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Summary

This thesis describes the improvement of the accuracy and performance of the Delft3D-FLOW
software for strongly non-hydrostatic flow applications. A non-hydrostatic free-surface flow
model in z-grid formulation based on a pressure-correction method is introduced. The model
differs from the original non-hydrostatic Delft3D-FLOW model in the way the pressure is treated.
The splitting in hydrostatic and non-hydrostatic pressure components is not applied anymore
and the pressure terms are implemented with a θ-scheme, allowing for a second-order accuracy
in time.

The dynamic boundary condition at the free surface is realized with a linear interpolation
of pressure values, leading to a non-symmetric pressure-correction matrix. The BiCGSTAB
method is implemented as a non-symmetric iterative solver for the resulting system of equations.
The convergence of the iterative solver is improved by replacing the existent tridiagonal Jacobi
preconditioner with a modified incomplete LU decomposition.

To assess the capabilities of the model, test simulations are done for a standing wave in a
closed basin, for the wave propagation over a submerged bar and for a buoyancy-driven flow in
a ship lock. It is found that the new model is computationally efficient and gives more accurate
results than the previous model. In particular, the interpolated pressure condition at the surface
improves the accuracy of the phase speed of traveling waves, while adding little computational
cost to the overall solution process.
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Chapter 1

Introduction

The Dutch research and consultancy institute WL|Delft Hydraulics, now part of Deltares, devel-
oped the software Delft3D-FLOW originally for the solution of the three-dimensional shallow-
water equations. The code is able to efficiently and accurately calculate environmental flows
that feature a small vertical velocity component compared to the horizontal velocity components
and waves that are much longer than the water depth. In this case the pressure field can be
assumed to be hydrostatic, which means that the pressure is determined only by the weight of
the water. Due to the increase of computing power it became feasible over the years to resolve
finer and finer details in the simulations. When approaching smaller time and length scales,
however, some of the approximations inherent to the Delft3D-FLOW shallow-water code are
not valid anymore and have to be revised.

In order to compute flows with a significant vertical velocity more accurately, by the end
of the 1990s several non-hydrostatic models were proposed in the literature. The idea behind
these models is to add an extension to existing shallow-water software in order to obtain a more
realistic pressure field. This is done by introducing a non-hydrostatic pressure component as
a correction to the hydrostatic pressure. By switching off the non-hydrostatic extension the
original shallow-water code is obtained. Especially in weakly non-hydrostatic flows, where the
deviation from the shallow-water condition is small, these methods give accurate results with a
moderate increase in computational work.

The non-hydrostatic extension of Delft3D-FLOW is based on a z-grid formulation in the
vertical direction, while the original model is formulated using a σ-grid. Bijvelds [2001] imple-
mented a hydrostatic z-grid model in Delft3D-FLOW to be able to simulate stratified flows in
estuaries with a steep bottom topography. In Bijvelds [2003] he extended this model with a
non-hydrostatic module, which is still present in the current Delft3D-FLOW version 3.26. The
scheme is based on the method of Casulli [1999], but there are some important differences: Bi-
jvelds uses a pressure-correction method instead of a fractional step method, he uses an only
first-order accurate alternating direction implicit (ADI) method in the hydrostatic prediction
step instead of solving a directionally coupled system for the preliminary surface elevation, and
he does not realize a θ-scheme for the time integration of the pressure terms, as Casulli did.

Ever since the non-hydrostatic model was available in Delft3D-FLOW, attempts were made
to use it for simulations of strongly non-hydrostatic flows, like buoyant jets, short waves and flows
over hydraulic structures. Although the results were qualitatively much more accurate than the
results obtained with the hydrostatic scheme, the results were quantitatively unsatisfactory in
some cases and the solution process was computationally expensive. There were several possible
reasons why the non-hydrostatic model of Bijvelds did not perform as well as it was supposed
to: Several features of the model were still tailored to a shallow-water environment, it was not
known whether the code was free of bugs, and the splitting of the pressure in hydrostatic and
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2 CHAPTER 1. INTRODUCTION

non-hydrostatic components was thought to introduce errors. To address the last problem, a
new non-hydrostatic model, with a different pressure handling, was introduced by Borsboom
[2007] as a possible alternative to the model of Bijvelds. During the development of the code for
the Borsboom model, several programming errors were found in the code of the Bijvelds model.
After removing these errors some of the problems that had actually triggered the development
of the new model were solved, and two non-hydrostatic models became available.

By the end of 2007, the Borsboom model could not be fully tested, yet, because it required
a non-symmetric iterative solver, which was not available in Delft3D-FLOW at that time. This
is the starting point of the work presented in this thesis. The first aim is the development and
implementation of a fast and reliable iterative solver for the Borsboom model. Having the solver
available, the second aim is to test the model and find the differences between the two available
approaches.

The new non-hydrostatic pressure-correction scheme is derived and presented in chapter 2,
with a focus on the correction step and the handling of the free-surface. The implementation of
an efficient iterative method to solve the pressure-correction equation is described in chapter 3.
The accuracy and performance of the non-hydrostatic model is tested in chapter 4 and compared
with the model of Bijvelds. Finally, in chapter 5, the results of this study are summarized and
suggestions for further research are given.

1.1 The free-surface problem

The incompressible Navier-Stokes equations for the fluid flow in three dimensions consist of three
momentum equations and a continuity equation. Formulated in Cartesian coordinates, they
relate the velocity components u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) in x-, y- and z-direction
and the pressure to each other. As will be done in all equations presented in this thesis, we
assume the density and the atmospheric pressure to be constant and define the pressure variable
p as the pressure minus the atmospheric pressure, divided by the density. Using the velocity
vector ~u = (u, v, w)T the Navier-Stokes equations can be written as

∂~u

∂t
+ ~u · ∇~u = −∇p + ∇ · σ + ~f (1.1)

∇ · ~u = 0. (1.2)

The set of the three equations in (1.1) are the momentum equations and (1.2) is the continuity
equation. The external force field, ~f(x, y, z, t) is assumed to be given and the deviatoric stress
tensor is defined as

σ = ν






2∂u
∂x

∂u
∂y + ∂v

∂x
∂u
∂z + ∂w

∂x
∂v
∂x + ∂u

∂y 2∂v
∂y

∂v
∂z + ∂w

∂y
∂w
∂x + ∂u

∂z
∂w
∂y + ∂v

∂z 2∂w
∂z




 ,

with ν(x, y, z, t) the molecular viscosity.
To obtain a well-posed problem from the Navier-Stokes equations, a full set of boundary

conditions needs to be applied. In this thesis only the boundary conditions in the vertical
direction are of interest. The domain boundaries in the vertical direction are given as height
functions. The water surface elevation ζ and the bottom depth d with respect to an arbitrary
reference plane z = 0 are defined as ζ = ζ(x, y, t) and d = d(x, y), where ζ ≥ −d. The
water depth, which is the distance between the water surface and the bottom depth is given as
h(x, y, t) = ζ(x, y, t) + d(x, y), as sketched in figure 1.1. With H we describe the mean water
depth. The definition of the surface and the bottom as height functions is a restriction on the
class of flows that can be described by the equations, excluding for example overturning waves.
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Figure 1.1: Sketch of a free surface problem with definitions of the depth variables.

The bottom and the free surface are assumed to be impermeable. This is expressed by the
kinematic boundary conditions

∂ζ

∂t
+ u|ζ

∂ζ

∂x
+ v|ζ

∂ζ

∂y
− w|ζ = 0, (1.3)

u|−d
∂d

∂x
+ v|−d

∂d

∂y
+ w|−d = 0. (1.4)

Further we want to express a free slip condition along the surface boundary and along the bottom
boundary, as given by

~n · σ · ~s = 0, ~n · σ · ~t = 0, (1.5)

where ~s and ~t are linearly independent tangent vectors and ~n is the outer normal vector (compare
Wesseling [2001], section 6.2). For the surface boundary, the respective formulas are given as

~n =






− ∂ζ
∂x

−∂ζ
∂y

1




 , ~s =





1
0
∂ζ
∂x



 , ~t =





0
1
∂ζ
∂y



 .

The formulas for the bottom boundary are analog and not shown here. Depending on the
problem, the boundary conditions (1.5) may be modified to include shear stresses due to wind
effects or bottom roughness.

Neglecting the surface tension, we also prescribe a dynamic boundary condition

p|ζ = 0 (1.6)

for the pressure at the free surface. The atmospheric pressure and the density, which were
assumed constant, are already contained in the variable p.

The model described so far is a macroscopic free-surface problem based on the incompressible
Navier-Stokes equations. Given some suitable initial conditions and side boundary conditions,
the equations describe various flow and wave phenomena in three dimensions. However, the
resulting systems of discretized equations can be computationally expensive to solve. Therefore,
several simplifications of the equations are often made by taking into account typical length and
time scales of the problem.

1.2 Hydrostatic and non-hydrostatic modeling

The first simplification of the free-surface problem described in section (1.1) is related to the
effect of turbulence. Nearly all macroscopic environmental flows are turbulent. Direct numer-
ical modeling of turbulent flows with the Navier-Stokes equations requires a grid that resolves
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all turbulent length scales. This is computationally not feasible for most engineering or envi-
ronmental applications. At the same time one is usually not interested in the details of the
turbulent flow pattern. Therefore, by time-averaging over the velocity field the turbulent effect
is reduced to a turbulent viscosity or eddy viscosity. Since the eddy viscosity is usually much
higher than the molecular viscosity, the latter is neglected. The resulting equations are called
the Reynolds-averaged Navier-Stokes equations (RANS equations). The turbulent viscosity field
has to be determined by an adequate turbulence model, or, as another approximation, may be
set to a constant value.

