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Abstract
A lot of attention is given to development of mathematical models for component’s reliability assessment. Control of the process of component’s deterioration is the key issue for planning inspection and maintenance actions. The components, however, are not often inspected and therefore there are limited sources of data. Models with Bayesian inference are proposed, where input parameters are assessed by expert judgement. The thesis proposes a gamma stochastic process as a tool for modelling deterioration. Different types of deterioration models are considered. All of them are based on the gamma process of the deterioration growth and different assumptions about initiation of deterioration are considered. An uncertain defect growth and rate of initiation are represented by distribution functions, which then are updated with the inspection results. The errors of the deterioration measurements are also considered. 
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Introduction
Inspections are aimed at providing the information about the physical condition of a component. During inspection the component’s deterioration is measured. If the deterioration is not at the critical level and will not become critical in the coming future then the component is returned to its function. The judgment about deterioration growth is essential while assessing the time for which the component is assumed to function safely. This time, called next inspection time interval, is assumed to provide us with satisfactory confidence that the component’s deterioration will not become critical within this time.

When a component reaches its next inspection time, it means that the confidence about the components real degradation is small enough to ensure the component’s safe operation. An inspection is required to adjust this confidence. Measurements of defect sizes are taken and again assessment about the component’s capability of operation is made and the next inspection time interval is determined.

As long as the confidence about the component degradation is maintained, it is possible to accurately predict the time when a component is about to fail and actions such as preventive maintenance can be scheduled optimally with respect to time.

The thesis provides the mathematical models for assessment of component’s reliability. All the models are based on predicting the deterioration process and determining the failure time probability. Section 1 introduces a gamma process that represents deterioration. The methods of specification of the parameters from a gamma process are presented in Section 1. 

Section 2 shows three failure probabilities that are derived based on the gamma process representing the defect depth development and different specifications of defect initiation. At the end of Section 2 an example of these three probabilities is shown. 

Section 3 shows the model for component reliability assessment with uncertain rate of defect initiations. The uncertain parameter is represented by a distribution function, which can be updated using Bayes theorem and the available information about the defects initiations. Two updating processes are shown. The first one is based on observing the defect initiation times and the second one is based on observing certain number of defects at certain time. An example is shown at the end of Section 3.

Section 4 presents the model in which the rate of defect growth is represented by a distribution function. Again the distribution is updated by the use of Bayes theorem. The updating processes are shown for perfect and imperfect inspections. The effect of updating the uncertain rate of defect growth distribution is shown at the end of Section 4.

Conclusions and discussion about the effects on the failure probability under different models are presented in Section 5. The examples of failure probabilities from different models are shown in Appendix B. Appendix A provides with definitions of the distribution functions and stochastic processes that are used in the report.

1. Gamma process
This section introduces the gamma stochastic process as a tool for modelling deterioration; this process has been proposed for applications similar to the one studied in this work in some earlier publications. The features of this process fit well with the physical properties of deterioration which is monotone and uncertain. For an overview on modelling deterioration with a gamma process we refer to [1], [2], [4], [5] and [8]. The definition of a gamma process and a gamma random variable is given in Appendix A.1.
In Section 1.1 we present an example of the cumulative damage that may occur only on fixed units of time. This example illustrates the suitability of modelling deterioration with a gamma process. 
Next, Section 1.2 presents the two statistical methods for parameter estimation of a gamma process. This is based on (van Noortwijk, Pandey [8]). 
Section 1.3 presents a practical way of assessing the parameters of a gamma process. In the case of limited sources of data, the gamma parameters are fixed with the help of the expert assessment about the deterioration. That section is based on (Kallen, van Noortwijk [5])
1.1 Example of a discreet gamma deterioration process

To familiarize ourselves with gamma process and it’s suitability for modelling deterioration, we present an example of the deterioration that occurs only at fixed points in time 
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 is an infinite sequence of independent exponentially distributed random variables (definition of an exponential random variable is given in Appendix A.2):
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We assume that the increments of deterioration are independent and are represented by the sequence 
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. The total deterioration at time n is defined as a sum of n increments of deterioration (a sum of n exponential random variable):
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(1.2)

It can be proven that the probability distribution function of the total degradation at time n, Sn, is the gamma distribution with parameters n and λ. Its density function is given by:
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(1.3)

In order to proof (1.3) we can use theorem 3.6 (T Bedford, R M Cooke [6], Page 61) that says: the convolution (the sum) of two independent gamma distributed random variables with different shape parameters and the same scale parameter is again a gamma random variable with the shape parameter equal to the sum of shape parameters and unchanged scale parameter. 

Clearly, in the example above Sn is the sum of n exponentials, which in fact is the sum of n gammas with the shape and scale parameters 1 and λ respectively. Now, we assume that the sum of n-1 gammas is a gamma with shape n-1 and scale λ. By theorem 3.6 (Ref. [6]), the sum of a gamma with shape n-1 and scale λ and a gamma with shape 1 and scale λ is again a gamma distributed with shape n and scale λ. This and the mathematical induction prove (1.3) for every natural number n.

The above example shows that the cumulative effect of deterioration at certain time, where the total deterioration is caused by the independent exponentially distributed deterioration increments, can be model with a gamma distribution (discrete gamma process).

1.2 Statistical estimation for parameters of a gamma process

This section presents the two most common methods of parameter estimation for a gamma process, namely, the Maximum Likelihood method and the Method of Moments. First, a gamma process with shape function 
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 is considered. We assume that the value of b is known (b = 1 represents the linear deterioration), but c and u are unknown. In order to apply the gamma process to a practical example, the estimation of parameters is made on data that consists of the inspection times ti, i = 1,…, n, where 0 = t0 < t1 < … < tn, and corresponding observations of the cumulative deterioration xi, i = 1 ,…, n, where 0 = x0 ≤ x1 ≤ … ≤ xn. The derivation of presented formulas can be found in (van Noortwijk, Pandey [8]). 

