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Chapter 1

Introduction

1.1 Cancer

Cancer develops when cells in a part of the body begin to growtaf control.
Although there are many kinds of cancer (over 200 types), theyllastart
because of out-of-control growth of abnormal cells, which rdsiin serious
health problems: at the moment, cancer is the leading cause adath among
Americans under the age of 85. To get an idea, one in three peaplill
develop cancer, and one in four will actually die of cancer.

Malignant tumors ( gure 1.1) are collections of those canceus cells that
are growing faster or dividing faster than the normal cells atmd them.

The three modalities currently used for the treatment of carer are surgery,
chemotherapy and radiation therapy.

1.2 Radiation therapy

It is estimated that more than 50% of cancer patients will reéee radiation
therapy at some point during their treatment. Radiation themapy (also called
radiotherapy, x-ray therapy, or irradiation) speci cally acts against cells that
are reproducing rapidly. Normal cells are programmed to stopivdding (re-
producing) when they come into contact with other cells. In tk case of a
tumor, this stop mechanism is missing, causing cells to continue tivide
over and over. It is the DNA of the cell that makes it capable ofeproduc-
ing. Radiation therapy uses a certain type of high energy ray&-rays or
gamma rays) to damage the DNA of cells, thereby killing the canceells,

11



12 Chapter 1. Introduction

Figure 1.1: An enlarged picture of breast cancer cells.

or at least stopping them from reproducing. Radiation also danggs normal
cells, but as normal cells grow more slowly, they are better abko repair
this radiation damage than cancer cells. In order to give norah cells time
to heal and to reduce side e ects, radiation treatments are tyipally given in
small daily doses, ve days a week, over a six- or seven-week periégch of
these treatment sessions is calledfeaction. A treatment is therefore usually
made of 30 up to 45 fractions.

As a result of new imaging and computer technology, the outcomdor
radiotherapy have steadily improved over the last twenty yeax:

Radiation therapy is considered to be a \local" therapy, meang it treats
a speci c localized area of the body. This is in contrast to systeimtherapies,
such as chemotherapy, which a ect the whole body. There are twmain
types of radiation therapy: external radiation therapy, wtkere a beam of
radiation is directed from outside the body, and internal radtion therapy,
also called brachytherapy or implant therapy, where a sourcd madioactivity
is surgically placed inside the body near the tumor.
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Figure 1.2: An Elekta (Philips) Linear Accelerator.

1.3 IMRT

Intensity-modulated radiation therapy (IMRT) is one of the latest and most
advanced techniques of external radiation therapy that useadiation beams
(usually x-rays). The technology allows for the delivery of lgher doses of
radiation within the tumor and lower doses to nearby healthyissue.

In IMRT, x-ray beams are aimed at a tumor from several (usuallyttree
or ve) angles. During treatment, the radiation intensity of each beam is
controlled. As a result, IMRT allows for the delivery of higherdoses within
the tumor, while sparing (as much as possible) important healjhtissues in
a way that is impossible with other techniques.

Currently, IMRT is being used to treat cancers of the prostatehead and
neck, breast, thyroid and lung, as well as in gynecologic, év and brain
tumors, lymphomas and sarcomas. IMRT is also bene cial for treatg pe-
diatric malignancies.

Radiotherapy treatment is usually given using a machine catlelinear
accelerator, or LINAC (gure 1.2).

A medical linear accelerator generates the photons (x-rays$ed in IMRT.
The patient lies on the treatment table, while the linear acelerator delivers
beams of radiation to the tumor from various directions. Thertensity of each
beam's radiation dose is dynamically varied according to adatment plan
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Figure 1.3: A multi-leaf collimator with 54 leaves: this dewe is used in
radiotherapy for de ning the shape of a treatment eld. It alsoallows to
vary the intensities in the eld.

by a multi-leaf collimator, also known as an MLC. The multi-l@f collimator
is an apparatus in the head of the treatment machine with thideaves that
automatically extend or retract to shape the beam ( gure 1.3)

1.4 Treatment planning

The goal of radiation therapy treatment planning is to detemine the intensity
of the radiation for a certain patient, maximizing the dose tdhe tumor, while
minimizing the dose to the surrounding healthy tissue.

Medical teams use CT (Computed Tomography, see gure 1.4) andR
(Magnetic Resonance Images) scans of the patient, in order tovedop a
radiation therapy plan.

These scan images are usually made only once: based on these images
the physicians locate the CTV (Clinical Target Volume, the tunor mass) and
the OARs (Organs At Risk, the healthy tissues to be spared).

In order to account for both internal tumor motion and patient set-up
error, the classical approach to IMRT involves the use of a PTV (&an-
ning Target Volume): this is achieved placing a planning mgin around the
physician-de ned CTV. For PTV margins that are in proximity to critical
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Figure 1.4: A computed tomography (CT) scan uses X-rays to makesthiled
pictures of structures inside the body. The word \tomography"is derived
from the Greek \tomos" (slice) and \graphia" (describing).
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Figure 1.5: Automatic extraction of the PTV from the delineated CTV by
applying user de ned clinical margins. The extracted PTV and QV are
shown in dierent colors in the three major planes and in the 3Dview.
The margins used in this case are: 10 mm in the lateral and 10 mm tine
cranio-caudal directions but 0 mm (that is, no margin) in the entro-dorsal
direction.