In order to achieve a higher efficiency of the model, the relation between the vertical and
horizontal length scales can also be taken into account. This leads to the notions of hydrostatic
and non-hydrostatic modeling and to the discrimination between weakly and strongly non-
hydrostatic applications. In order to classify these concepts, we consider the aspect ratio L/H,
where H is the mean water depth and L is the minimum horizontal length scale to be resolved
accurately. For wave problems L stands for a typical wave length, for flow problems it may
also be the length of a large eddy or the size of a jet or a plume. For pure wave problems, it is
possible to base the discussion about length scales on the dispersion relation, as it will be done in
the beginning of chapter 4. For general problems, however, the discussion is a bit more involved
and the classification of a flow problem may even be ambiguous in some cases. However, based
on the size of L/H, we can roughly distinguish:

• Hydrostatic flows: If L/H is around 100 or larger, then typically |u| + |v| ≫ |w|, and
the terms containing w in the third momentum equation may be neglected. We assume
further that the external force originates fully from earth’s gravity, so that ~f = (0, 0, g)T .
Now the w-momentum equation of (1.1) can be simplified to

∂p

∂z
= g or p(x, y, z, t) = g(ζ(x, y, t) − z), (1.7)

which is called the hydrostatic pressure relation. The term g(ζ − z) is the hydrostatic
pressure, which is scaled in the same way as the pressure variable p. Substituting (1.7) in
the other two momentum equations of (1.1) we get

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −g

∂ζ

∂x
+ νh

∂2u

∂x2
+ νh

∂2u

∂y2
+

∂

∂z

(

νv
∂u

∂z

)

, (1.8)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −g

∂ζ

∂y
+ νh

∂2v

∂x2
+ νh

∂2v

∂y2
+

∂

∂z

(

νv
∂v

∂z

)

, (1.9)

where we used some approximations with respect to the viscous terms: Although the
viscous terms can usually not be neglected, the variations of the viscosity may assumed
to be small. This means that we can put ν in front of the derivatives. In practice often
an anisotropic turbulence model is used, leading to different horizontal and vertical eddy
viscosity coefficients νh and νv, respectively. The form of equations (1.8) and (1.9) is used
in the hydrostatic model of Delft3D-Flow.

To obtain w, we integrate the continuity equation over the depth,

0 =

∫ z

−d

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

dz

=
∂

∂x

∫ z

−d
u dz +

∂

∂y

∫ z

−d
v dz + w|z − w|−d − u|−d

∂d

∂x
− v|−d

∂d

∂y

=
∂

∂x

∫ z

−d
u dz +

∂

∂y

∫ z

−d
v dz + w|z,
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where we have used the kinematic condition (1.4) at the bottom. To obtain ζ we also use
a depth integration,

0 =

∫ ζ

−d

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

dz

=
∂

∂x

∫ ζ

−d
u dz +

∂

∂y

∫ ζ

−d
v dz + w|ζ − w|−d − u|ζ

∂ζ

∂x
− v|ζ

∂ζ

∂y
− u|−d

∂d

∂x
− v|−d

∂d

∂y

=
∂

∂x

∫ ζ

−d
u dz +

∂

∂y

∫ ζ

−d
v dz +

∂ζ

∂t
,

where we have additionally used the kinematic condition (1.3) at the free surface. Using
a depth-integrated continuity equation is more robust than using the kinematic condition
directly.

The momentum equations together with the depth integrated continuity equation form
the three-dimensional shallow-water equations with the unknowns u(x, y, z, t), v(x, y, z, t),
w(x, y, z, t) and ζ(x, y, t). By depth integrating the momentum equations in a similar way
as the continuity equation, the vertical velocity drops out of the momentum equations and
we arrive at the two-dimensional shallow-water equations for the depth-averaged horizontal
velocities (see Vreugdenhil [1994] for details).

We can also simplify the bottom and the surface boundary conditions related to the shear
stress: Assuming a sufficiently small gradient of the bottom and the free surface, (1.5)
may be reduced to

∂u

∂z
= 0

∂v

∂z
= 0,

which means that there is no horizontal stress.

• Weakly non-hydrostatic flows: When L/H is, say, between about 10 and 100, then the w-
momentum equation of the Navier-Stokes equations can not be simplified to a hydrostatic
pressure relation anymore. However, since the typical horizontal length scales are still much
longer than the water depth, it is reasonable to assume that p ≈ g(ζ − z). Introducing a
non-hydrostatic pressure q that describes the deviation of p from the hydrostatic pressure,
we can write p = g(ζ − z) + q, knowing that q is small compared to g(ζ − z), and, more
importantly, that the gradient of q is smaller than the gradient of gζ.

• Strongly non-hydrostatic flows: When L/H is about 10 or smaller, then the non-hydrostatic
pressure is no longer small compared to the hydrostatic pressure. The same holds if the
flow field contains local effects like buoyancy, discharges or the flow around an obstacle. In
this case the pressure gradient is mainly influenced by these local effects and the deviation
from the hydrostatic assumption is large. We can still write p = g(ζ − z) + q, but we have
to expect that the gradient of q can be much larger than the gradient of gζ.

Non-hydrostatic models are models to solve the incompressible Navier-Stokes equations, so
they are based on the full set of equations (1.1) and (1.2). However, they were developed as
extensions to shallow-water models. Therefore, they usually involve a splitting of the pressure in
hydrostatic and non-hydrostatic components and employ the concept of horizontal and vertical
eddy viscosity. The basic equations for non-hydrostatic models are therefore often given in a
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form like

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂q

∂x
− g

∂ζ

∂x
+ νh

∂2u

∂x2
+ νh

∂2u

∂y2
+

∂

∂z

(

νv
∂u

∂z

)

(1.10)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂q

∂y
− g

∂ζ

∂y
+ νh

∂2v

∂x2
+ νh

∂2v

∂y2
+

∂

∂z

(

νv
∂v

∂z

)

(1.11)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂q

∂z
+ νh

∂2w

∂x2
+ νh

∂2w

∂y2
+

∂

∂z

(

νv
∂w

∂z

)

(1.12)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (1.13)

In comparison to the three-dimensional shallow-water equations we notice the presence of the
third momentum equation and the gradient of the non-hydrostatic pressure q. Non-hydrostatic
numerical schemes, however, are not only characterized by the governing field equations they
are supposed to solve. They may also be distinguished by the type of grid that is used, the way
the different terms of the equations are discretized and the way in which the equations are split.

The two types of coordinate systems that are used most often in non-hydrostatic modeling
are σ-coordinates and z-coordinates. The difference between them is the way they incorporate
the boundaries at the bottom and at the top in the grid. A sketch of the two approaches is
given in figure 1.2.

Figure 1.2: Sketches of two frequently used grid formulations in non-hydrostatic modeling, σ-grid
(left) and the z-grid (right).

In the σ-coordinate approach the grid is aligned with the bottom topography and the moving
surface. In every grid node the thickness of each individual grid layer is specified as a fixed
fraction of the water depth h(x, y, t). The fraction is constant throughout each layer. The
transformation of the equations into the σ-grid is done by rescaling the vertical axis, which
makes the three-dimensional equations and their discretization more complicated.

In the z-coordinate approach the grid is fixed and consists of layers with a prescribed layer
thickness. At the bottom and at the surface there are cells which are partly outside and partly
inside the domain. The boundary handling in the z-grid approach is more difficult than in the
σ-grid approach, because of the book-keeping of the boundary cells and because of the special
cases that arise when cells have neighboring cells outside the computational domain. However,
since the equations do not have to be transformed, the discretization in the interior domain is
more straightforward.
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1.3 Non-hydrostatic schemes in the literature

Since the first non-hydrostatic schemes were proposed in the mid-1990s, they have been imple-
mented in several software packages for simulating environmental free-surface flow problems.

Mahadevan et al. [1996a,b] developed a non-hydrostatic model for weakly non-hydrostatic
ocean applications to resolve flow phenomena with typical horizontal length scales of 100 km. In
vertical direction σ-coordinates are used and in the horizontal plane a boundary-fitted curvilinear
mesh is applied. The method consists of two steps: In the first step a hydrostatic computation
is carried out and in the second step the effect of a non-hydrostatic pressure component q is
taken into account. A similar model was proposed by Casulli and Stelling [1998], using a z-grid
in the vertical direction and an orthogonal grid in the horizontal plane.

In the model of Mahadevan and in the model of Casulli and Stelling, there is only a one-
way coupling between the hydrostatic and the non-hydrostatic pressure components, because
the surface elevation is determined in the first step, without taking into account the effect
of the non-hydrostatic pressure. To couple both pressure components more tightly, Casulli
[1999] proposed a scheme, where a correction of the surface elevation was incorporated in the
second step. The approach of Casulli was implemented in the software TRIM-3D of the German
Bundesanstalt für Wasserbau (BAW). The scheme was extended to unstructured horizontal grids
in Casulli and Zanolli [2002]. Koyigit et al. [2002] described a method similar to Casulli [1999],
but in σ-coordinates.

The methods of the above-mentioned references are fractional step methods. This means that
the second step of the computations always features an unknown of the dimension of a pressure.
Fringer et al. [2006] proposed a scheme which uses a pressure-correction as an unknown, which
has the dimension of a pressure times the time step. This approach is called a pressure-correction
method. It is shown in Armfield and Street [2002] that pressure-correction methods have a
higher order of convergence with respect to the time step than fractional step methods. The
method of Fringer et al. was implemented in the SUNTANS code for coastal ocean simulations.

In most non-hydrostatic models the unknowns are arranged on a staggered grid, which means
that the velocity unknowns are located at the faces of the discretization cells, while the pressures
are located in the cell centers. A different approach is followed by Stelling and Zijlema [2003],
Zijlema and Stelling [2005] and Zijlema and Stelling [2008]. They propose a pressure-correction
method where the pressure unknowns are located at the top faces of each cell. This approach is
realized in the code TRIWAQ, which was developed by the Dutch Rijkswaterstaat and is now
maintained by the Deltares Institute.