1.2.1 Method of Maximum Likelihood

The likelihood function of the observed deterioration increments
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, i = 1,…, n, is a product of independent gamma densities
:
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(1.4)

The maximum-likelihood estimator of [image: image14.wmf]b

 can be obtained by maximising the logarithm of the likelihood function given in (1.4). By taking the derivative with respect to 
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 of the log-likelihood function, setting the obtained expression to zero, and solving with respect to
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, we get that the estimator of 
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(1.5)

Substituting (1.5) into (1.4) and solving (1.6) with respect to c gives the set of equations (1.7):
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(1.6)

The maximum-likelihood estimators 
[image: image20.wmf]ˆ

b

 and 
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 can be obtained by solving (1.7):
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(1.7)
The function 
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 above is called digamma function. It is defined as the derivative of the gamma function logarithm:
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and, as is recommended by [8], it can be accurately computed using the algorithm developed by Bernardo (1976).

1.2.2 Method of Moments

The Method of Moments estimates the parameters c and 
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 using the average rate of deterioration and the deviation of the deterioration increments from the average rate of deterioration. To be more precise: let us consider the data as given above. We have that 
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, is the i-th observed deterioration increment, where i = 1,…, n. The duration of i-th increase in deterioration is defined as:
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Note that according to the calendar time the duration of i-th increase in deterioration is the time between (i-1)-th and i-th inspections (e.g. 
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Now, we define a random variable Di by the i-th deterioration increment:
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where 
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From the definition of a gamma process it follows that the deterioration increment Di is gamma distributed with shape parameter 
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 and scale parameter 
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 for i = 1,…, n and they are independent. The corresponding observation of Di is 
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We introduce the following average deterioration rate 
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(1.11)

The expectation of 
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(1.12)

Using (1.12) and the data given above the parameters c and 
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 can be estimated by 
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(1.13)

and, since the deterioration is cumulative, (1.13) simplifies to:
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(1.14)

Observe that (1.14) is the same as the first equation in the maximum-likelihood method (1.7).

Next, the deviation of the deterioration increments
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, i = 1, ..., n, from the average deterioration rate 
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(1.15)

From (1.15) and the data, the estimates 
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 and 
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 are given by:
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(1.16)

where 
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The solution of (1.14) and (1.16) provides the estimates 
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1.3 Expert’s assessment and parameters of a gamma process

In this section we present a way of choosing parameters for a gamma process that is assumed to represent a linear deterioration. As suggested in (Kallen, van Noortwijk [5]) the standard deviation of the gamma process is fixed in terms of the mean of the process. We present this method bellow.

We assume that the deterioration process is:
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The expectation and variance of [image: image55.wmf]t
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are given by (Appendix A.1):
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In order to give meaning to the parameters p and r, we specify the rate of the linearly varying mean 
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 and the square-root of the rate of the linearly varying variance 
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Combining (1.10) with (1.11) gives us that the parameters of gamma process (p, r) are given by:
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In [5] the authors suggest that the standard deviation 
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 can be fixed in terms of the mean [image: image65.wmf]m

. With the use of the coefficient of variation v, the standard deviation is given by:
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The gamma process is now given by:
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This approach can be observed in many of today’s models. The variance of the uncertain growth process is assessed by expert judgment and subsequently the coefficient of variation v is fixed in the model. 

The coefficient of variation v can be found by specifying the expected range of the defect depth that would be observed after one year. The expert may say that he/she believes that with 97.5% chance the defect depth after one year will be at most 2·µ. From this assessment we can calculate the value of v by solving the following equation:
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More precisely, for a given µ, we solve equation (1.16) with respect to v:
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(1.16)

The solution of (1.16) is v=0.429.

Using the coefficient of variation we can specify the parameters of a gamma process by assessing the mean µ and the expected quantile of the deterioration distribution at certain time. 
If the expected quantile is a fixed proportion of µ (e.g. 
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) then for any positive values of µ the parameter v remains unchanged.
This approach is used especially when the mean µ is given by a distribution function. Using the method proposed by (R. M. Cooke [9]) the uncertain parameter µ is assessed by expert judgment and subsequently is given by a distribution function. The distribution of the uncertain parameter can be updated with the likelihood of observed deterioration using Bayes’ theorem. 

2. The components deterioration and failure probability
Knowledge about the components deterioration is the issue that significantly affects planning inspections. For steel components, such as vessels and pipes, the main cause of deterioration is corrosion. The vessel contains different types of toxins that cause internal corrosion. The wall thickness of the vessel is lost as the corrosion increases. The pressure of a liquid aggregated inside the vessel at some moment crosses the vessels resistance and failure occurs.

Different types of mathematical models for components reliability assessment have been proposed. The reliability usually is assessed with the help of deterioration and decision models. The deterioration model is used to approximate and predict the actual process of aging. The decision model uses the deterioration to determine the optimal inspection times. References (van Noortwijk [1], Frangopol, Kallen, van Noortwijk [2]) provide an overview on deterioration and maintenance modelling.

The deterioration process often times is associated with the defect depth present at certain time. The main characteristics of this process are that the process is uncertain, the process equals zero until the first defect initiation, and the process is non-decreasing. As suggested in [1] and [2], and discussed in Section 1, the uncertain defect growth, because of its non-decreasing type of behaviour, can be modelled by a gamma process. The main reason is that the paths of a gamma process are always monotone (for definition of a gamma process we refer to Appendix A.1). The uncertain defect initiation can be modelled by a random variable that represents occurrence time. In some cases when defects initiation is less uncertain and occurs nearly after a component starts operating, the assumption is that the defects start to grow from the first day of operation. Regarding the confidence about presence of defects, the assumption that defects initiate from day 1 is the most conservative assumption.

The rate of defect growth is usually assessed with the help of experiments. In case of internal corrosion of steel vessels, the defect depth growth resembles a straight line. Therefore the defect growth is assumed to be a gamma process with linear shape function p·t and scale parameter r (p and r are positive constants). The defect growth, also referred to as the defect development, is denoted by Xt.

We present three different ways of deriving the component probability of failure. The failure time is associated with the defect’s depth in the way that when the defect’s depth reaches the critical level, denoted by y, the component is assumed to fail.

Failure probability 1

The first probability is based on the defect growth process. We assume that defects start to grow as soon as a component starts its operation phase. The failure probability F(t) is defined by the probability that a defect reaches the critical depth y at time t:
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where ga(x|·) is the gamma density defined in Appendix A.1.

Failure probability 2

We assume that the defect initiates according to the exponential distribution with parameter λ (for definition of exponential distribution see Appendix A.2). The defect development is again the gamma process Xt.