OARs, somewhat smaller margins are selected a priori in an e ort tbetter
spare the healthy organs, sometimes even at the expense of a loR&V
dose. Figure 1.5 shows an example of CTV and PTV de nition on a a
scan.

The ideal objective is a very high dose in the PTV and no dose outls
the PTV. This is physically not possible. Determining an IMRT plan by
trial and error is also not possible due to the complexity and theegrees of
freedom of the system. Instead of the physicians de ning beam dutions,
beam energy pro le, their margins, etc., and then computing rad display-
ing dose distributions to assess whether the treatment plan wileadd to an
acceptable outcome (\forward" planning), they do the oppose (\inverse"
planning). They state their clinical objectives mathematially and let the
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Structure Function Prescription Importance
PTV min dose 70 Gy 100
PTV max dose 75 Gy 50

Bladder max dose 60 Gy 80
Bladder = max dose-volume 40 Gy in 50% 70

Table 1.1: Example of treatment plan constraints.

IMRT optimization process determine the beam parameters thavill lead to
the desired solution.
The physicians usually set the following requirements for a pta

Minimum dose for the PTV. This is usually the most important con-
straint: the tumor is required to get a minimum prescribed dose dhat
the cancerous cells are killed.

Maximum dose for the PTV. This constraint is set in order to pre-
vent high radiation peaks in the PTV that may result in unnecessy
damage, such as cells burning and the occurrence of holes.

Maximum dose for the OARs. These are set in order to spare, as much
as possible, healthy organs located in proximity of the tumor.

Dose-volume constraints for the OARs, of the form \no more than
a certain percentage of a certain structure may receive moréan a
certain dose".

Doses are measured in grays (abbreviated as Gy). One gray is &dio
an absorbed dose of 1 joule per kilogram of absorber tissue. To giveidea
of the magnitude of prescribed doses in real treatments, minimudoses for
the PTV are often in the order of 60 up to 75 Gy; in comparison, th average
cumulative radiation doses on humans coming from natural, rdeal, and
occupational sources are estimated to be about 0.002 Gy per gea

For each of the aforementioned constraints, the physicians alset a
weight (or priority) that measures the relative importance gven to the con-
straint.

Table 1.1 reports an example of treatment plan constraints.
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Chapter 2
Models

2.1 Forward model

In order to be able to optimize the dose delivered to a patientsaa function
of the uence pro le, a discretization of the system has to be pé&rmed.

The patient's body is discretized intom \voxels". A voxel (a combination

of the words \volume" and \pixel”) is a volume element in a reglar grid in

the three-dimensional space. It is analogous to a pixel, whickpresents 2D
image data. All voxels are grouped into a singlm-by-1 (column) vector. To
get an idea, voxels have in some cases size of 0.4

textcm?, and for some treatmentsm may be in the order of 10,000.

We will work in a two-dimensional geometry, even if the results can be
easily extended to the three-dimensional case. Suppose for thement that
only one beam is used in the treatment. The uence pro le of thdbeam is
also discretized; we will indicate by the M -by-1 (column) vector expressing
the energy of theM beamlets of the beam.

The dose delivered to each voxel when uence pro beis used, is indicated
with the m-by-1 (column) vectorD (x). It can be shown that this dependence
is linear in the sense that

D(x) = Hx;

whereH is am-by-M matrix. We will not explain in details why this relation
is linear and on how matrixH can be calculated. The interested reader is
referred, as a starting point, to [2]. It is worth mentioning towever that H

ITherefore we will consider only one \slice" of the patient; in this case, to be precis,
we should use the term \pixel" rather than \voxel".

19



20 Chapter 2. Models

Figure 2.1: Depth (left) and o -axis (right) component of the dose hold
structural properties that are somehow lost in the compositionright).

is not explicitly calculated in the algorithm, as we have
H=P K

In practice, only P and K are calculated. Matrix P is related to the \depth
dose", the component of the dose describing the dose decay alohg beam
axis; matrix K is, on the other hand, related to the \o -axis dose", the
component of the dose describing the dose pro le perpendiculiarthe beam
axis. Figure 2.1 illustrates this idea.

The strong structure of each component translates into highlgtructured,
sparse matricesP and K: this is the reason why it is (computationally)
convenient to keep these two matrices separate.

In the case of multiple beams (from di erent angles), matrice® and K
will have a block-structure (one block for each beam directi), but all the
results still apply.

2.2 Sources and models of errors

Measurements of the location of the tumor and OARs are prone tarers.
There are many reasons why errors occur, but they are usuallydied into
two categories: random and systematic errors.

2.2.1 Systematic error

A systematic error is any biasing e ect in the environment, metbds of ob-
servation or instruments used, which introduces errors into aexperiment
and is such that it always e ects the results of an experiment ithe same
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direction. Systematic error may appear, for example, becautieere is some-
thing wrong with the instrument (CT, LINAC, etc.) or its data ha ndling
system, or because the instrument is wrongly used by the physiciafhe
so called \set-up error" is the most common systematic error appeag in
IMRT: remember that usually only one CT scan is made at the begmng of
the treatment. If the tumor is \dislocated" for a few centimeters from its real
position, the treatment is misplanned. (The CTV/PTV has to be drawn by
the physician, and the planning is made on the basis of his/her dwtion.)
Figure 2.2 illustrates the problem.