All the methods listed in this section have been developed with particular types of appli-
cations in mind. This means that there is no model that is generally better than others, but
there will be always models that are more suited than others for a certain application. To be
able to assess the suitability of a model in a certain application one has to consider the phys-
ical and numerical approximations that have been made and the errors that result from these
approximations.

1.4 Errors in non-hydrostatic models

The essence of computational modeling is finding a reasonably simple algorithm that approx-
imates the solution of a problem well enough, thereby requiring a limited amount of compu-
tational time and memory. The accuracy of the solution is assessed by its error, which is the
difference between the numerical solution and the true physics. In practice only an estimate of
the error is available, because the true solution can not be measured or analytically calculated.

Algorithms to calculate non-hydrostatic free-surface flows can be relatively complex, because
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the field variables are coupled in a non-linear algebraic way and many physical aspects have to
be taken into account to obtain realistic results. Depending on the scales and the physical effects
to be resolved, different errors are predominant in the numerical solution. The identification
of the most important error sources can be done using mathematical analysis or by performing
numerical experiments of test cases where either an exact solution or measurements are available.
Once the origin of the predominant error is found, steps can be taken to reduce it, for example
by changing the numerical scheme or the physical model, changing parameters or refining the
mesh.

The following error sources are the most important in the context of the numerical modeling
of physical processes:

• Data errors: Simulations of realistic problems contain uncertainties for example in the
parameters, initial conditions and boundary conditions because of measurement errors,
misfits between the state space of the measurements and of the discretized model or a lack
of information.

• Modeling errors: When a physical problem is formulated in terms of equations, usually
certain approximations are made. Often linearizations of non-linear relations are used and
effects of minor importance are ignored completely. This leads to an error that is even
present if the resulting equations are solved perfectly.

• Discretization errors: When a continuous solution is approximated by a solution at a finite
number of grid points and time steps, we make an error, because values of derivatives and
integrals have to be approximated using information at neighboring grid points. The
resulting errors only diminish if the space and time step approach zero, provided the
scheme is consistent and stable.

• Convergence errors: When an iterative method is used to solve a system of equations,
then the iteration is usually stopped before the best possible accuracy is reached, which
leads to a convergence error. Good stopping criteria and threshold values are necessary to
bind this error while still requiring a minimum number of iterations.

• Round-off errors: Since numbers are represented with finite precision in computer memory,
mathematical operations with these numbers lead to a rounding of the last digits. When
these round-off error accumulate, they can spoil the numerical solution.

Data errors are problem specific and not inherent to the model itself. It is not possible to
decrease data errors by changing the model, so these errors are out of scope for the here presented
work. The model equations and the respective approximations of the physical processes are
chosen on the basis of the typical time- and length scales to be resolved and by weighting the
importance of the processes involved in typical applications. The discretization of the equations
includes the generation of a computational mesh, the approximation of the continuous variables
in terms of discrete variables at the mesh points and the definition of a set of equations for the
discretized variables. The discretization should be done in such a way that the respective error
is smaller than or at most of the same order as the data and modeling errors. The systems of
equations that are found in the context of the numerical solution of partial differential equations
typically have discretized variables as unknowns. Therefore it makes sense to require that the
convergence error of an iterative solution method is smaller than the discretization error. Round-
off errors are usually much smaller than the other errors mentioned above. The accumulation
of round-off errors can be avoided by the use of stable numerical schemes.

This thesis we will mainly focus on the discretization errors of non-hydrostatic models and
ways to reduce them. Different types of discretization errors can be distinguished:



1.4. ERRORS IN NON-HYDROSTATIC MODELS 9

• Time discretization errors: Suppose we are given a partial differential equation that de-
scribes the time evolution of a field variable f . The equation is written as

∂f(~x, t)

∂t
= g(f(~x, t), ~x, t),

where g may be a complicated nonlinear function. Time discretization schemes are used
to evolve the solution forward in time by stepping through discrete times tn. At every
time step n the partial time-derivative on the left-hand side can be approximated using
(f(~x, tn+1)−f(~x, tn))/(tn+1−tn), which is identical to the derivative in the limit tn+1−tn →
0. Depending on the discretization of the right-hand side different orders of convergence
of this limit can be realized.

• Space discretization error : Similarly to the time discretization error, also the approxima-
tion of the spatial derivatives is done using information of surrounding points, leading to
an error that is dependent on the size of the spatial step.

• Splitting error : If a system of equations contains complicated relations between the de-
pendent variables, a simplification can be made by treating several terms independently
in consecutive calculation steps. Consider a time-discretized system of linear equations for
some vector variable f ,

fn+1 = fn − ∆t(Afn + Bfn+1).

If the matrix B couples the unknowns strongly, one can often gain computational efficiency
by treating some of the implicit terms separately. Therefore, we introduce the splitting
B = B1 + B2 and use B1 in a first step, where we solve for a preliminary variable fn+1∗.
In a second step we take B2 into account and solve for the final solution f̃n+1 with fn+1∗

given. The split system of equations is given as

fn+1∗ = fn − ∆t(Afn + B1f
n+1∗)

f̃n+1 = fn+1∗ − ∆tB2f̃
n+1.

For special choices of B1 and B2 it can be much simpler to solve the split system than to
solve the original system. However, the splitting introduces an error ǫ = f̃n+1 − fn+1. It
can easily be seen that the sum of both equations is not equivalent to the original system,
because the preliminary fn+1∗ can not be eliminated from the sum of both equations. It
can be shown that in this case the splitting error is ǫ = f̃n+1 − fn+1 ≈ −∆t2B1B2f̃

n+1

(see appendix A), which is the error per time step, so the global error is of O(∆t).
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Chapter 2

Numerical model

For the presentation of the non-hydrostatic numerical model in this thesis, a few simplifications
are made, which are not in the actual Delft3D-FLOW code:

• The horizontal grid is taken Cartesian.

• Only gravity is used as an external forcing. Coriolis effects, for example, are neglected.

• The density is taken constant.

• The atmospheric pressure is assumed constant.

As stated in the introduction, the pressure variable p denotes the pressure minus the atmospheric
pressure, divided by the density.

2.1 Model equations

Following the discussion of section 1.2, the governing three-dimensional equations are given in
the form

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+ νh

(
∂2u

∂x2
+

∂2u

∂y2

)

+
∂

∂z

(

νv
∂u

∂z

)

(2.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+ νh

(
∂2v

∂x2
+

∂2v

∂y2

)

+
∂

∂z

(

νv
∂v

∂z

)

(2.2)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+ νh

(
∂2w

∂x2
+

∂2w

∂y2

)

+
∂

∂z

(

νv
∂w

∂z

)

− g (2.3)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (2.4)

Note that we have not split the pressure in its non-hydrostatic and hydrostatic components. At
the bottom and at the free surface we prescribe a kinematic condition,

∂ζ

∂t
+ u|ζ

∂ζ

∂x
+ v|ζ

∂ζ

∂y
− w|ζ = 0, (2.5)

u|−d
∂d

∂x
+ v|−d

∂d

∂y
+ w|−d = 0 (2.6)

and zero stress in horizontal direction,

∂u

∂z
|ζ = 0,

∂v

∂z
|ζ = 0,

∂u

∂z
|−d = 0,

∂v

∂z
|−d = 0, (2.7)

11
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assuming that the free surface is sufficiently close to a horizontal plane, which can be questionable
for some strongly non-hydrostatic applications. We apply a zero pressure condition,

p|ζ = 0, (2.8)

neglecting the effect of the surface tension. The implementation of the side boundaries is not
considered in this thesis. A description can be found in the Delft3D-FLOW user manual [Del,
2006].

2.2 Computational grid

The three-dimensional field variables are discretized on a staggered, cell-centered grid (Arakawa
C grid) [Arakawa and Lamb, 1977] in three dimensions, as sketched in figure 2.1. The two-
dimensional fields of the bottom depth d(x, y) and the surface elevation ζ(x, y, t) are discretized
at the centers of the grid columns. In the horizontal plane the grid consists of spatially fixed,
rectangular grid cells with dimensions ∆xi × ∆yj on a grid that is non-uniform in x- and
y-direction. In z-direction the grid consists of layers with a non-uniform thickness ∆zk =
zk+1/2 − zk−1/2, where zk+1/2 is the location of the top cell faces and zk−1/2 is the location of
the bottom cell faces of layer k.

Figure 2.1: Sketch of the positions of the unknowns on the staggered grid.

To include the spatially discretized bottom depths di,j and surface elevations ζi,j(t) in the
discretized equations of the three-dimensional field variables, we define the volume coordinates

zi,j,k+1/2 = min(zk+1/2, ζi,j),

zi,j,k−1/2 = max(zk−1/2,−di,j), (2.9)

∆zi,j,k = min(zk+1/2, ζi,j(t)) − max(zk−1/2,−di,j).

Note that zk±1/2 is related to a complete layer and zi,j,k−1/2 is related to a single cell.
With the definitions given above, there can exist single cells or complete layers which are

outside the domain, because they are situated below the bottom boundary or above the surface
boundary. We decide at the beginning of each time step about what cell is inside and what cell
is outside the domain. Therefore, we need the time-discretized free-surface variable ζn

i,j . We

define the variables ki,j
min and ki,j,n

max in a way that

k = ki,j
min if zk−1/2 < hi,j ≤ zk+1/2,

k = ki,j,n
max if zk−1/2 < ζn

i,j ≤ zk+1/2.