We define the process Yt by:
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where 
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The process Yt represents the situation of a defect that initiates at random time T, and its growth follows the gamma process. The failure probability G(t) is defined by the probability that the process Yt reaches the critical depth y at time t:


[image: image78.wmf]{

}

{

}

{

}

(),,

ttt

GtPYyPYyTtPYyTt

=³=³<+³>=



[image: image79.wmf]{

}

{

}

0

,0

t

s

tts

PYyTtPXyeds

l

l

-

-

=³<+=³=

ò



[image: image80.wmf]00

()()

tt

sts

FtsedseFseds

lll

ll

--

-=

òò

,





(2.3)

where F(t) is the failure probability defined in (2.1).

Failure probability 3

The third failure probability H(t) is defined by the probability of the event ‘in the time interval (0,t] at least one defect occurs that is deeper than y’. The derivation of this probability is based on (S Karlin, H M Taylor [3], page 180), and its application for the modelling reliability of the block mats that form the Eastern-Scheldt barrier can be found in (van Noortwijk, Klatter [4]).

The failure probability is calculated in the following way:

We rewrite the failure probability as one minus the probability that ‘in (0, t] no defects occur that are deeper than y’. Next, we condition the last event on the number of defects that have occurred up to time t. This is:


[image: image81.wmf]{'In (0, ] no defects that are deeper th

an  '|one occurence up to time }

Ptyt

=



[image: image82.wmf]{|N()=1}

tT

PXyt

-

=<

,






(2.4)

where T is the occurrence time of one defect, and N(t) is the Poisson process (The definition of a Poisson process is included in Appendix A.3)

In this case we use the Poisson process which represents the number of defects that have occurred up to time t. We assume that the successive times between the defects initiations are independent and exponentially distributed with parameter λ, and are denoted by the infinite sequence T1, T2 ,…. Under this assumption the first initiation occur at time T1, the second one at time T1+T2, and the nth at time T1+...+Tn.
Recall that the exponentially distributed random variable T, given the condition that there is only one occurrence up to time t where t >T, is uniformly distributed on the interval (0, t] (see [3]). Using this fact we have that (2.4) is equal to:
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where F is the failure distribution defined in (2.1).

Because we have assumed that the occurrences are independent it follows that:
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In order to get the unconditional probability, we sum up the probability given in (2.6) over all possible number of defects multiplied by the respective probability of a number of defects:
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Coming back to the failure probability H(t) we have that:
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(2.8)

where F is the failure distribution defined in (2.1).

The three failure probabilities F(t), G(t) and H(t) have been derived based on the defect growth process Xt. During the derivation, however, different assumptions about the defect initiations have been made. To illustrate the differences we present realisations of each deterioration process in Section 2.1.

2.1 Examples

First, we present the realizations of the gamma growth process. The process starts at t = 0, and its mean µ and coefficient of variation v are 0.5 and 0.429 respectively. Figure 1 shows the 50 sample paths of this process.

[image: image91.png]defect depth
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Figure 1: Realizations of the gamma process.

The second realizations are from the process Yt. 50 independent exponential times are sampled and from each time value the gamma path is sampled. The parameters of the gamma process are the same as in the previous sampling. The parameter of exponential distribution is λ=1. The average of sampled times is 1.0376. The minimum and maximum sampled time is 0.039 and 3.1551 respectively. The realisations are shown in Figure 2.
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Figure 2: Realizations of the process Yt.

In the last case we again sample 50 exponential times. The gamma process is released from the time values: t1, t1+ t2, t1+ t2 + t3, and so on. The gamma parameters are the same as in the previous case and the parameter of exponential inter occurrence times is λ=1. The realisations are shown in Figure 3.
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Figure 3: Realizations of the gamma process with exponential times between initiations.

For 50 sampled time values t1,..., t50, in the example above, 20 defect initiations fell in the time interval [0, 20]. Figure 3 shows those 20 defects. According to the Poisson process with parameter λ, the expected number of occurrences up to time t is λ·t (see Appendix A.3). For the simulation above λ=1 and the expected number of occurrences up to time 20 is 20. For our 50 simulated time values, we have that:
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The average of t1,..., t20 is 0.9764, the maximum and minimum values are 2.9468 and 0.0235 respectively.

An illustration of the three processes realizations for different values of the parameters µ, λ and v are included in Appendix B.

The probabilities F(t), G(t) and H(t), given by (2.1), (2.3) and (2.7) respectively are shown in Figure 4. The critical defect depth y is 5, µ=0.5, v=0.429 and λ=1.
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Figure 4: Failure probabilities.
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Figure 5: Failure probabilities in the log10 scale.

Figure 5 shows the three probability distributions in the log10 scale. In this plot we can see how the distributions approach zero.

For certain specification of the maximum allowable failure probability we can calculate the time for which the failure probability equals the maximum allowable failure probability. We present the time value for each failure probability equal to 0.001 (-3 on the log10 scale, Figure 5). 

F(t1)=0.001 
[image: image98.wmf]Þ

 t1= 6.1759,

G(t2)=0.001 
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 t2= 6.6609,

H(t3)=0.001 
[image: image100.wmf]Þ

 t3= 6.5586.

3. Uncertain rate of defect initiation
Modelling defect initiation can be employed especially to the components for which the maintenance actions are applied. A component is being fixed whenever a defect has been detected. After that the component is assumed to be free of defects, and new failure probability is calculated. Usually there are small amount of available data to proceed with statistical estimation for the defect initiation rate and specification of the value of this rate is difficult. One of the options is to assign to the uncertain rate of defect initiation a distribution function. This distribution represents the possible range of the uncertain parameter and primarily it can be assessed with the help of expert judgment. Next, using the Bayes’ theorem (Appendix A.5), the posterior distribution of the uncertain parameter is calculated. We present the two updating processes, where the first one is based on observing the time of the last defect initiation. This situation can be observed in (van Noortwijk, Klatter [4]). The second update is based on the likelihood of observed number of defects at certain time. We present the two updating processes below.

Two stochastic processes are considered. The first process represents the defects initiations. It is assumed that the number of defects that have initiated up to time t is Poisson distributed with parameter λ·t. The inter occurrence times are assumed to be independent and exponentially distributed with the common parameter λ. The failure probability is calculated as shown in Failure probability 3 (previous section). We recall that the failure probability is the probability that in the time interval [0, t] at least one defect occurred that is deeper than the critical defect depth y, and this probability is denoted by H(t):
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(3.1)

where F(t) is given by (2.1), and represents the probability that the defect depth at time t is bigger than y.