2.2.2 Random error

Random error on the other hand is an error that does not resulrdm a
measurement method that is inherently wrong, but that occurdue to natural
variation in the process. In our case, random error occurs dugreach fraction
because, for example, the patient is not always perfectly mlad on the table.
Another source of random error are, for example, the breathingovements
of the patient, or the level of lling of his/her bladder: these phenomena
could shift some organs from their \average" position.

2.2.3 Effect of errors

It is intuitive that random errors tends to cancel each othermout, while sys-
tematic errors are more di cult to handle. As an example, suppsee that the
position of the patient during each fraction is a ected (onlyin one direction,
as a rst example) by random and/or systematic error; moreover fapose
that both errors have standard normal distribution. Figure 22 displays an
example of the e ect of each error, and the combination of thewvo type of
error.

2.3 Probabilistic model

As mentioned before, the classic approach to take into accourtié uncer-
tainty in the patient position is to enlarge the area to be irraiated (from
CTV to PTV). This approach, however, does not take into accounOARs
location uncertainty, but most importantly it does not take into account the
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Figure 2.2: Top-left: no error. Top-right: systematic error. During each
fraction the error is the same. Bottom-left: random error. Dting the course
of the treatment, the average of the error tends to be zero, emgally if the
number of fractions is high. Bottom-right: combination of sgtematic and
random error.
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jr or js Direction Shift (in cm) Probability

0 - 0 0.4
1 Left 1 0.2
2 Right 1 0.2
3 Anterior 1 0.1
4 Posterior 1 0.1

Table 2.1: Scenarios (and their probabilities) of body dislation.

correlated motions of CTV and OARs. Therefore, overlaps betwa PTV
and OAR may occur, resulting in optimization problems.

The probabilistic approach that we investigate here tries, onhie contrary,
to incorporate such correlated uncertainty directly into the optimization. We
follow the work proposed in [1], trying to extend that model inorder to take
into account both random and systematic error.

In this approach we discard the de nition of PTV: the physician wil
therefore set minimum and maximum dose constraints directly fahe CTV
rather than for the PTV. The physician is also required to assess tlsgenarios
of the random/systematic errors that may occur during the trement. The
number of scenarios is indicated witm, and an example of scenarios are
given in table 2.1. Random scenarios are indexed by, while systematic
scenarios byjs. Both j, andjs take value inf0;:::;n 1g, where index O
refers to the scenario with no dislocation.

If the n scenarios are supposed to independently model both random and
systematic scenarios, then the total numbes of scenarios that may occur
during di erent patient treatments is at most n?. For example, considering
the scenarios given in table 2.1 to be valid both (but separatgl for random
and systematic errors, we haves = 13 (< n? = 25). See gure 2.3 for a
graphical representation of this idea.

2.3.1 Atempting idea

We assume, from now on, that the number of fractions (indicatedith N)
is determined in advance by the physicians, and therefore is anput of
the optimization process. Also the number and the angle of the bea are
supposed to be determined in advance. The variable to be optied is
therefore the (column) vector of beamlet intensities, indidad with x. The
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Figure 2.3: If the scenarios of table 2.1 model both (indepeedtly) random
and systematic errors, the actual scenarios that may occur in theourse
of several treatments are the ones given on the right. Note that during
one particular treatment (made of several fractions) not all 13 scenarios can
occur, but only 5 of them (for example, if s = 3, the ones within the dashed
line).

size ofx is indicated by M (number of beamlets).
Indicate with al”; the 1-by-M (row) vector, indexed by beamlets, giving

the (deterministic)sijjrose delivered to voxel in systematic-scenariojs and
random-scenarigj, if the beamlets have unit intensity. Dose '(ls);j, can be
calculated using the forward model described in section 2.1. iRember that
because of linearity, the dose delivered to voxein systematic-scenarigs and
random-scenarig, if the beamlets have pro lex, would simply be a]-('s;jrx.
At this point one would be tempted to do the following reasonig: if

we want to impose, for example, the constraint \the CTV should reeive a
minimum (total) dose of mrnin, Gy", we could impose the following linear

constraints:

0 MTmin

&, X N (Js;Jr =0;::55n 1;8i 2 CTV): (2.1)

Translating into words: we impose the fraction dose (no matter # system-
atic and random scenario occurring) to exceed ométh of the minimum total
dose. Doing so, the total dose delivered aftéd fractions will de nitely be
greater than my,, , as required.

To a closer look, however, these constraints are too restrictivas this
approach completely discards the information we have aboute probabilities
of occurrence of each scenario: we are imposing constraints lo@ fmarginal”
fraction dose rather than on the \joint" total dose.
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Having such constraints could, however, be important from a mezhl
point of view, since they would introduce some control over theomogeneity
of the delivered doses among fractions. For the moment we willbow another
route in order to model the \minimum/maximum organ dose", butwe will
come back to this idea in section 2.4.3.