We will use the following terminology: Cells with index ki,j
min < k < ki,j,n

max are filled or interior

cells. Cells with k < ki,j
min or k > ki,j,n

max are empty or exterior cells. Finally, cells with k = ki,j
min
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are bottom boundary cells and cells with k = ki,j,n
max are surface boundary cells. It is possible that

in some grid columns ki,j
min = ki,j,n

max , so the bottom and the surface are contained in one grid cell.
However, we will not consider the special case where also ζn

i,j = −di,j , which appears for example
in simulations that include a moving shore line. For the computations it is not important that a
discretization point in the middle of a cell with vertical index ki,j

min or ki,j,n
max lies actually outside

the physical domain if the cell is less than 50% filled with water.
In the finite volume discretization of the continuity equation, given in section 2.4, we will

encounter the vertical volume spacings ∆zi±1/2,j,k and ∆zi,j±1/2,k. These spacings are linear
combinations of the respective vertical volume sizes of horizontally neighboring volumes. It
is important that the vertical spacings defined at the border of two horizontally neighboring
volumes are compatible. The definitions used in Delft3D-FLOW are

∆zi+1/2,j,k = min(∆zi,j,k, ∆zi+1,j,k), ∆zi,j+1/2,k = min(∆zi,j,k, ∆zi,j+1,k). (2.10)

This is only one possible choice. It is not straightforward how to choose these spacings, in
particular, when the special cases are considered that arise when a non-empty cell has one or
several empty horizontal neighbors, which is the case when the free surface or the bottom are
varying between different layers. The peculiarities of the z-grid formulation related to these
“grid crossings” are not subject of this thesis.

Up to now we have described the discretization of the spatial domain. The discretization
in time is much simpler, because it only involves variables at two subsequent time levels n and
n + 1 as long as only one-step schemes are considered. In the definition of the solution method
we will encounter preliminary variables denoted with superscript n + 1∗. These are predictions
of variables at time step n + 1.

2.3 Momentum equations

The time discretization of the governing equations given in section 2.1 is done with a pressure-
correction method. The method involves a splitting of the momentum equations. First, a
preliminary velocity is calculated, neglecting the pressure at the new time level in the momen-
tum equations. Then, a pressure-correction is calculated that, when added to the momentum
equations, leads to a divergence free velocity field. Finally, all unknowns are updated to the new
time level.

The pressure-correction method is derived starting with the time discretization of the mo-
mentum equations (2.1) to (2.3),

un+1 − un

∆t
+ un ∂un

∂x
+ vn ∂un

∂y
+ wn ∂un+1

∂z

= −θ
∂pn+1

∂x
− (1 − θ)

∂pn

∂x
+ νh

(
∂2un

∂x2
+

∂2un

∂y2

)

+
∂

∂z

(

νv
∂un+1

∂z

)

,

(2.11)

vn+1 − vn

∆t
+ un ∂vn

∂x
+ vn ∂vn

∂y
+ wn ∂vn+1

∂z

= −θ
∂pn+1

∂y
− (1 − θ)

∂pn

∂y
+ νh

(
∂2vn

∂x2
+

∂2vn

∂y2

)

+
∂

∂z

(

νv
∂vn+1

∂z

)

,

(2.12)

wn+1 − wn

∆t
+ un ∂wn

∂x
+ vn ∂wn

∂y
+ wn ∂wn+1

∂z

= −θ
∂pn+1

∂z
− (1 − θ)

∂pn

∂z
+ νh

(
∂2wn

∂x2
+

∂2wn

∂y2

)

+
∂

∂z

(

νv
∂wn+1

∂z

)

− g.

(2.13)
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The decisions about location of the advective and viscous terms in time were made in Bijvelds
[2001]. The reason for the implicit treatment of the vertical derivatives is that usually ∆z is
very small and, therefore, these terms cause the strongest stability restrictions. The pressure
terms are included using a θ-scheme. The pressure-correction ∆p is defined as the difference
between the pressure at the new time level and the pressure at the old time level. It is given as

∆p = pn+1 − pn. (2.14)

Substitution of ∆p in the momentum equations (2.11), (2.12) and (2.13) yields

un+1 − un

∆t
+ un ∂un

∂x
+ vn ∂un

∂y
+ wn ∂un+1

∂z

= −θ
∂∆p

∂x
− ∂pn

∂x
+ νh

(
∂2un

∂x2
+

∂2un

∂y2

)

+
∂

∂z

(

νv
∂un+1

∂z

)

,

vn+1 − vn

∆t
+ un ∂vn

∂x
+ vn ∂vn

∂y
+ wn ∂vn+1

∂z

= −θ
∂∆p

∂y
− ∂pn

∂y
+ νh

(
∂2vn

∂x2
+

∂2vn

∂y2

)

+
∂

∂z

(

νv
∂vn+1

∂z

)

,

wn+1 − wn

∆t
+ un ∂wn

∂x
+ vn ∂wn

∂y
+ wn ∂wn+1

∂z

= −θ
∂∆p

∂z
− ∂pn

∂z
+ νh

(
∂2wn

∂x2
+

∂2wn

∂y2

)

+
∂

∂z

(

νv
∂wn+1

∂z

)

− g.

The pressure-correction has to be calculated in such a way that the continuity requirement is
fulfilled. Since the pressure-correction is accounted for in a second step, we exclude ∆p from
the momentum equation and replace the final velocities un+1, vn+1 and wn+1 with preliminary
velocities un+1∗, vn+1∗ and wn+1∗, which yields

un+1∗ − un

∆t
+ un ∂un

∂x
+ vn ∂un

∂y
+ wn ∂un+1∗

∂z

= −∂pn

∂x
+ νh

(
∂2un

∂x2
+

∂2un

∂y2

)

+
∂

∂z

(

νv
∂un+1∗

∂z

)

, (2.15)

vn+1∗ − vn

∆t
+ un ∂vn

∂x
+ vn ∂vn

∂y
+ wn ∂vn+1∗

∂z

= −∂pn

∂y
+ νh

(
∂2vn

∂x2
+

∂2vn

∂y2

)

+
∂

∂z

(

νv
∂vn+1∗

∂z

)

, (2.16)

wn+1∗ − wn

∆t
+ un ∂wn

∂x
+ vn ∂wn

∂y
+ wn ∂wn+1∗

∂z

= −∂pn

∂z
+ νh

(
∂2wn

∂x2
+

∂2wn

∂y2

)

+
∂

∂z

(

νv
∂wn+1∗

∂z

)

− g. (2.17)

Using the results of the momentum prediction equations, the pressure-correction ∆p is cal-
culated with the pressure-correction equation that will be derived in section 2.5. Subsequently,
the velocity at the new time level is obtained using the momentum correction equations

un+1 − un+1∗

∆t
= −θ

∂∆p

∂x
, (2.18)

vn+1 − vn+1∗

∆t
= −θ

∂∆p

∂y
, (2.19)

wn+1 − wn+1∗

∆t
= −θ

∂∆p

∂z
. (2.20)
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Note that for the final determination of wn+1, instead of using the momentum correction equation
directly, an alternative technique based on the depth-integrated continuity equation may be
applied, as described in section 2.6.

Having considered the time discretization of the momentum prediction and correction equa-
tions, it is also necessary to introduce the discretization in space. The discretization of these
terms has not changed since the hydrostatic model in z-grid formulation was introduced in
Bijvelds [2001]. Therefore, only a brief summary is given here and the reader is referred to the
reference for details.

In the momentum prediction equations the horizontal advection terms are discretized using
a first order multi-directional upwind scheme. The vertical advection terms and all viscosity
terms are discretized with second order central schemes. The pressure is included with a central
discretization as well. The spatial discretization of the momentum correction equations can be
found at the beginning of section 2.5, because they are a starting point for the derivation of the
pressure-correction equation.

2.4 Continuity equation

The pressure-correction is calculated in a way that the continuity equation (2.4) is fulfilled.
Therefore, we have to discretize the continuity equation in space, which is done using the finite
volume method. We express the velocity as a vector ~u, integrate the continuity equation over
the water volume Vi,j,k within a cell with indices (i, j, k) and apply the divergence theorem:

0 =

∫

Vi,j,k

∇ · ~u dV =

∮

Si,j,k

~u · ~ndS.

For interior cells a straightforward discretization of the fluxes through the volume areas Si,j,k

gives

0 = ui+1/2,j,k∆yj∆zk

− ui−1/2,j,k∆yj∆zk

+ vi,j+1/2,k∆xi∆zk

− vi,j−1/2,k∆xi∆zk

+ wi,j,k+1/2∆xi∆yj

− wi,j,k−1/2∆xi∆yj , ki,j
min < k < ki,j,n

max ,

because all volume faces are aligned with the coordinate axes.

For boundary cells, however, the discretization is more complicated. We start with a cell
that contains both boundaries, the free surface and the bottom. Projected to the x-y-plane
the cell is rectangular and aligned to the coordinate axes. However, at the bottom and at the
surface the volume is bounded by functions in x-y-space. If we define the interface velocities
and normal vectors at the surface and the bottom as

~u|ζ =





u(x, y, ζ)
v(x, y, ζ)
w(x, y, ζ)



 , ~S|ζ =






− ∂ζ
∂x

−∂ζ
∂y

1




 , ~u|−d =





u(x, y,−d)
v(x, y,−d)
w(x, y,−d)



 , ~S|−d =





∂d
∂x
∂d
∂y

1



 ,
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then the integral over the volume faces is given by

∮

Si,j,k

~u · ~n dS =

∫ yj+1/2

yj−1/2

∫ ζ(xi+1/2,y,t)

−d(xi+1/2,y)
u(xi+1/2, y, z) dy dz

−
∫ yj+1/2

yj−1/2

∫ ζ(xi−1/2,y,t)

−d(xi−1/2,y)
u(xi−1/2, y, z) dy dz

+

∫ xi+1/2

xi−1/2

∫ ζ(x,yi+1/2,t)

−d(x,yi+1/2)
v(x, yi+1/2, z) dxdz

−
∫ xi+1/2

xi−1/2

∫ ζ(x,yi−1/2,t)

−d(x,yi+1/2)
v(x, yi−1/2, z) dxdz

+

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

~u|ζ · ~S|ζ dxdy

−
∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

~u|−d · ~S|−d dxdy (2.21)

ki,j
min = k = ki,j,n

max .