3.1 Updating process 1

The distribution of the uncertain parameter λ is chosen to be a gamma distribution with shape parameter u and scale parameter w. There are two main reasons why the gamma distribution is chosen. The first reason is that the gamma distribution is defined for positive arguments. This corresponds to the fact that λ is positive. The second reason is that the gamma distribution is said to be conjugated with respect to the exponential likelihood function. This means that given the likelihood of observed initiation times the posterior distribution over λ is again gamma. We present the conjugated property of gamma distribution below. 

Consider the following data of defects initiation: t1, t2+ t1,..., tn+...+ t1. The likelihood of these data is:
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(3.2)

where in the last equality we have assumed that 
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. It means that only the lased observed initiation is needed to derive the likelihood function. This is the so-called l1-norm symmetric property, as the likelihood function (3.2) can be written as a function of the l1-norm. 

The prior distribution of λ is:
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(3.4)

The likelihood multiplied with the prior distribution of λ is:
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(3.5)

and the posterior:
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(3.6)

We see that the distribution given in (3.6) is the gamma distribution with parameters n+ u and w+Sn. 

The distribution of uncertain parameter is included in the model by averaging the failure probability H(t) (3.1) with respect to λ. The failure probability is now:
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(3.7)

The last equality is derived based no the moment generating function of a gamma random variable.

3.2 Updating process 2

We have seen that because of the l1-norm symmetric property of the likelihood function (3.2) only the last initiation has to be recorded in order to proceed with updating the distribution of the uncertain parameter λ. Note that, however, in the case of real inspection only the number of defects that is present at the time of inspection is observed. With this information the process of updating the distribution of λ is a bit different. We present this updating process below.

Let T be the time of inspection. We assume that at the time T there are n defects observed. Using the Poisson process N(t) the posterior density of λ given n observed defects is:
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where 
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 is the density of nth initiation given that there are n defects up to time T (0< s ≤T).

Note that there is no difference between (3.6) and the density 
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. This is because observing the nth initiation time sn and that at time T there are n defects, gives the information that the n+1 defect has not initiated within the time interval [sn, T - sn]. Not observing the exponentially distributed random variable within some time does not change the distribution of this random variable, therefore this information does not affect the parameter λ. For example let T be exponentially distributed. Assuming that s, t > 0 the conditional probability of T is:
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(3.9)

In order to calculate the density (3.8) we have to find the distribution function of the nth defect initiation given that there are n defects up to time T. For that reason we calculate the following probability:
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(3.10)

where 0< s ≤t, and n ≥ 1.

Recall the formula for the probability of a Poisson process with intensity λ being equal to n (see Appendix A.3):


[image: image117.wmf]{

}

()

()

!

n

t

t

PNtne

n

l

l

-

==

,






(3.11)

and the formula for the density of Sn (see Section 1.1):
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(3.12)

The numerator of (3.10) is:
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Substituting (3.13) and (3.11) into (3.10) yields:
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(3.14)

Taking the derivative of (3.14) with respect to s and substituting to (3.8) yields:
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(3.15)

The integral (3.15) can be computed numerically and the formula (3.7) for the failure probability 
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(3.16)

where T is the time of inspection and n is a number of observed defects.

3.3 Examples

We present an example of updating the λ distribution based on the time of inspection T and the number of observed defects n. The prior distribution of λ is the gamma distribution with mean 1 and the 97.5 % quantile equal to 2 (Figure 6). The rate of occurrences 1/λ ranges from 1/2 and as the value of λ decrease the rate of occurrences increase. It is assumed that the time of inspection is T=10 and the number of defects n=10. The posterior density of λ (3.15) is shown in Figure 6. 
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Figure 6: The density of λ.

The updated failure probability (3.16) is shown in Figure 7. The prior probability in this figure is given by (3.7). The parameters of the gamma growth process are chosen similarly as in the examples presented in previous section, the critical defect depth y is 5, µ=0.5 and v=0.429.
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Figure 7: The failure probability.
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Figure 8: The failure probability in log10 scale.

The time for which the failure distribution equals 0.001 (-3 on the log10 scale) is:
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 t = 6.5586,

where 
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 is the prior distribution, and
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 t = 6.5361,

where 
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 is the posterior distribution.
4. Uncertain rate of defect growth

In this section we present an example of the defect growth model that is based on (Kallen, van Noortwijk [5]). This example shows the possibility of modelling the corrosion (deterioration in general) with a gamma process. Additionally an uncertain input parameter for corrosion rate (average rate of deterioration) is given by the prior distribution. Using Bayes’ theorem (Appendix A.5), the distribution of corrosion rate is updated with the likelihood of observed degradation, so that the posterior distribution of corrosion rate is available. For updating the corrosion rate distribution we consider two situations. One situation is where perfect measurements are assumed to be taken, and this is presented in Section 4.1. Section 4.2 presents the two updating approaches for imperfect measurements. 
4.1 Perfect inspections

Here, we present the process of updating the corrosion rate distribution based on perfect measurements. The defect growth process is a gamma process given by:

Xt~
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(4.1)

where v is the coefficient of variation and µ is the uncertain corrosion rate (see Section 1.3).

Choosing the uncertain corrosion rate distribution we constrain our self to the conjugated distributions. We want to choose a distribution that after and prior to update, belongs to the same family of distributions. Given this constraint we can select either a gamma distribution for the 1/µ or an inverted gamma for µ. Those options are equivalent and offer the conjugated property. We present the case with an inverted gamma distribution. 

Let the corrosion rate prior density 
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(4.2)

(Definition of an inverted gamma density is in Appendix A.4).