2.3.2 Expected value and variance of the fraction dose

Suppose that the systematic error (for one particular treatmei is known,
and therefore that then (out of the s) scenarios that are likely to occur are
determined. In other words, X js: looking back at gure 2.3, this means
that we know that we are dealing, for example, with only the e scenarios
within the dashed line.

Now, for each voxel and for each systematic-scenarig, it is convenient
to build the n-by-M matrix

random-scenario occurring in fractionl (I = 1;:::;N), according to the
distribution speci ed by the physician:

8

2 0 with probability po
sh=_:

" n 1 with probability p, i:

Indicate? with Dj; (x) the dose delivered to voxei during fraction | if
the beamlets have pro lex; in our probabilistic formulation (contrary to the
classic static formulation) this is a random variable, and we cawrite

8 :
2 e)Ax  with probability po

Diy (x) = eg(I)Aj(is)X S (2.2)

el ;AVx  with probability py ;

2Here we will omit, for better readability, the dependence onjs.
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whereeg indicates the k+1)-th standard basis (column) vector ofR". From
this, it is easy to write an expression for the expected value ofithrandom

variable:
1

EDy(x)]=  p,eAVx=p’Alx
jr=0

It is also easy to write an expression for the variance of this dose:

Var[Diy (x)] = E[(Diy(x) E[Di (X))
X1 ) i
= (A pTADX)
jr=0
X1 .
= P pHAxY
jr=0
= jiRAUxjj%
where
0 p__ 10 1
& 0 1 p p D 1
i PO | N
: b 0 : : Pn 1
0 0 Pn 1 Po Ph2 1 pn1

2.3.3 Approximation of the distribution of the total dose

Indicate with D;(x) the dose delivered to voxeil during the whole treatment
if the beamlets have prole x. Again, this is a random variable, and we
assume that fraction doses are additive:

X
Di(x) = Diy (x):

=1

are assumed to be independent and are identically distributedTherefore
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the expected value of the total delivered dose is simgly

X
E[Di(x)] = E Di; (x) (2.3)
1=1
X
= E[Di; (x)] (2.4)
1=1
X .
= pA{x (2.5)
1=1
= Nij(L)x: (2.6)
For the variance we havé ) ;
X
Var[Di(x)] = Var Di; (x) (2.7)
1=1
X
= Var[Dij; (x)] (2.8)
1=1
X .
= iiRADXjj? (2.9)
=1
= NjiRAxjj2: (2.10)

It is well-known (see gure 2.4 for an example) that the sum of (&any)
independent and identically distributed (i.i.d.) random vaiables approxi-
mates a normal random variable. In our frameworkiN is in the order of 45,
so this approximation is plausible.

A normal random variable is completely determined given itexpected
value and standard deviation. Therefore, using (2.6) and (2}, we can write

Di(x) Z(NpAUx; pﬁjj RA{xji); (2.11)

whereZ(; ) indicates a normal random variable with mean and standard
deviation

3Remember that the expected value operatorE[ ] is linear in the sense thatE[aX +
bY] = aE[X]+ bE[Y] for any two random variables X and Y (which may or may not be
independent) and any real numbersa and b.

4Here we use the fact that ifX and Y are independent random variables, thervar[X +
Y]= Var[X]+ Var[Y].
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Figure 2.4: The sum of many independent identically distribied random
variables (of nite variance) will tend to be distributed acmrding to a Normal
random variable. As an example, we present the distribution ohe sum of 2
(top-right), 3 (bottom-left) and 45 (bottom-right) indepe ndent copies of the
random variable with distribution given in the top-left sub gure.
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2.4 Constraint models

2.4.1 Minimum and maximum dose constraints

Suppose that we want to mathematically express: \the CTV shouldeceive
a total minimum dose ofmny,i, Gy" in our probabilistic framework. A rst
idea would be to express this in terms of expected total dose:

EIDi(X)] Mtmin (8i 2 CTV):
Using expression( 2.6) this would result in a linear inequality e¢straint:
NpAUX  mrmn (81 2 CTV):

We can actually do better than this: when dealing with lives, tinking \on
average" is not enough. A treatment plan that is good \on avexge" isnot a
good treatment plan. If we have, for exampleE[D;(x)] = mtmin, then half
of the times, that treatment would not deliver enough dose to vl i.