We can substitute the kinematic boundary conditions (2.5) and (2.6) in the last two integrals of
equation (2.21) to obtain

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

~u|ζ · ~S|ζ dxdy =

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∂ζ

∂t
dxdy,

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

~u|−d · ~S|−d dxdy = 0.

If we now spatially discretize all variables in (2.21), we obtain

0 = ui+1/2,j,k∆yj∆zi+1/2,j,k − ui−1/2,j,k∆yj∆zi−1/2,j,k

+ vi,j+1/2,k∆xi∆zi,j+1/2,k − vi,j−1/2,k∆xi∆zi,j−1/2,k + ∆xi∆yj
∂ζ

∂t
, ki,j

min = k = ki,j,n
max .

It shall be mentioned once again that we have assumed an orthogonal grid, so the horizontal
grid spacings have only a single index. This makes it possible that we can divide the equation
by ∆xi∆yj to get

0 =
ui+1/2,j,k∆zi+1/2,j,k − ui−1/2,j,k∆zi−1/2,j,k

∆xi

+
vi,j+1/2,k∆zi,j+1/2,k − vi,j−1/2,k∆zi,j−1/2,k

∆yj
+

∂ζi,j

∂t
ki,j

min = k = ki,j,n
max .

For brevity we introduce the operators

Dx(u) ≡
ui+1/2,j,k∆zi+1/2,j,k − ui−1/2,j,k∆zi−1/2,j,k

∆xi
, (2.22)

Dy(v) ≡
vi,j+1/2,k∆zi,j+1/2,k − vi,j−1/2,k∆zi,j−1/2,k

∆yj
(2.23)

to obtain

0 = Dx(u) + Dy(v) +
∂ζi,j

∂t
, ki,j

min = k = ki,j,n
max .
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Note that, by definitions (2.9) and (2.10), the operators Dx and Dy are continuously dependent
on time, but the decision about what equation is applicable is done at the beginning of each
time step.

In a similar way as shown above, we can use only one of the kinematic conditions (2.5) or
(2.6) for cells that contain either the surface or the bottom. The full set of equations for all
interior and boundary cells is given as

0 = Dx(u) + Dy(v) + wi,j,k+1/2 − wi,j,k−1/2, ki,j
min < k < ki,j,n

max , (2.24)

0 = Dx(u) + Dy(v) + wi,j,k+1/2, ki,j
min = k < ki,j,n

max , (2.25)

0 = Dx(u) + Dy(v) − wi,j,k−1/2 + ∂ζi,j/∂t, ki,j
min < k = ki,j,n

max , (2.26)

0 = Dx(u) + Dy(v) + ∂ζi,j/∂t, ki,j
min = k = ki,j,n

max , (2.27)

We have now defined the spatial discretization of the continuity equation for different vertical
locations of a grid cell. The conditions for the side boundaries are not considered in this thesis.

2.5 Pressure-correction equation

In the following we will derive the pressure-correction equations. At the basis is a substitution
of the momentum correction equations in the continuity equation to ensure mass conservation
at time level n + 1. The main difficulty of the derivation of the pressure-correction equations is
the time derivative of the free surface, which is present in the discretized continuity equations
of all surface cells. To handle this surface term, we will apply a dynamic condition at the free
surface.

The set of pressure-correction equations will form a system of three-dimensionally coupled
equations for the unknown ∆p, which is the change of the pressure during one time step. The
system of pressure-correction equations will contain centrally discretized second derivatives,
which is the reason why the set of pressure-correction equations is often named pressure Poisson
equation. Due to the particular treatment of the free surface in the current approach, the system
matrix will not be symmetric.

To derive the pressure-correction equations for the considered problem we start with the
momentum correction equations (2.18), (2.19) and (2.20) that are discretized with central dif-
ferences in space,

un+1
i+1/2,j,k − un+1∗

i+1/2,j,k

∆t
= −θ

∆pi+1,j,k − ∆pi,j,k
1
2(∆xi + ∆xi+1)

,

vn+1
i,j+1/2,k − vn+1∗

i,j+1/2,k

∆t
= −θ

∆pi,j+1,k − ∆pi,j,k
1
2(∆yj + ∆yj+1)

,

wn+1
i,j,k+1/2 − wn+1∗

i,j,k+1/2

∆t
= −θ

∆pi,j,k+1 − ∆pi,j,k
1
2(∆zn

i,j,k + ∆zn
i,j,k+1)

.

We rewrite the equations to have the new velocities at the left hand side,

un+1
i+1/2,j,k = −∆tθ

∆pi+1,j,k − ∆pi,j,k
1
2(∆xi + ∆xi+1)

+ un+1∗
i+1/2,j,k, (2.28)

vn+1
i,j+1/2,k = −∆tθ

∆pi,j+1,k − ∆pi,j,k
1
2(∆yj + ∆yj+1)

+ vn+1∗
i,j+1/2,k, (2.29)

wn+1
i,j,k+1/2 = −∆tθ

∆pi,j,k+1 − ∆pi,j,k
1
2(∆zn

i,j,k + ∆zn
i,j,k+1)

+ wn+1∗
i,j,k+1/2. (2.30)
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In the following we want to apply the discrete continuity equations of last section, which we
still need to discretize in time. Based on (2.22) and (2.23) we introduce the time-discretized
operators

Dn
x(u) ≡

ui+1/2,j,k∆zn
i+1/2,j,k − ui−1/2,j,k∆zn

i−1/2,j,k

∆xi

Dn
y (v) ≡

vi,j+1/2,k∆zn
i,j+1/2,k − vi,j−1/2,k∆zn

i,j−1/2,k

∆yj
,

where the ∆zn with half indices are given as

∆zn
i±1/2,j,k = min(∆zn

i,j,k, ∆zn
i±1,j,k), ∆zi,j±1/2,k = min(∆zn

i,j,k, ∆zn
i,j±1,k), (2.31)

where
∆zn

i,j,k = min(zk+1/2, ζ
n
i,j) − max(zk−1/2,−di,j).

The discretized continuity equation for interior cells is given by equation (2.24), which is formu-
lated here for velocity values at the new time level n + 1, but with the water level fixed at the
old time level:

0 = Dn
x(un+1) + Dn

y (vn+1) + wn+1
i,j,k+1/2 − wn+1

i,j,k−1/2, ki,j
min < k < ki,j,n

max . (2.32)

The substitution of (2.28), (2.29) and (2.30) in (2.32) yields the pressure-correction equation for

internal cells,

∆tθ
(

Dn
xx(∆p) + Dn

yy(∆p) +
∆pi,j,k+1 − ∆pi,j,k

1
2(∆zn

i,j,k + ∆zn
i,j,k+1)

− ∆pi,j,k − ∆pi,j,k−1
1
2(∆zn

i,j,k−1 + ∆zn
i,j,k)

)

=Dn
x(un+1∗) + Dn

y (vn+1∗) + wn+1∗
i,j,k+1/2 + wn+1∗

i,j,k−1/2, ki,j
min < k < ki,j,n

max ,

(2.33)

where we have applied the operators Dn
x and Dn

y to un+1 and vn+1 so that

Dn
x(un+1) = −∆tθDn

xx(∆q∗) + Dn
x(un+1∗),

Dn
y (vn+1) = −∆tθDn

yy(∆q∗) + Dn
y (vn+1∗),

with

Dn
xx(∆p) =

∆pi+1,j,k − ∆pi,j,k
1
2(∆xi + ∆xi+1)

∆zn
i+1/2,j,k

∆xi
+

∆pi,j,k − ∆pi−1,j,k
1
2(∆xi−1 + ∆xi)

∆zn
i−1/2,j,k

∆xi
,

Dn
yy(∆p) =

∆pi,j+1,k − ∆pi,j,k
1
2(∆yj + ∆yj+1)

∆zn
i,j+1/2,k

∆yj
+

∆pi,j,k − ∆pi,j−1,k
1
2(∆yj−1 + ∆yj)

∆zn
i,j−1/2,k

∆yj
.

Similarly, the substitution of the momentum correction equations (2.28), (2.29) and (2.30)
in the discretized continuity equation (2.25) at time level n + 1 gives the pressure-correction

equation for bottom cells

∆tθ
(

Dn
xx(∆p) + Dn

yy(∆p) +
∆pi,j,k+1 − ∆pi,j,k

1
2(∆zn

i,j,k + ∆zn
i,j,k+1)

)

=Dn
x(un+1∗) + Dn

y (vn+1∗) + wn+1∗
i,j,k+1/2, ki,j

min = k < ki,j,n
max .

(2.34)

At the free surface we use a θ-scheme for the time discretization of ∂ζ/∂t in the discretized
continuity equation (2.26) to obtain

−
ζn+1
i,j − ζn

i,j

∆t
= θζ(D

n
x(un+1) + Dn

y (vn+1) − wn+1
i,j,k−1/2)

+ (1 − θζ)(D
n
x(un) + Dn

y (vn) − wn
i,j,k−1/2), ki,j

min < k = ki,j,n
max .

(2.35)



2.5. PRESSURE-CORRECTION EQUATION 19

After substitution of the momentum correction equations (2.28), (2.29) and (2.30) we arrive at
a preliminary form of the pressure-correction equation for free-surface cells,

−
ζn+1
i,j − ζn

i,j

∆t
+ θζ∆tθ

(

Dn
xx(∆p) + Dn

yy(∆p) − ∆pi,j,k − ∆pi,j,k−1
1
2(∆zn

i,j,k−1 + ∆zn
i,j,k)

)

= θζ

(

Dn
x(un+1∗) + Dn

y (vn+1∗) + wn+1∗
i,j,k−1/2

)

+(1 − θζ)
(

Dn
x(un) + Dn

y (vn) + wn
i,j,k−1/2

)

, ki,j
min < k = ki,j,n

max .