The likelihood of the measurement
[image: image139.wmf]ˆ
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 of the gamma distributed defect depth at time t (4.1) given the mean µ, multiplied with the prior density of µ, is:
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(4.3)

The posterior 
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 using the Bayes’ theorem (Appendix A.5) is:
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(4.4)

where 
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We see that the posterior (4.4) is again an inverted gamma distribution. In general, given the set of perfect measurements of cumulative defect depth 
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, the set of inspection times ti, i = 1,…, n, where 0 = t0 < t1 < … < tn, and using the independent increments of the gamma process, the posterior corrosion rate density is:
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(4.5)

which, because of cumulative measurements reduces to
:
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(4.6)

where 
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The failure probability 
[image: image151.wmf]()

Ft

)

 is:


[image: image152.wmf](

)

(

)

1

1

00

1

()1

()

pt

a

b

y

a

px

pt

p

b

Ftxeeddx

pta

mm

m

m

m

+

¥

-

-

-

æö

=-=

ç÷

GG

èø

òò



[image: image153.wmf](

)

(

)

(

)

1

1

1

00

1

1

()

pta

pt

y

a

pxb

pt

bp

xeddx

apt

m

m

m

++

¥

-+

-

æö

=-=

ç÷

GG

èø

òò



[image: image154.wmf](

)

(

)

(

)

(

)

1

0

1

()

pt

y

a

pt

pta

bppta

x

dx

apt

pxb

-

+

G+

=-

GG

+

ò

,




(4.7)

where y is the critical defect depth and 
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4.2 Imperfect inspections

A more realistic approach is to update the knowledge about corrosion rate based on imperfect inspections. We present the two methods that account for measurement error in updating the corrosion rate distribution. 
4.2.1 Sampling approach

In this section we present the approach introduced in [5]. Again we want to assign a distribution function for the corrosion rate parameter (µ) and update this distribution based on imperfect measurements. First, a new process is introduced, which includes the original process [image: image156.wmf]t
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 together with a normally distributed error 
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(4.8)

The measurement taken during inspection is assumed to be an observation from the process 
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. The likelihood of the measurement 
[image: image162.wmf]ˆ

y

 given the corrosion rate µ is determined by the convolution:
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where 
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 is normal density function with parameters as given in (4.8). 
The upper bound in the integral (4.9) is reduced to the value of 
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 for which the argument of the gamma density is not negative, otherwise the gamma density equals zero.
The likelihood extended to the case with multiple inspections is given by:
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where 
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 are the imperfect measurements made at times ti, i = 1,…, n, 0 = t0 < t1 < … < tn, and 
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 are respective errors. As previously the integrated densities of the deterioration process are gamma: 
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(4.11)

Because the gamma process has independent increments the joint density of n gamma increments is the product of n gamma densities (4.10).
We assume that the errors are independent, that is 
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. In a more general case the dependence between measurement errors may be introduced by using a multivariate normal distribution with the covariance matrix with non-zero elements on the non-diagonal cells. Notice also that the joint density 
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. M. J. Kallen and J. M. van Noortwijk in [5] suggest that in order to compute the likelihood given in (4.10) we can simulate the errors 
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Next, the likelihood in (4.10) can be formulated as an expectation, which in turn can be approximated by the average of the products:
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(4.12)
where 
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Here, the law of large numbers is used in order to perform the so called Monte Carlo integration. For each inspection i we sample 
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Equation (4.12) can be now substituted in Bayes’ formula (Appendix A.5), which then can be solved by numerical integration to obtain the posterior distribution for corrosion rate given imperfect measurements. The authors say that the choice for the use of simulation to determine the likelihood (4.10) greatly reduce the efficiency of the model, but also the choice for the prior distribution is no longer restricted to the inverted gamma density as in the case of perfect inspections.

4.2.2 Last measurement approach

The other way to look at the effect of measurement error on the posterior corrosion rate distribution is to use the fact that in the case of perfect inspection the defect depth, which is measured during the last inspection, and the time in which the defect have grown from 0 to the observed depth provide complete information for updating the corrosion rate distribution. Assuming that the defect starts to grow at time t = 0 and that an imperfect measurement is taken at the time of the last inspection, we can update the corrosion rate based on the possible range of the actual defect depth at the time of the last inspection. This situation is illustrated in Figure 12. The actual defect depth at the time of the last inspection is represented by the measurement’s error density.
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Figure 9: Updating the corrosion rate distribution with imperfect measurement.
Choosing an inverted gamma distribution for the prior distribution of the corrosion rate (4.2) without taking into account the number of perfect measurements of the cumulative defect depth that are available, only the last measurement is taken for updating the prior distribution (4.6). We say that, if we know the defect initiation then only the last measurement and the error made taking this measurement should provide enough information for updating the corrosion rate distribution. 
The likelihood of the imperfect measurement y given the corrosion rate µ is given by (4.9). Using Bayes’ theorem (Appendix A.5) and the prior corrosion rate density (4.2), the posterior density of the corrosion rate given the imperfect measurement y, is:
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(4.13)
where 
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 is the normal density function with parameters as given in (4.8).

Now, we can derive the new failure probability by integrating the density of the defect depth given in (4.1) with respect to the posterior corrosion rate density (4.13). Numerical integration is an option to evaluate this integral. The failure probability given the new density of the defect depth is the probability that the defect depth is bigger than the critical defect depth (Failure probability 1, Section 2).

Note that in the case where we don’t know the time of defect initiation, we need two measurements of the defect depth in order to proceed with an update. Given two imperfect measurements the posterior (4.13) changes to the one for which the time t is the time between the first and the last inspection, y is the difference between the last and the first imperfect measurements, and 
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 (see Appendix A.6). This situation is illustrated in Figure 13. 
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Figure 10: Updating the corrosion rate distribution with imperfect measurements.
4.3 Examples

First, we present an example of updating the corrosion rate distribution in the case of perfect inspection. We assume that the corrosion rate distribution is the inverted gamma distribution with mean 0.5 and 97.5 % quantile 1.5 (Figure 11). We assume that at time T = 4 we have observed a defect depth of the size 2. The updated corrosion rate distribution is (4.6), where the coefficient of variation v from the gamma growth process is 0.429. The density of this distribution is shown in Figure 11.
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Figure 11: The corrosion rate density.

The failure probability (4.7) for the prior and posterior distribution of the corrosion rate is shown in Figure 12. Figure 13 shows the failure probabilities in log10 scale.
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Figure 12: The failure probability.
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Figure 13: The failure probability in log10 scale.

The time for which the failure probability equals 0.001 is:
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 t = 0.9778 for the prior corrosion rate distribution, and
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 = 0.001 
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 t = 4.2154 for the posterior corrosion rate distribution.