Remember that we not only have an expression for the expectedtdb
dose, but also an approximation of the distribution of the totaldose. There-
fore, by using expression (2.11), we can express the aforememgid constraint
in the following probabilistic terms:

P(Di(x) Mtmin) (8i 2 CTV); (2.12)

where is a prede ned constant, say 0.95, expressing our desired \con -
dence" in delivering the prescribed dose. Note that because of12), we
approximate (2.12) by

P Z(NpA{x; pﬁjj RAUX{)  Mirmin (8i 2 CTV):

Ideally we would require = 1; because of the previous normal approxima-
tion, that would however result in a unfeasible formulation, sice any normal
random variable has a strictly positive density throughout thewvhole R.
Remembering that if Z(; ) is a normal random variable with mean
and standard deviation , then 2“1 is a standard normal random
variable, we can rewrite
|
MTmin Nij('S)x

P Z(O;l) M —.. i) ..
NJJRAJ-(S)XJJ

(8i 2 CTV);
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Figure 2.5: Graphical interpretation ofz( ):

which is equivalent to

NEAJ(IS)X MTmin
N —.. [ONT
Njj RAJ-S XJj

z2() (8 2CTV); (2.13)

wherez( ) is the number such thatP(Z(0;1)<z( ))= (see gure 2.5).
Re-shu ing the terms, we get the following inequality:

N ij(Is)X A MTmin

iRALxij —
i i 20PN

Js

(8i 2 CTV); (2.14)

which is a second-order constraint that can be handled in the &P (Second-
order Cone Programming) framework (see section 2.6). Note that order
to get the inequality (2.14), we had to divide each side of ineqlity (2.13)
by z( ) which, for close to 1 (to be precise for any > 0:5) is a positive
number.

Similar calculations allow us to express the constraint \maxnum dose
for organ-at-risk OAR," and \maximum dose for the CTV" respectively like

. NpA!x
iRALx Eat
° z() N

(8i 2 OARy) (2.15)
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and .
Mrmax  NPA[x
z2() N

where my and mmnax are, respectively, the total maximum dose for organ
OARy and total maximum dose for the CTV. For each constraint a di er-
ent value for could be chosen; however, for now, we have used 0:95
everywhere.

iiRADXji

S

(8i 2 CTV); (2.16)

2.4.2 DV constraints

The other kind of constraints that we need to express are the deselume
constraints, of the form: \no more than 100v% of organ-at-risk OAR; may
receive more thandy Gy". These constraint, in mathematical terms, would
read

1 X
JOARj

i, (x)>deg  Vk (k=1;:::;h; 8 2 OARy); (2.17)

i20AR |

wherejOARyj indicates the number of voxels of organ OAR

But remember that in our probabilistic framework, D;(x) is a random
variable, therefore the termD;(x) dx should be replaced (as done for the
minimum and maximum constraints, see previous section) by a prability
statement. However, in order to also keep the complexity of theptimiza-
tion as low as possible, in this case we prefer to replabg(x)  dx with

E[Di(x)]  d, rather than with P(Di(x)  dk) . Therefore, using
again (2.6) we approximate (2.17) by
1 X |
JOARy] lnpaOwayg Ve (K=15:::hi8i 2 OARY):

i2 0AR i

Unfortunately indicator functions are discontinuous functons that are not
very well suited for optimization problems. An idea might be to pproximate
the indicator function with a continuous piece-wise linearunction (see also

gure 2.6.):
ltx>0g ~Min(max(x; 0); 1):

This approach, however, introduces non-convex constraints.
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15 15

0.5 0.5

0.5 -0.5
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Figure 2.6: An approximation of the indicator function.

Another way to handle DV constraint (used for example in [1]), idy
imposing
1 X

[OARY] Ox  dg0)  w(me  dk)

Js

max(N pA
i20AR

(k=1;:::;h;8i 2 OARy): (2.18)

Luckily it is possible to transform such constraints into convex sindard
linear constraints.

2.4.3 Additional constraints
Minimum scenario dose

As mentioned before, a physician may require some homogeneiytol over
the fraction dose delivered to the CTV: recycling the idea prested in section
2.3.1, this could be done imposing
i MTmi - .
al; x TNmm (s;jr=0;::1;n 1;8i 2 CTV):

where the is a number smaller than 1 (say 0.8) introduced in order not to
\overrule" constraint (2.14).

Fluence pro le constraints

The vector x of uence energy pro le should obviously be positive:

x O
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If this is the only constraint on the uence, however, the solubn given by the
optimization will most likely show high peaks and large energgi erences
between adjacent beamlets. This is not acceptable from a medi point of
view. To solve this problem, extra constraints are imposed. Ondea is to
limit to the di erence that the energy that adjacent beamlets are atwed
to have. One way to express this is by de ning thévl -by-M matrix

0O O 0
1 1 O
T= 0 ;
0
0 0 11
the M -by-1 (column) vector
0 1
1
e= é :
1
and by imposing
e TXx e:

Another idea is to make the uence pro le smooth by imposing thatthe
(discrete) second derivative is close to zero.

The aforementioned constraints are valid in case of a single Inealn case
of multiple beams, the matrices involved will be block matries, where the
number of blocks equals the number of beam angles and eachcklbas the
structure explained before. Figure 2.4.3 gives a comparisoh vence pro le
solutions with and without \smoothing constraints" imposed.