(2.36)

Besides the actual unknown ∆p, equation (2.36) still contains the surface elevation ζn+1
i,j ,

which is an unknown, too. To eliminate the surface elevation from the pressure-correction
equation we discretize the dynamic condition p|ζ = 0 (see equation (2.8) on page 12) at time
level n + 1 to get

0 = pn+1|ζn+1 (2.37)

and linearize it, so that we get an expression containing ζn+1− ζn. This can be done in different
ways, two of which are shown in the following. We will express the pressure in components
p = g(ζ − z) + q to be able to compare the two approaches easily with each other. It is
important to note that it is possible to work without the non-hydrostatic pressure variable q, as
will be shown in appendix B.

A commonly used approximation of equation (2.37) is the hydrostatic assumption in the
surface cells, which is obtained by linearizing around z = zk and neglecting the non-hydrostatic
pressure gradient at the free surface:

0 = pn+1|ζn+1 ≈ pn+1|zk
+ (ζn+1 − zk)

∂pn+1

∂z
|zk

≈ g(ζn+1 − zk) + qn+1|zk
+ (ζn+1 − zk)

(

− g +
∂qn+1

∂z
|zk

)

≈ qn+1|zk
, k = ki,j,n

max

(2.38)

where the largest error we make is the neglect of (ζn+1 − zk)
∂qn+1

∂z |zk
, which is of order ∆z.

In terms of discretized pressure variables we can write the linearized pressure condition at the
surface as

qn+1
i,j,k = 0 k = ki,j,n

max . (2.39)

This approach is used in all non-hydrostatic models known to the author, for example, in
particular in Casulli [1999].

Although the non-hydrostatic pressure at the surface is zero by definition, the gradient

of the non-hydrostatic pressure can be far from zero in strongly non-hydrostatic applications.
Therefore, a better approximation of the pressure distribution will be rewarding. We start by
linearizing the pressure condition at the new time level around the water level at the old time
level, which yields

0 = pn+1|ζn+1 ≈ pn+1|ζn + (ζn+1 − ζn)
∂pn+1

∂z
|ζn

≈ qn+1|ζn + g(ζn+1 − ζn) + (ζn+1 − ζn)
∂pn+1

∂z
|ζn , (2.40)

ki,j
min < k = ki,j,n

max .

We have pressure variables only at discrete locations along the z-axis. Therefore we realize
the non-hydrostatic pressure at the free surface with a linear inter-/extrapolation using the
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non-hydrostatic pressure of the cell below the surface cell,

qn+1|ζn ≈ qn+1|zk
+

zk − ζn

zk − zk−1

(
qn+1|zk−1

− qn+1
k |zk

)
, ki,j

min < k = ki,j,n
max .

The respective geometry is sketched in figure 2.2. For the second term we use a similar approx-
imation as in equation (2.38) above,

(ζn+1 − ζn)
∂pn+1

∂z
|ζn = (ζn+1 − ζn)

(

− g +
∂qn+1

∂z
|ζn

)

≈ −g(ζn+1 − ζn), ki,j
min < k = ki,j,n

max ,

so that the linearized surface pressure condition (2.40) becomes

0 = qn+1|zk
+

zk − ζn

zk − zk−1

(
qn+1|zk−1

− qn+1
k |zk

)
, ki,j

min < k = ki,j,n
max , (2.41)

where the largest error we make is the neglect of (ζn+1 − ζn)∂qn+1

∂z |ζn , which is of order ∆t.
Equation (2.41) can be written for discretized variables as

αn
i,jq

n+1
i,j,k−1 + (1 − αn

i,j)q
n+1
i,j,k = 0, ki,j

min < k = ki,j,n
max (2.42)

with

αn
i,j =

zk − ζn
i,j

zk − zk−1
=

zk+1/2 + zk−1/2 − 2ζn
i,j

zk+1/2 − zk−3/2
, ki,j

min < k = ki,j,n
max . (2.43)

It is easy to verify that by fixing αn
i,j = 0 we obtain a formula equivalent to (2.39).

k−3/2

k−1

k−1/2

k

k+1/2

Figure 2.2: Sketch of the surface representation on a non-uniform grid (k = ki,j,n
max). Shown are

four discretization cells, the centered crosses representing the pressure points.

The aim of using the pressure condition was to eliminate the water level term in the dis-
cretized momentum correction equation (2.36), where we have the unknown ∆pi,j,k. According
to (2.14) on page 14 we have the discretized relation

∆pi,j,k = pn+1
i,j,k − pn

i,j,k = ζn+1
i,j + qn+1

i,j,k − ζn
i,j − qn

i,j,k, (2.44)

which gives the following relation for qn+1:

qn+1
i,j,k = ∆pi,j,k − ζn+1

i,j + ζn
i,j + qn

i,j,k.

Substitution in (2.42) and rearranging gives

ζn+1 − ζn =
αn

i,j

g
(∆pi,j,k−1 + pn+1

i,j,k−1) +
(1 − αn

i,j)

g
(∆pi,j,k + pn+1

i,j,k)
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Now, finally, we are able to eliminate the water levels from (2.36) to obtain the pressure-

correction equation for surface cells

−
αn

i,j∆pi,j,k−1 + (1 − αn
i,j)∆pi,j,k

g∆t

+ θζ∆tθ
(

Dn
xx(∆p) + Dn

yy(∆p) − ∆pi,j,k − ∆pi,j,k−1
1
2(∆zn

i,j,k−1 + ∆zn
i,j,k)

)

= θζ

(

Dn
x(un+1∗) + Dn

y (vn+1∗) + wn+1∗
i,j,k−1/2

)

+ (1 − θζ)
(

Dn
x(un) + Dn

y (vn) + wn
i,j,k−1/2

)

+
αn

i,jq
n
i,j,k−1 + (1 − αn

i,j)q
n
i,j,k

g∆t
, ki,j

min < k = ki,j,n
max .

(2.45)

In cells that contain both the free surface and the bottom, we have to use the hydrostatic
pressure relation (2.39). We can not use (2.42) and (2.43), as done for regular surface cells,
because no pressure points are available at position ki,j,n

max − 1 if the surface cell is a bottom cell
at the same time. By performing a similar derivation as for regular surface cells, or by using
(2.45) and setting α = 0, we obtain the pressure-correction equation for cells that contain the

bottom and the surface:

−
∆q∗i,j,k
g∆t

+ θζ∆tθ
(

Dn
xx(∆q∗) + Dn

yy(∆q∗)
)

= θζ

(

Dn
x(un+1∗) + Dn

y (vn+1∗)
)

+ (1 − θζ)
(

Dn
x(un) + Dn

y (vn)
)

+
qn
i,j,k

g∆t
, ki,j

min = k = ki,j,n
max .

(2.46)

The three-dimensionally coupled system of pressure-correction equations for the whole inte-
rior domain is formed by the set of equations (2.33), (2.34), (2.45) and (2.46). This is a system
of equations with a number of unknowns that is equal to the number of non-empty grid cells.
The unknowns are coupled with their neighbors in x-, y- and z-direction. When the unknowns
are ordered lexicographically, then the matrix of the system of equations is sparse with a banded
structure. The term containing α on the left hand side introduces an asymmetry in the other-
wise symmetric system. In section 3 a method is explained that is able to solve the system of
equations in an efficient way.

2.6 Update of variables

Once the pressure-correction ∆p is calculated with a sufficient precision, all other unknowns at
time step n + 1 can be computed. The horizontal velocities are calculated using the first two
discretized momentum correction equations (2.28) and (2.29). The surface elevation is obtained
from (2.35), the pressure and the non-hydrostatic pressure component from (2.44). The vertical
velocity may be computed by using a momentum equation, which we will call method A, or by
using a continuity equation, which we will call method B.

In method A the momentum equation (2.30) is applied to compute the new vertical velocities.
As in the other two momentum correction equations, the pressure-correction ∆p is used to
determine the velocity. The pressure-correction is the outcome of an iterative solution method,
which introduces some convergence error. Assume now that ∆pi,j,k = ∆p̃i,j,k + ǫi,j,k, where
∆p̃i,j,k is the solution that makes the velocity field divergence free and ǫi,j,k is the related error
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in each cell. When all three momentum equations are used to update the velocity field, it will
not be divergence free and the error will be more or less randomly distributed throughout the
whole domain. The error may sum up during time stepping, but provided the scheme is stable
and the error sufficiently small, it will be damped out before it can be observed by inspecting the
velocity field. However, every non-zero divergence leads to production or destruction of mass,
an effect that is usually unwanted for transport simulations.

Method B uses the set of discretized continuity equations (2.25) and (2.24) to obtain the
vertical velocities at the top faces of all interior and bottom cells, going step by step from ki,j

min

to ki,j,n
max−1. The velocities at the top of the surface cells are no unknowns of the system, so

they do not need to be calculated. By using the discretized continuity equations, a strict mass
conservation is preserved in all cells. The errors in the flow field, however, are accumulated from
bottom to top, so that the cells near surface cells may contain a much larger error than cells
near the bottom, especially, when also accumulation over time is considered.

It is suggested that method B is used whenever strict mass conservation is required, while
method A is expected to give better results for pure flow- and wave-simulations. In the com-
putations shown in this thesis approach B is used if not mentioned otherwise, and the stopping
criterion of the iterative solver is set small enough so that the convergence error does not have
any noticeable effect on the solution.