Next, we present update of the corrosion rate distribution that is based on imperfect inspections. Figure 14 shows four corrosion rate densities, where f prior is the inverted gamma density as in the previous example (Figure 11). f posterior 1 is the density updated with the defect depth x = 2, the time of the defect growth T = 4 and normally distributed measurement error ε with mean 0 and standard deviation σ = 0.2·√2 (4.13), f posterior 2 is the density updated with the perfect measurement x = 2 and the time T = 4 (also shown in Figure 11), and f posterior 3 is the density given by the simulation approach. In the f posterior 3 we have used 5 inspections with the time between inspections T = [1, 1, 1, 1], the defect growth between inspections x = [0.4, 0.5, 0.6, 0.5], and N=1000 simulated errors with mean 0 and standard deviation σ=0.2. The coefficient of variation v from the gamma growth process in all updated densities is 0.429.
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Figure 14: Corrosion rate densities for perfect and imperfect inspection.
Figure 15 shows posteriors 1 and 3 apart from the other densities in Figure 14. Note that the total defect growth and the time between first and last inspections used for the posterior 3 and posterior 1 are x = 2 and T = 4.
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Figure 15: Corrosion rate densities for imperfect inspections.
We have assumed that the error in the simulation approach that is made at each inspection is normal with mean 0 and standard deviation 0.2, and that the errors are independent. The error in the measured defect growth (the difference between errors made at two inspection) is then normally distributed with mean 0 and σ = 0.2·√2. Figure 16 shows the histogram of the simulated errors and Figure 17 shows the errors in the measured defect growth between successive inspections.
[image: image208.png]



Figure 16: Measurement errors.
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Figure 17: Error in defect growth.
The error density used for the posterior 1 is shown in Figure 18. This error corresponds to the difference between the error made at the last inspection and the first inspection.
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Figure 18: Density of the defect growth error.
The failure probability for each posterior corrosion rate density in Figure 14 is shown in Figure 19. The probabilities in log10 scale are shown in Figure 20.
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Figure 19: Update of failure probabilities for perfect and imperfect measurements.
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Figure 20: Updated failure probabilities in log10 scale.
The time for which each posterior probability equals 0.001 is presented below:
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 t = 4.0418 for the posterior 1,
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 t = 4.2154 for the posterior 2, and
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 t = 4.0549 for the posterior 3.
5. Conclusions
Planning inspections is strongly related to knowledge about the degradation. This knowledge together with mathematical models allows accurate predictions of failure time. We have presented in this report the mathematical models that estimate the failure probability. Each model is based on the gamma process representing the defect depth growth. For a given specification of the critical defect depth (the maximum allowable defect depth) we can calculate probability that a defect is deeper than the critical depth at certain time. Based on this probability we can estimate the failure time.

In Section 2 we have shown three different failure probabilities. In the first case Failure probability 1 we have assumed that a failure occurs when a defect reaches the critical defect depth and that defects start to grow at t = 0. The failure probability is the probability that a defect is deeper than the critical depth. In the second case Failure probability 2 we have assumed that a defect initiates according to the exponential distribution function. We define the process Yt that is absorbed at zero for an exponential time and after initiation the process follows the gamma process. The failure probability is the probability that the process Yt is bigger than the critical defect depth. The last failure probability presented in Section 2 Failure probability 3 is derived based on the gamma process (defect depth growth) and the homogeneous Poisson process (defects initiations). We have assumed that the times between defect initiation (inter arrival times of defect occurrences) are independent and exponentially distributed with the common intensity λ. The failure probability is the probability that in an interval (0, t] at least one defect occur that is deeper than the critical depth. 

The examples shown in Section 2 and in Appendix B (1-4) present the failure probabilities F(t), G(t) and H(t). In each example the failure probability G(t) is shifted to the left the most, which means that the time for which this probability equal to any value from 0 to 1 is bigger than for the two other probabilities. The 0.001 quantile of each probability is shown and in examples 1-3 the 0.001 quantile of the failure probability F(t) is the smallest. In example 4 the failure probability H(t) offers the earliest quantiles. This is because λ in this example is relatively big (10), which means that the average time between defect initiations is 0.1. The second reason is that the failure probability H(t) is the probability that at least one defect becomes critical in some period of time, and since the defect initiation is frequent (in average 0.1) this probability accounts for all possible defects that may occur in this time period.
Next, in Section 3 we have extended the model with failure probability H(t) to the model in which the intensity λ of the defects initiations is represented by a distribution function. Two updating procedures have been shown. The first one is based on observing the times of defect initiations and, in fact, it turns out that the only information needed for updating the distribution of λ is the time of the last defect initiation and the number of present defects up to this time. The second updating process is based on the number of observed defects at certain time. This process seems more realistic, since the real inspection that is carried out at certain time provide with the number of observed defects and not with the time of the last defect initiation. The effect of updating the distribution of λ is shown in Appendix B 5-6. In general this update has relatively small influence on the failure probability.

Section 4 presents the model with failure probability F(t) that is extended to the model in which the rate of defect growth is represented by a distribution function. The rate of defect growth, also referred to as the corrosion rate, is updated with the likelihood of the observed defect depth at certain time. The effect on the failure distribution for different updates is shown in Appendix B 7-9. This effect is relatively big compared with the effect that is achieved by updating the rate of defect initiation. Note that updating the corrosion rate distribution depends on the assessed variability of the defect growth process (see formula (4.6) in Section 4). The examples 8 and 9 use the same observation for updating the corrosion rate distribution and different assessment of defect growth process variability. 
The update of the corrosion rate distribution given imperfect measurements is proposed based on the two approaches. Appendix B 10-11 shows the difference between the updated distributions. Considering 5 inspections for the simulation approach and 2 inspections for the last measurement approach there is in general small difference between the distributions. Using the last measurement approach the calculations of the posterior corrosion rate and the failure probability are much faster than for the case of simulations. However, in the case of simulations the choice of the corrosion rate distribution is not restricted to the inverted gamma distribution. In this case we can use a distribution function for the corrosion rate given by Expert judgment method [9].
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Definition 1.

We say that a random variable 
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The expectoration and variance of a gamma distributed random variable X with shape parameter 
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Definition 2.

Let 
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(iii)
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A.2)
Definition 3.

We say that a random variable 
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The expectoration and variance of an exponential distributed random variable X with parameter 
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A.3)
Definition 4.

We say that a random variable 
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 taking non-negative integer values {0, 1, 2,...} is Poisson distributed with parameter 
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The expectoration and variance of Poisson distributed random variable X with parameter 
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Theorem.