2.5 Objective function and formulation

The objective function we will minimize is

X l - . x 1 - . Xﬁ X’]
WTmin (J s)rTmin (J s) + WTmax (J s)rTmax (J s) + Wil + chk (2-19)
js=0 js=0 k=1 k=1
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Figure 2.7: On the left, an example of an optimal uence pro¢ that we
would get without imposing the smoothing constraints. On the rijgt, an
example of an optimal uence pro le obtained imposing the smahing con-

straints.

subject to the following constraints:

NPAX  Urmin (j<)

iiRADXjj

: z() N
MTmin UTmin (J s) M Tmin (J s)
I Tmin (J s) 0
- u j NpA®Hx
iRaOxj U)o NPA,
* z() N

Utmax (Js)  Mtmax  Ttmax(j's)
Mmax(s) O

. uc  NpAUx
iRAOKj 2 X

z2() N

U Mg Ik
Mk 0

i
Nai, X m i

1 X (i
max(NpA;’x dg;0) fi

JOARyj

i20AR

fro viel(me  de) o

& O
e Tx e
x 0

(8js;8i 2 CTV)

(8js)
(8js)

(8js;8i 2 CTV)

(8js)
(8is)
(js = 0; 8k;

8i 2 OARy)
(8k)
(8k)

(2.20)

(2.21)
(2.22)

(2.23)

(2.24)
(2.25)

(2.26)
(2.27)
(2.28)

(8j<:jr:8i 2 CTV)(2.29)

(js = 0; 8k;

8i 2 OARY)
(8k)
(8Kk)

(2.30)
(2.31)
(2.32)
(2.33)
(2.34)

SHere, to keep the notation more compact, when we write8js, 8j, and 8k we mean,

respectively,js =0;:::;n 1,j, =0;:::;n landk=
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Note that constraint (2.14) has been replaced by constraints 0), (2.21)
and (2.22): utmin has been introduced as an intermediate variable, so that
rmmin (Present also in the objective function) represents the penaing excess
dosemryin  Utmin - The same applies to (2.16) (replaced by (2.23), (2.24) and
(2.25)), (2.15), (replaced by (2.26), (2.27) and (2.28)) ah(2.18) (replaced
by (2.30), (2.31) and (2.32)).

Moreover, note that in constraints (2.26) and (2.30) (the oreregarding
the OARSs) we are working only on the systematic scenarjg = 0, namely the
scenario that implies no systematic error (check again, for exgle, gure
2.3). This is done to keep the computational burden as low asogsible.
However, if the resulting solution is not satisfactory, the abovéormulation
can be easily extended to include all systematic scenarios notlyin the
CTV constraints, but also in the OAR constraints.

The w's in the objective function (2.19) are weight factors relad to
the importance weights described in section 1.4 (see, for an exae, table
1.1). Because of the formulation we used for the CTV, howevelrn, and
Wrmax NOW depends onjs. Also note that until now we are treating each
systematic scenario equally, as the information we have gn(the vector of
scenario probabilities) has only been included in the conic mstraints (the
ones modelingandom scenarios). Therefore one idea is to choose:

Wrmin (Js) /' Bjs-

For example, using the scenarios given in table 2.1 and startirfgpm the
importance weights of table 1.1, we would get:

Wrmin (1) = 50
Wrmin (2) = 50
Wrmin (3) = 25
Wrmin (4) = 25
and
WTmax (0) = 50
WTmax (1) = 25

Wrmax (2) = 25
WTmax (3) = 125
Wrmax (4) 12:5:
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2.6 Second-order cone programming

In a second-order cone program (SOCP), a linear function is mimized over
the intersection of an a ne set and the product of second-orderquadratic)
cones. SOCPs are nonlinear convex problems that include larend (convex)
guadratic programs as special cases, but are less general thanidemite

programs (SDPs). Several e cient primal-dual interior-pont methods for
SOCP have been developed in the last few years.

2.6.1 Standard SOCP
The standard form of a SOCP problem is

(SOCP) minimize fTx (2.35)
subjectto  jjAix+ hjj c'x+ d; (i=1;:::;m); (2.36)

wherex 2 R",f 2 R", A; 2 Rk " 2 Rk andd; 2 R. Here, as usualjj jj
indicates the euclidean normjjujj = (u"u)*2.

Constraints of the form jjAx + bj c"x + d are called second-order
cone constraints because the a nely de ned variablesi = Ax + b2 R* and
t = ¢'x + d 2 R are constrained to belong toG.1, the second-order cone
(which is also called ice-cream or Lorentz cone) of dimensié&n+ 1 de ned
by:

Go1 = f(u;t)ju2 R*:t 2 R;jjujj  to: (2.37)

Moreover we de ne
G =ft2Rj0 tg

Figure 2.8 illustrates the surface o (k = 2). Note that second-order cone
constraints can be used to represent several convex constrainter Example,
if ki =0 for all i's, then the SOCP reduces to the linear program:

(LP) minimize  f Tx
subjectto 0 c'x+d  (i=1;:::;m):

Therefore the constraints set in our formulation (SOC constrats and linear
constraints, see again section 2.5) are compliant with the SOCPRamework.
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Figure 2.8: The surface of the second-order cofg (see equation (2.37)) for
k=2.

2.6.2 Interior point method

Methods for nding optimum points for a LP problem usually stat and re-
main on the boundary of the feasible region: the well-known&plex method
belongs to this class of algorithms.

SOCP problems can be e ciently solved, on the other hand, via gzial-
ized Interior Point (IP) methods®. An IP method is a linear or nonlinear
programming method that achieves optimization by going trough the mid-
dle of the solid de ned by the problem rather than around its suace.