2.7 Discussion

We have seen in the description of the numerical scheme that the pressure was treated as a
whole in all interior and bottom cells and that only a higher-order non-hydrostatic term was
neglected in the surface cells. This is a difference to many non-hydrostatic schemes proposed
in the literature, which use a pressure splitting throughout the domain. In the following some
non-hydrostatic schemes, and the applied splittings, are explained. As a basis we use a time-
discretized momentum equation with the pressure terms included using a θ-scheme. For gener-
ality, the advective and viscous terms are simplified as functions of velocities at the old an the
new time level. This gives

un+1 − un

∆t
= −θ

(

g
∂ζn+1

∂x
+

∂qn+1

∂x

)

− (1 − θ)

(

g
∂ζn

∂x
+

∂qn

∂x

)

+ a(un+1) + b(un) (2.47)

The schemes of Casulli and Stelling [1998] and Mahadevan et al. [1996b] are based on a
hydrostatic assumption in the prediction step. The predicted velocity field is corrected by the
non-hydrostatic pressure q, which itself is computed in a way that the final velocity field fulfills
the continuity equation. The split equations, based on the decoupling of the hydrostatic and
non-hydrostatic pressure components, are given by

un+1∗ − un

∆t
= −θg

∂ζn+1

∂x
− (1 − θ)g

∂ζn

∂x
+ a(un+1∗) + b(un)

un+1 − un+1∗

∆t
= −∂qn+1

∂x
.

The scheme uses θ = 1 for the implementation of the non-hydrostatic pressure q. The surface
elevation ζn+1 is calculated from a depth-integrated continuity equation without using informa-
tion about the non-hydrostatic pressure. The term a(un+1) is equivalent to the vertical viscous
term in this particular scheme. We get some idea about the splitting error if we sum the two
equations:

un+1 − un

∆t
= −θg

∂ζn+1

∂x
− (1 − θ)g

∂ζn

∂x
− ∂qn+1

∂x
+ a(un+1∗) + b(un)
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We see that the splitting error is depending on the differences un+1 − un+1∗. If un+1 = un+1∗,
then there is no splitting error. But this can only occur when the non-hydrostatic pressure is
constant. In fact, the non-hydrostatic pressure has to be zero, because of the pressure boundary
condition at the surface.

Casulli [1999] and Busnelli [2001] included the non-hydrostatic pressure of the last time step
in the momentum prediction equations. The split equations are given as

un+1∗ − un

∆t
= −θg

∂ζn+1∗

∂x
− (1 − θ)

(

g
∂ζn

∂x
+

∂qn

∂x

)

+ a(un+1∗) + b(un)

un+1 − un+1∗

∆t
= −θ

∂q∗

∂x
, q∗ = qn+1 + gζn+1 − gζn+1∗.

The pressure terms are treated completely with a θ-scheme. The unknown q∗ in the pressure
Poisson equation is the sum of the non-hydrostatic pressure qn+1 and a non-hydrostatic update
(gζn+1 − gζn+1∗) of the hydrostatic pressure. The water levels are influenced by the non-
hydrostatic pressure in this scheme. Still, there is a contribution a(un+1∗) of the vertical viscous
terms that remains if both equations are summed. Therefore, the splitting error is a still present.

The time discretization of the scheme of Bijvelds [2003] is similar to a θ-scheme with θ = 1.
In the first step a simple, merely first-order accurate ADI method is used. In the second step a
system of equations is solved for ∆q∗, which is the correction qn+1 − qn of the non-hydrostatic
pressure plus a non-hydrostatic update gζn+1 − gζn+1∗ of the water level. The scheme is given
as

un+1∗ − un

∆t
= −g

∂ζn+1/2∗

∂x
+

∂qn

∂x
+ a(un+1∗) + b(un)

un+1 − un+1∗

∆t
= −∂∆q∗

∂x
, ∆q∗ = qn+1 + gζn+1 − qn − gζn+1∗.

Due to the ADI scheme used in the prediction step, the preliminary surface elevation ζn+1/2∗

is temporally located at a half time step in the u-momentum equation. The non-hydrostatic
correction, however, includes the preliminary water level ζn+1∗ at the full time step. There-
fore, one component of the splitting error is a function of ζn+1∗ − ζn+1/2∗. Some properties
of the hydrostatic prediction step are analyzed in appendix C. Since in the scheme both the
vertical advective and the vertical viscous terms are discretized implicitly, there is also an error
component which is a function of un+1 − un+1∗ that grows with the size of the advective and
viscous terms. There is an important difference, though, between a pressure-correction method,
as used in the Bijvelds scheme, and the fractional step method, as used in Casulli [1999]: In the
pressure-correction method the splitting error with respect to the advective and viscous terms
is related to

un+1 − un+1∗ = −∆t
∂∆q∗

∂x
≈ ∆t(qn+1 − qn) = O(∆t2),

while in the fractional step method we have

un+1 − un+1∗ = −∆t
∂q∗

∂x
≈ ∆t(qn+1) = O(∆t).

For this reason it is more advantageous to use a pressure-correction method than a fractional
step method. A more thorough investigation about the relation between pressure-correction and
fractional step methods, including analysis and test cases, is given in Armfield and Street [2002].

The scheme described in this thesis considers the total pressure, which means that only the
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sum of the hydrostatic and non-hydrostatic components appears in the momentum equations:

un+1∗ − un

∆t
= −g

∂ζn

∂x
− ∂qn

∂x
+ a(un+1∗) + b(un)

un+1 − un+1∗

∆t
= −θ

∂∆p

∂x
, ∆p = qn+1 + gζn+1 − qn − gζn.

As in the scheme of Bijvelds, this method includes both vertical advective and vertical viscous
terms implicitly and the method is a pressure-correction method. However, the splitting error
due to the ADI method is not present anymore. Furthermore, a θ-scheme is used for the pressure
terms in the momentum equations and for the continuity equation in cells containing the free
surface to obtain up to second order accuracy in time with respect to the pressure terms. A
second order spatial discretization of the pressure condition at the free surface is realized. While
in all other methods discussed so far the hydrostatic assumption was used in all cells containing
the free surface, in the scheme presented in this thesis the pressure is approximated by a linear
profile in z-direction.



Chapter 3

Solution of the pressure-correction
equation

In the method of Bijvelds [2003] the system of pressure-correction equations was solved with
the conjugate gradient (CG) method of Hestenes and Stiefel [1952], using a tridiagonal Jacobi
preconditioner for convergence acceleration. If the dynamic boundary condition at the free
surface is implemented using a linear interpolation, then the pressure matrix is not symmetric
anymore. Since the CG method is not suitable for linear systems with a non-symmetric matrix, a
different iterative method had to be chosen. Section 3.1 explains the reasons why the BiCGSTAB
method is well suited as an iterative solver in the given framework. To accelerate the iterative
solver it is crucial to combine it with a good preconditioner. Section 3.2 relates the Jacobi-
based preconditioners already existing in Delft3D-FLOW with preconditioners based on an ILU
decomposition. It is explained why a tridiagonal Jacobi preconditioner accelerates the solution
of weakly non-hydrostatic problems well and why the ILU decomposition is a more effective
preconditioner for strongly non-hydrostatic cases. In section 3.3 possible starting values and
stopping criteria for the iterative solution method are discussed. The final implementation of
the preconditioned BiCGSTAB method is given in section 3.4.

3.1 Choice of the solution method

A large number of algorithms is available to solve systems of equations with sparse, non-
symmetric matrices and, depending on the application, some algorithms perform better than
others. Two types of methods are often used in the context of calculating the time-dependent
incompressible Navier-Stokes equations: The generalized minimum residual method (GMRES)
by Saad and Schultz [1986] and the biconjugate gradient stabilized method (BiCGSTAB) by
van der Vorst [1992]. Just as the CG method, they are Krylov subspace methods. These are
iterative methods that approximate the solution x of a system Ax = b by a converging sequence
of approximations xi, given some initial guess x0. The iteration is stopped if a solution is found
that satisfies some given error criterion or if a given maximum number of iterations is reached.
The xi are found within a Krylov subspace Ki(A, r0) ≡ span{r0, Ar0, . . . , Ai−1r0} with the ini-
tial residual r0 = Ax0−b. In every iteration step i the subspace is extended, and if xi−x can be
minimized in some way within the given Ki(A, r0), then the approximation xi comes closer and
closer to the true solution. Krylov subspace methods differ in the way they evolve the Krylov
subspace and in the way they determine xi within the subspace.

Krylov methods are not the only way to solve a linear system of equations. There are several
alternatives which all have their particular advantages and disadvantages: Direct methods based
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on Gaussian elimination solve small systems of equations very efficiently, but because of their
work and memory requirements they can not be used for very large systems. Multigrid methods
[Hackbusch, 1985, Wesseling, 1992], on the other hand, are well suited for many problems with a
very large number of unknowns. Fast Poisson solvers are specialized and very efficient solvers for
pressure-correction equations, but their high efficiency is limited to problems with orthogonal
coordinates and rectangular domains [Wesseling, 2001]. Basic iterative methods, like the Jacobi
and Gauss-Seidel method, have a low convergence rate, so they are not often used directly as
a solution method. However, they are easy to implement and they smooth out high-frequency
components of the error quickly. This is why they are often used as smoothers within multigrid
methods. Solution methods are often combined such that one method serves as an accelerator,
preconditioner or smoother of another method.

There is an important advantage of iterative methods over direct methods in the framework
of a time-stepping algorithm: Often the solution of the previous time step is a good initial guess
for the solution of the next time step. When the solution is smooth and the time step is small,
then the method may only need a few iterations until a sufficiently accurate solution is obtained.

An important consideration regarding the method used for the implementation in Delft3D-
FLOW was the existence of a CG method that was already tailored to the matrix structure used
in the software. It is comparatively simple to change the existing scheme to another Krylov
method rather than to a fundamentally different method like multigrid or a direct method.

The most important differences between GMRES and BiCGSTAB are the convergence be-
havior, the amount of work per iteration step and the storage requirements. Depending on the
problem to be solved, one of the methods performs better than the other (see Nachtigal et al.
[1992] for a comparison between GMRES and CGS, a predecessor of BiCGSTAB). The algo-
rithms are listed as algorithms 1 and 2.