Let X1, X2, ... be independent and exponentially distributed with parameter λ. Define 

N(t)=min{ k : X1 + X2 + ...+ Xk ≤ t and  X1 + X2 + ...+ Xk+1 > t }

then N(t) has a Poisson distribution with parameter λ·t. 

The proof of this theorem can be found in [7].

A.4)
Definition 5.

We say that a random variable 
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where 
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is a gamma function and 
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is an indicator function, as in definition 1.

The expectoration and variance of an inverted gamma distributed random variable X with shape parameter 
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Variance:
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A.5)
Bayes’ theorem provides the technique for calculating a posterior distribution from the prior and the likelihood function. The readers interested in more information about Bayesian inference are referred to [6].
The continuous version of Bayes’ theorem is given by:
A posterior density 
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The proof of this theorem can be found in [6].
A.6)
Definition 6.

We say that a random variable 
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 is normally distributed with mean 
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where x takes the values from minus infinity to infinity.
The expectoration and variance of a normally distributed random variable X with mean 
[image: image287.wmf]m

 and standard deviation 
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Second moment:
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Variance:
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The characteristic function of the normal variable X with mean 
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 and standard deviation 
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For two independent random variables X~
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, the characteristic function of X+Y is:
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From the characteristic function above we have that X+Y~
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Appendix B: Examples
1)

F – process 1, G – process 2, H – process 3. The critical defect depth y = 5, λ (1/the rate of defect occurrences) is 1, the mean per unit of time µ of the gamma process is 0.5 and the variance of the gamma process is established based on that the defect depth increase per unit of time is less then (6·µ) 3 with 97.5 % probability.
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F(t1)=0.001 
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 t1= 0.3009,

G(t2)=0.001 
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 t2= 0.8092,

H(t3)=0.001 
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 t3= 0.7319.

2)

F – process 1, G – process 2, H – process 3. The critical defect depth y = 5, λ = 0.1 (the average rate of occurrences is 10), µ = 0.5 and the variance of the gamma process is established based P{X1≤ 6·µ} = 0.975.
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F(t1)=0.001 
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 t1= 0.3009,

G(t2)=0.001 
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 t2= 1.9102,

H(t3)=0.001 
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 t3= 1.8723.

3)

F – process 1, G – process 2, H – process 3. The critical defect depth y = 5, λ = 1 (the average rate of occurrences is 10), µ = 0.5 and the variance of the gamma process is established based P{ X1≤ 1.5·µ} = 0.975.
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F(t1)=0.001 
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 t1= 7.8519,

G(t2)=0.001 
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 t2= 8.2254,

H(t3)=0.001 
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 t3= 8.1862.

4)

F – process 1, G – process 2, H – process 3. The critical defect depth y = 5, λ = 10 (the average rate of occurrences is 0.1), µ = 0.5 and the variance of the gamma process is established based P{ X1≤ 1.5·µ} = 0.975.
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F(t1)=0.001 
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 t1= 7.8519,

G(t2)=0.001 
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 t2= 7.9335,

H(t3)=0.001 
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 t3= 7.7405.

5)

Uncertain rate of defect initiations: the gamma distribution for λ with the mean = 1 and v = 0.778 (P{ λ≤ 3·µ}=0.975), the time of inspection T=10 and the number of observed defects n=10.
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 t = 6.5584, the prior
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 t = 6.5284, the posterior

6)

Uncertain rate of defect initiations: the gamma distribution for λ with the mean = 1 and v = 0.778 (P{ λ≤ 3·µ}=0.975), the time of inspection T=10 and the number of observed defects n=2.
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 t = 6.5584, the prior
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 t = 6.8128, the posterior

7)

The gamma process that represents the defect growth is assumed to have the variation such that with 97.5% chance the defect depth increase per unit of time is at most 2·µ, where µ is the corrosion rate. The critical defect depth is y = 5. The distribution of the corrosion rate is the inverted gamma distribution with the mean 0.5 and the 97.5% quantile 1.5. The inspection time is T=2 and the observed defect depth is x = 2.
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 t = 0.9778 for the prior corrosion rate distribution, and


[image: image354.wmf]()

Ft

 = 0.001 
[image: image355.wmf]Þ

 t = 1.6074 for the posterior corrosion rate distribution.

8)
The same sating as in 7) except the inspection time T = 4 and the observed defect depth x = 1.
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 t = 0.9778 for the prior corrosion rate distribution, and
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 t = 8.3707 for the posterior corrosion rate distribution.

9)
The gamma process that represents the defect growth is assumed to have the variation such that with 97.5% chance the defect depth increase per unit of time is at most 1.5·µ, where µ is the corrosion rate. The critical defect depth is y = 5. The distribution of the corrosion rate is the same as in example above. The inspection time is T=4 and the observed defect depth is x = 1.
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 t = 1.1059 for the prior corrosion rate distribution, and
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 t = 12.9146 for the posterior corrosion rate distribution.

10)
Here we present the difference between the posterior distribution given by the last measurement approach (posterior 1) and the posterior distribution given by the simulation approach (posterior 3). The data used for the posterior 1 is x = 2, T = 4, and the error with mean 0 and standard deviation σ = 0.2·√2. The data used for posterior 3 is x = [0.2, 0.7, 0.8, 0.3], T = [1, 1, 1, 1], and N = 1000 error with mean 0 and σ = 0.2. The coefficient of variation of the gamma growth process is v = 0.429.
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 t = 4.0418 for the posterior 1, and
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 = 0.001 
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 t = 3.8375 for the posterior 3.
11)
Settings for the posterior 1 are the same as in the previous example. For the posterior 3 we use only two inspections with data T = 4 and x = 2. The error is assumed to be the same as in the previous example.
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12)
The prior and posterior 2 are the same as used in Section 4.3. The posterior 1 uses the following data: T = 4, x = 2 and the error with σ = 0.4·√2.
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 t = 0.9778 for the prior,
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 t = 3.7215 for the posterior 1.
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 t = 4.2154 for the posterior 2.
Appendix C: Software 1
This appendix is intended to familiarize a user with the software developed for the calculation of the time inspection intervals. The S-NII methodology developed for the inspection planning purposes can effectively incorporate information resulting from inspection. Factors such as the corrosion rate, confidence can change given certain observation. These changes contribute to a new integrity curve. With the help of the software, the updated integrity curve, corrosion rate distribution and the next inspection time interval are calculated.