One of the most interesting types of IP methods is the path-faiving algo-
rithm, which combines excellent behavior in theory and prdice. A member
of the this category known as the primal-dual path-followig algorithm has
become the method of choice in large-scale implementations.

6Enhancement of the Simplex method to solve SOCP problems is an area of active
research, but commercial quality implementations do not exist yet.
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X2 X2

#1 #2 X1 X1

Figure 2.9: The simplex algorithm (left) begins at a starting ertex and moves
along the edges of the polytope until it reaches the vertex dfie optimum
solution. An IP method (right) goes through the middle of the péytope.

2.6.3 Conic duality

Assumem = 1 for the ease of presentation; the constraint of the SOCP
problem given in (2.35) can be rewritten as

A b

jiAx +bj c'x+d, a Xt 4 2GCa

Therefore, an SOCP problem can be formulated as

(CP) minimize  f "x (2.38)
subjectto  Ax B2 G (2.39)
where
A
and o
b= d
This is referred to as the primal formulation. The dual formlation is:
(CD) maximize b'y (2.40)
subjectto  ATy=f (2.41)

y2C (2.42)
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where
C=fz2Rjz'x 0 8x2Cg

Theorem 1 (Conic Duality) Consider the conic problem (CP) and its dual
(CD). Then:

the dual to (CD) is equivalent to (CP);
for any x feasible for (CP) andy feasible for (CD), we havd Tx b'y;

if either (CP) or (CD) is bounded and strictly feasible, therany primal-
dual pair (x;y) is an optimal solution if and only iff Tx = b'y:

Proof 1 See, for example, [3] and [4].

These results can be extended to the case in which the feasibleioag
Gi+1 of (CP) is replaced byK, the intersection of an ane set and the
direct product of quadratic cones. Because of the previous them, if X is
feasible for (CP) andy is feasible for (CD), then the so-called duality gap
fTx Db'y is always positive and zero in the optimal solution. The primal
dual path following algorithm operates simultaneously on therimal and
dual problems, searching for a path for which the duality gap adeeases in
each step. Points of this path are kept inside the feasible regiasing so-
called barrier functions. A barrier functionF (x) : int(K) ! R is a function
such that

F(x)! +1 asx! @K:

Such barrier functions are smartly added to the objective fuwtion of (CD),
in such a way that they introduce a growing penalty as the path@proaches
the boundary of the feasible region. More details on how theségarithms
work can be found, for example, in [5] and [6].

We have used a Matlab-based tool called SeDuMi, which is an eent
implementation of a primal-dual interior point method for sdving SOCP
problems.
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Chapter 3

Computational results

For the computational tests, we have used a modi ed version of theoftware
developed in [2], including, in the optimization process, thpackage SeDuMi.
We have used the two-dimensional phantom presented in gure 3.1t con-
sists of 1,257 voxels. The number of voxels of each organ is repdrin table
3.1

Note the organ at risk \OAR1" positioned in proximity of the CTV: th is
is the organ that will most likely \su er" the most, due to the high dosage
prescribed for the nearby tumor.

Three beams have been used, positioned at 0, 110 and 250 deg(ses
again gure 3.1). Each beam consists of 10 beamlets, so thet = 30.

The scenarios of body dislocation considered are the ones préseénn
table 3.2. The parameters used in the optimization are givem itable 3.3.

The other parameters used are:

N = 45;
=0:95 (sothatz( ) 1.64);
=0:8;
=0:1.

Treatment plannings are usually evaluated by looking at Doséelume
Histograms (DVH): in this type of histograms, the vertical axis repesents
the percent of total tissue volume that receives a dose greatdran or equal
to a speci ed dose.
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41 8 Normal Tissue
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-10 1

Figure 3.1: The phantom and the beam directions used in the test

Structure Number of voxels

CTV 148
OAR1 49
OAR2 29
OAR3 29

Normal tissue 1002

Table 3.1: Number of voxels for each structure.

jr or js Direction Shift (in voxels) Probability

0 - 0 0.5

1 Left 1 0.125
2 Right 1 0.125
3 Anterior 1 0.125
4 Posterior 1 0.125

Table 3.2: Scenarios (and their probabilities) of body dislation used.
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Structure Prescription  Wejght
E WTmin (O) =100
Wrmin (1) = 25
CTVv M1min = 70 Wrmin (2) =25
2 Wrmin (3) = 25
.8 Wrmin (4) = 25
E Wrmax (0) =1
Wrmax (1) = 0:25
CTVv Mtmax = 75 WTmax (2) =0:25
2 Wrmax (3) = 0:25
" Wrmax (4) =0:25
OAR1 m; = 60 w; = 80
OAR1 Vi = 0:4; dl =40 W, = 10
OAR2 m, = 60 w, = 80
OAR2 v, =0:4; d, =40 w,=10
OAR3 m3 = 60 wsz =80
OAR3 V3 = 0:4; d3 =40 W3 = 10
Normal tissue m, = 60 w, =80

Table 3.3: Parameters used for the tests.



44 Chapter 3. Computational results

Beam 1 Beam 2 Beam 3
160 160 200

140 140
120 120 150
100 100

80 80 100

Energy

60 60
40 40 50
20 20

0 0 0
12345678910 12345678910 123456780910

Figure 3.2: Optimal uence prole (x ) for each beam.

