is a promising alternative to the
classical method, especially when dealing with uncertainties in the patient
position due to both random and systematic error.

Further developments offer the prospect of up to 10% improvement in cure
rates for patients having radiotherapy. Possible extensions of the proposed
approach include the optimizaztion of the number and location of the beams
and, ideally, the implementation of a method that makes use of continuous
distributions of voxel dislocations.
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Appendix

We present three adaptations of the problem formulation given in section 2.5
in case of presence of random error only, in case of presence of systematic
error only, and in case of presence of no error.

Random-error-only case

If random error is the only type of error affecting the position of the patient,
then the formulation of the problem is simply the one given in section 2.5,
where we replace ∀js in (2.20), (2.21), (2.22), (2.23), (2.24), (2.25) and (2.29)
with js = 0. Accordingly, in the objective function (2.19), we replace

n−1
∑

js=0

wTmin(js)rTmin(js)

and
n−1
∑

js=0

wTmax(js)rTmax(js)

with, respectively
wTmin(j0)rTmin(j0)

and
wTmax(j0)rTmax(j0).

The resulting formulation is very similar to the one proposed in [1].

Systematic-error-only case

Remember that if systematic error is the only type of error present, then,
for one particular patient treatment, the doses delivered during each fraction
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are equal to each other (see again figure 2.2). Therefore we will:

• remove the conic constraints, as they were originally introduced to
model fraction-to-fraction stochasticity due to random error;

• utilize, for each organ, constraints of type (2.1).

This latter constraints will be, in this case, introduced with intermediate
variables that allow us to weight them in the objective function (similarly to
what we did in 2.5).

Summing up, the formulation becomes:

n−1
∑

js=0

wTmin(js)rTmin(js) +
n−1
∑

js=0

wTmax(js)rTmax(js)

+
n−1
∑

js=0

h
∑

k=1

wk(js)rk(js) +
n−1
∑

js=0

h
∑

k=1

wk(js)qk(js)

subject to the following constraints:

Na
(i)
js,0x ≥ uTmin(js) (∀js;∀i ∈ CTV)

mTmin − uTmin(js) ≤ rTmin(js) (∀js)

rTmin(js) ≥ 0 (∀js)

Na
(i)
js,0x ≤ uTmax(js) (∀js;∀i ∈ CTV)

uTmax(js) − mTmax ≤ rTmax(js) (∀js)

rTmax(js) ≥ 0 (∀js)

Na
(i)
js,0x ≤ uk(js) (∀k;∀js;∀i ∈ OARk)

uk(js) − mk ≤ rk(js) (∀k;∀js)

rk(js) ≥ 0 (∀k;∀js)
1

|OARk|
∑

i∈OARk

max(Na
(i)
js,0x − dk, 0) ≤ fk(js) (∀k;∀js;∀i ∈ OARk)

fk(js) − vk(mk − dk) ≤ qk(js) (∀k;∀js)

qk(js) ≥ 0 (∀k;∀js)

−ǫ · e ≤ Tx ≤ ǫ · e
x ≥ 0
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Static case

Finally, if we consider the case in which the patient is supposed to always be
perfectly positioned (no random nor systematic error involved), we simply
would solve the problem described in the systematic-error-only case, replac-
ing each “∀js” with “js = 0”. Note that in these two latter cases, the problem
to be solved is a standard Linear Programming (LP) problem, a problem in
which the objective and all of the constraints are linear functions of the
decision variables.
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