C.1
Input variables

The software interface is presented in Figure 21. All the model inputs are in red circles. These inputs can be classified into two main categories. The first one (presented below) contains those variables that are required for the first model run. 

[image: image1]
Here the specification of the estimated corrosion rate is made. The inputs for that are: Muestimate – estimated corrosion rate (S-RBI CRa), ConfProb – 1-Ecxeedance probability, and v – the coefficient of variation of the corrosion rate distribution. The inherent uncertainty from the gamma deterioration process is given in the coefficient of variation c. Both v and c can be assessed separately or according to the confidence classification. The maximum corrosion allowance is y, MinIntL is the minimum integrity level (the maximum allowable probability of unacceptable defect) and t is the upper time boundary for the integrity curve calculation. 
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Figure 21: The input date includes the specification of the corrosion rate estimate, the maximum corrosion allowance level, the minimum integrity level, the maximum time t for the calculation, POD and maximum defect depth measurement
The second category of input variables concerns the updating process. Here we make distinction between three different cases. The case of no detection, the case when the defect is detected first time and no inference can be made about the defect growth, and finally the second or nth detection. Only in the last case a corrosion rate distribution undergoes an updating process.

[image: image391.png]Muestimate =

ConfProb =




First case: no detection. 

Here the probability of detection is specified: z is the detection threshold and 1-POD(z) is the probability that a defect of a size z will not be detected, given that there is a defect. It is advisable to set the value of 1-POD(z) at most 0.1. (Defects with a size bigger then z will be detected at laest with the probability 0.9).

[image: image392.png]Firt case: no defects




Second case: first detection. 

In this case the information about a defect is not sufficient to update the corrosion rate distribution. Only the defect depth is measured and the time of initiation of a defect is unknown. However, the confirmation of a component’s actual condition is received and the time till the next inspection is calculated based on the prior distribution of the corrosion rate. The inputs here are: defect depth and MinIntL. 

[image: image393.png]Second case: defect fist ime dstected
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Third case: subsequent detection. 

Subsequent detection provides us with the information about the defect growth speed. With the previous measurement and the time between inspections we can calculate the defect growth rate, which contributes to the update of the corrosion rate distribution. The inputs: defect growth is the increment of a wall loss (the first measurement is taken from the first observation (defect depth) – second case), Time duration is the time between measurements, and MinIntL.

C.2
Calculations
The basic calculation is made by pressing button 1 (Figure 21). As a response, the integrity curve appears on the left plot. The user can change the scale of the vertical axes of this plot by changing the pop-up menu from uniform scale to the log10 scale. The perpendicular on the integrity curve plot indicates the minimum integrity level that is chosen in the input data (the line is drawn through the value log10(MinIntL)). 
The right plot shows the corrosion rate density.[image: image394.png]Third case: defect second time detectec




 Below this density the mean and the following probabilities are shown: probability of the corrosion rate being less than Muestimate – Prob Muest, the probability that the corrosion rate is between Muestimate and two times this value – Prob 2·Muest, and the probability that the corrosion rate is between 2·Muestimate and 4·Muestimate. 

The next time for inspection, which is calculated with the prior corrosion rate density, is shown in text window Min Int L Time. We can calculate the next inspection time for different specification of the minimum integrity level and unchanged input for the rest parameters, by pressing button 2 (cal Time).
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The Min Int L Time window then shows the new time for inspection given that different consequence of failure is considered.

Next, we calculate the next inspection time, given that no defects have been found. Pressing button 3 programme calculates the next time of inspection (time value) and update of the integrity curve (log10(Prob)). The actual reduction of the integrity curve depends on the time of the inspection. If for instance the inspection is carried out at the time when the integrity curve meets its allowance level (Min Int L Time), then the new integrity curve, at this time, drops from log10(MinIntL) up to log10(Prob).
Button 4 calculates the next inspection time interval based on the prior corrosion rate distribution. The time value appears in the text window above the button (Time value).

The last case corresponds to the situation when the corrosion rate distribution is updated. After pressing button 5 the new updated curves appear on the plots. The posterior corrosion rate density appears on the right plot (green dashed line) and the integrity curve computed with the posterior corrosion rate density on the left one (green dashed line). Above the calculation button we have two text windows. The one on the top (Remaining Time) indicates the remaining time till the posterior integrity curve crosses the minimum integrity level, and the one below (Total time value) shows the first inspection time under posterior integrity curve. Note that, if the posterior corrosion rate density is concentrated on the smaller range of rates, then the time value shown in Total time value is bigger than the one computed with the prior information (Min Int L Time).
Appendix D: Software 2
The software presented in this appendix is designed to help setting the parameters of the model. Figure 22 shows the software interface. 

The parameters in the circle on the left-upper corner (Figure 22) determine the coefficients of variation c and v. First, we specify the factor for the gamma range, which multiplied by the mean (Mu·t) is the 97.5% quantile of the gamma distribution of the maximum defect depth. This distribution is shown on the right-upper plot in Figure 22 (dashed line). The second density in this plot (blue line) is the average deterioration density (definition of this density is given in Chapter 4). The range of this density is specified by the total factor, which multiplied by the mean (Mu·t) is the 97.5% quantile of the distribution. The values c·and·v are calculated for given specifications of the gamma range and the deterioration range. Note that if the deterioration range is just above the gamma range, then v is nearly zero, and the average deterioration density approaches the gamma density.
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Figure 22:  For a given specification of the uncertain maximum defect depth range (total factor) and the mean Mu•t (left-upper corner), the program calculates the deterioration model input parameters v and c.

The density plotted on the right-lower corner in Figure 22 is the corrosion rate density. The range of this density is determined by v. A user can also calculate the distribution quantiles. The specification of the distribution quantiles are given in the text windows below the plots. The quantiles below maximum defect size plot are computed for the average deterioration distribution. 

The program includes a possibility to update the corrosion rate. For a given size and timed (Figure 22) the new corrosion rate is calculated. The new average deterioration density (blue line) and corrosion rate density (dashed line) appear in the plots (not shown in Figure 22).
� Third condition in the definition of a gamma process states that this process has independent increments. The likelihood function is then a product of independent gamma distributed increments.


� If we consider perfect inspections (perfectly measured defect depth) then only the last inspection is needed for calculation the posterior distribution. The last inspection provides the measurement of the total defect depth.
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