The optimal uence prole x has been calculated solving the optimiza-
tion problem described in section 2.5. It took 208 seconds (and #erations)
for the problem to be solved. The plot ok is given in gure 3.2. Note how
beam 1 has a considerably lower energy with respect to beam 2 ortl3is is
because beam 1 points directly to OAR1, and high energies woulesult in
a high dose delivered to that organ-at-risk.

The actual dose distribution (for scenarigs = 0 and j, = 0) is reported
in gure 3.4.

Once that the solution has been obtained, 30 treatments (eacmade of 45
fractions) have been sampled according to the random/systematscenario
distributions of table 3.2. The DVH of these treatments are givein gure
3.3. Note how the histograms relative to the CTV are close to eadither (in
other words, they are less sensitive to the uncertainty): this cabe explained
in part by the additional and stronger constraints imposed to tis organ. Note
how OARL1 (as foreseen) is, on the other hand, the most sensitive ongas
it su ers, in some scenarios, from the high dose delivered to the CTV.

As a comparison, we also present the DVH and the dose distribution
obtained by solving the same problem, but using the classical amarch of
PTV de nition (see again section 1.4). In this case, the PTV hasé&en de ned
so that it covers the CTV in every possible random/systematic scena. This
means, for our particular case (check again table 3.2), enlang the CTV by
two voxels in every direction. The formulation we used in thixase, is the
one given in the Appendix (\Static case").

Note how, especially for OAR3, the proposed SOCP approach outper
forms the classical approach, as this organ receives, in gemesalower dose
of radiation. Note moreover how a big percentage of the CTV, irhe classical-
approach solution, receives a dose that exceeds the maximuregeribed dose
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(75 grays).
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Figure 3.4: SOCP approach: dose distribution resulting from # optimal
solution.
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Chapter 4

Conclusions

We have described, implemented and tested a method that uses setorder
cone programming for the resolution of the problem of radiain therapy
treatment planning. This SOCP approach is a promising altemtive to the
classical method, especially when dealing with uncertainties the patient
position due to both random and systematic error.

Further developments o er the prospect of up to 10% improvenms in cure
rates for patients having radiotherapy. Possible extensiond the proposed
approach include the optimizaztion of the number and locatn of the beams
and, ideally, the implementation of a method that makes use afontinuous
distributions of voxel dislocations.
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Appendix

We present three adaptations of the problem formulation givein section 2.5
in case of presence of random error only, in case of presence of syatie
error only, and in case of presence of no error.

Random-error-only case

If random error is the only type of error a ecting the positionof the patient,
then the formulation of the problem is simply the one given in stion 2.5,
where we replacéj s in (2.20), (2.21), (2.22), (2.23), (2.24), (2.25) and (2.29
with js = 0. Accordingly, in the objective function (2.19), we replae
X 1
WTmin (J s)rTmin (J s)
js=0
and
X 1
Wrmax (J s)M tmax (J's)
js=0
with, respectively
WTmin (J O)rTmin (J O)
and
WTmax (J O)rTmax (J O):
The resulting formulation is very similar to the one proposed iifil].

Systematic-error-only case

Remember that if systematic error is the only type of error presg then,
for one particular patient treatment, the doses delivered ding each fraction
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are equal to each other (see again gure 2.2). Therefore we il

remove the conic constraints, as they were originally introdied to
model fraction-to-fraction stochasticity due to random errg

utilize, for each organ, constraints of type (2.1).

This latter constraints will be, in this case, introduced withintermediate
variables that allow us to weight them in the objective fundbn (similarly to
what we did in 2.5).

Summing up, the formulation becomes:

X1 X1
WTmin (J s)rTmin (J s) + WTmax (J s)rTmax (J s)
js=0 js=0
X 1 X‘] . . X 1 Xn . .
+ Wi(Js)re(s) + Wic(js)0k(s)
js=0 k=1 js=0 k=1

subject to the following constraints:

Nalox  Ummin (i) (8js:8i 2 CTV)
MTmin Utmin (Js)  Ttmin (J's) (8js)
Frmin (js) O 8js)
Nallx  Urmax(s)  (8js8i 2 CTV)
Utmax (Js)  MTmax M tmax (J's) (8js)
Frrmax(js) O 8js)
Nallox uc(is)  (8k;8js;8i 2 OARy)
u(s) me  re(is)  (8K;8js)
r(is) 0 (8k;8js)

X .
1 max(Nalox  di0) fi(is)  (8k;8js;8i 2 OARy)

JOAR]

i20AR
fls)  w(mie  do)  als)  (8k;8js)
a&(s) O (8k; 8js)
e Tx e
x 0
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Static case

Finally, if we consider the case in which the patient is supposed always be
perfectly positioned (no random nor systematic error involved we simply
would solve the problem described in the systematic-error-onbase, replac-
ing each \8js" with\ j5 = 0". Note that in these two latter cases, the problem
to be solved is a standard Linear Programming (LP) problem, a pblem in
which the objective and all of the constraints are linear furions of the
decision variables.
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