Algorithm 1 BiCGSTAB method

1: matrix A and right-hand side b are given
2: x0 is an initial guess
3: r̄0 = r0 = b − Ax0

4: ρ−1 = α−1 = ω−1 = 1
5: p−1 = v−1 = 0
6: for i = 0 . . . N do

7: ρi = (r̄0, ri)
8: βi−1 = (ρi/ρi−1)(αi−1/ωi−1)
9: pi = ri + βi−1(p

i−1 − ωi−1v
i−1)

10: vi = Api

11: αi = ρi/(r̄0, vi)
12: s = ri − αiv

i

13: t = As
14: ωi = (t, s)/(t, t)
15: xi+1 = xi + αip

i + ωis
16: ri+1 = s − ωit
17: if stopping criterion fulfilled then

18: leave for-loop
19: end if

20: end for

By looking at the algorithm one can see that BiCGSTAB contains two matrix-vector products
per iteration step, which are usually the most expensive part of an iteration step. They are
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Algorithm 2 GMRES method

1: matrix A and right-hand side b are given
2: x0 is an initial guess
3: r0 = b − Ax0, β = ||r0||2, v1 = r0/β
4: create an (m + 1) × m matrix H̄m with elements hij = 0
5: for j = 1 . . .m do

6: wj = Avj

7: for i = 1 . . . j do

8: hij = (wj)T vi

9: wj = wj − hijv
i

10: end for

11: hj+1,j = ||wj ||2
12: vj+1 = wj/hj+1,j

13: end for

14: compute ym that minimizes ||βe1 − H̄my||2
15: xm = x0 + Vmym

required for the bi-orthogonalization process the method is based on. In the GMRES method
only one matrix-vector product is present per iteration step, but there is an inner iteration that
loops over all residual vectors computed so far. This part of the solution procedure is a modified
Gram-Schmidt process, which orthogonalizes the Krylov subspace at every iteration step using
the newly calculated residual. Therefore, all residuals must be stored in memory and j inner
products have to be performed at iteration step j, which means that both work and memory
requirements increase linearly with the number of iterations.

The convergence behavior of BiCGSTAB and GMRES without preconditioner will be illus-
trated using a simple model system of equations that is solved using the standard Matlab 7.4
solver routines, with some statements added to allow for timing. We solved a perturbed Pois-
son equation discretized on a three-dimensional domain consisting of 10 × 10 × 10 cubes, with
homogeneous Neumann boundary conditions. The central discretization of a first derivative
was added to the central tridiagonal part in order to introduce some asymmetry in the matrix.
We chose a standard normally distributed random vector as a right-hand side of the system of
equations. In a time-stepping algorithm usually a good initial guess for the solution is available.
To simulate this, the initial vector x0 was composed as x0 = x + σn, where x is a numerical
solution of the system, calculated beforehand with a high accuracy, n is a standard normally
distributed random vector and σ a small perturbation parameter. The model is not intended
to represent the characteristics of the actual pressure-correction system introduced in chapter
2, which has a more irregular structure with respect to the asymmetric part of the matrix.

The behavior of the methods is shown in figure 3.1, where the 2-norm of the residual de-
pending on the number of matrix-vector products and depending on time is plotted. It can be
observed that the residual decreases monotonically in the case of GMRES, while several spikes
appear in the case of BiCGSTAB. Although GMRES reaches the lower limit 10−8 after fewer
matrix-vector products than BiCGSTAB, it still takes more time. In the first few iterations,
however, the GMRES method seems more favorable because of the smoother convergence.

As could be seen in the example, the choice between GMRES and BiCGSTAB with respect to
the computational speed depends mainly upon the expected number of iterations. When several
iterations are needed to convergence to a solution, then the BiCGSTAB method should be used,
otherwise the GMRES method may be a good alternative. There exist several methods to
overcome the problem of the increasing work and memory requirements of the GMRES method,



28 CHAPTER 3. SOLUTION OF THE PRESSURE-CORRECTION EQUATION

0 10 20 30 40 50
10

−8

10
−6

10
−4

10
−2

10
0

number of matvecs

||b
−

A
x|

| 2

BICGSTAB

0 10 20 30 40 50
10

−8

10
−6

10
−4

10
−2

10
0

GMRES

number of matvecs

0 0.01 0.02 0.03
10

−8

10
−6

10
−4

10
−2

10
0

wall clock time [s]

||b
−

A
x|

| 2

0 0.01 0.02 0.03
10

−8

10
−6

10
−4

10
−2

10
0

wall clock time [s]

Figure 3.1: Convergence of the BiCGSTAB (left) and the GMRES (right) method on a perturbed
Poisson problem. The plots show the 2-norm of the residual depending on the number of matrix
vector products (markers, top) and on the wall clock time (bottom). While GMRES has a
smoother and a faster convergence in terms of matrix-vector products (top), the BiCGSTAB
method reaches a high accuracy in less time because the computational work per iteration step
is constant.

based on restarting or truncating the method. These methods, however, usually have a less
strong convergence than full GMRES.

In Delft3D-FLOW, the typical number of iterations varies from application to application.
A robust method must be implemented that performs well for any typical application. An
important consideration in this context is the static memory management of Delft3D-FLOW.
Vector memory is allocated only once in the setup of the computation, before the first time step.
In this phase a couple of “working arrays” is made available, which can be used for any purpose,
but which may later be overwritten by any function. The number of working arrays is sufficient
to store all vectors that are needed in the BiCGSTAB method. To get a sufficient number of
vectors for the GMRES method, the number of working arrays is too small. Restarting would
be necessary after very few iterations. Increasing the number of working arrays is not an option.
This is the reason why only the BiCGSTAB method has been implemented as a non-symmetric
solver for the pressure-correction equation. In the end, the choice of the preconditioner will be
more important for the speed of convergence than the choice of the Krylov method.
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3.2 Preconditioners

The convergence of Krylov methods for a system Ax = b depends on the initial guess x0, the
right-hand side b and the eigenvalue spectrum of the system matrix A. Usually the condition
number κ of the matrix, which is the ratio between the biggest and the smallest eigenvalue, gives
already a good idea about how well the iterative method will perform. An “ill-conditioned”
system possesses a system matrix with a large condition number and is characterized by low
convergence rates of the iterative solver.

The idea of preconditioning is to replace the linear system Ax = b by the preconditioned sys-
tem Ãx̃ = b̃, where Ã = B−1AC−1, x̃ = Cx and b̃ = B−1b, which means that the preconditioned
system is equivalent to

B−1AC−1(Cx) = B−1b.

both the preconditioned and the original system have the same solution in terms of x. In order
to obtain x form x̃, the system Cx = x̃ has to be solved after the iteration is finished.

The matrix M = BC is called the preconditioner matrix. For now we assume that C = I so
that

M−1Ax = M−1b,

which is called left preconditioning. The first requirement for the preconditioner matrix is that
M−1A has a nicer spectrum than A. This is the case when M is a good approximation of A
in some sense, because then M−1A will be close to the identity matrix, which has the smallest
possible value of a condition number, κ = 1. The second requirement is that M−1Ax should
be easily calculated or that, equivalently, My = Ax should be easily solved for y. The third
requirement is that the set-up of the preconditioner should not be too expensive.

Setting B ≡ I and C ≡ M yields right preconditioning, which leads to systems of equations
of the form

AM−1(Mx) = b.

For methods that require a symmetric system matrix, the preconditioner is applied as a sym-
metric split preconditioner

M−1/2AM−1/2(M1/2x) = M−1/2b,

The spectrum of the preconditioned matrix is the same, independent of how the preconditioner
matrix is split. An aspect affecting the choice of the preconditioner splitting is that common
stopping criteria of the iteration are often based on the updated residual ri ≈ Axi − b of the
original equation system. In case the solution method provides only the updated residual of the
preconditioned system r̃i ≈ Ãx̃i− b̃, a back-transformation of this residual is necessary when left
or split preconditioning is used, which is done by computing ri = Br̃i in every iteration step.
This is usually more expensive than solving Cx = x̃ for x once at the end of the iteration, as
necessary in case of split or right preconditioning.

In the next sections several commonly used preconditioners will be explained and examined
with respect to their applicability to the pressure-correction matrix in Delft3D-FLOW. We will
show that when leaving the domain of weakly non-hydrostatic flows and approaching the strongly
non-hydrostatic domain, also the preconditioner technique ought to be changed.

The considered preconditioners are specialized for matrices with a particular structure. The
structure of the matrix is depending on the ordering of the pressure unknowns. In the presented
scheme the unknowns are ordered lexicographically and the matrix has a structure as given in
figure 3.2. The size of the matrix with respect to storage is kmaximaxjmax, which is the total
number of all cells, regardless of whether they are filled or not. The size of the matrix with
respect to matrix-vector operations is usually smaller, because no calculations need to be done
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Figure 3.2: Sketch of the Matrix structure (left) and the stencil (right) of the three-dimensional
pressure Poisson equation. The letters are abbreviations referring to n(orth), s(outh), e(ast),
w(est), t(op), b(ottom) and c(enter).

for empty cells. For instance in vertical direction only cells with vertical index k are present in
the computations if ki,j

min ≤ k ≤ ki,j,n
max , where ki,j,n

max ≤ kmax and ki,j
min ≥ 1 (see section 2.2).

3.2.1 Diagonal Jacobi

A simple preconditioner for the system Ax = b is given by a diagonal matrix D with elements
dii = aii. This preconditioner is called diagonal Jacobi preconditioner or diagonal scaling,
because it sets the diagonal elements of the preconditioned matrix equal to 1.

Usually this preconditioner is applied directly to the matrix, which means Ã is computed
and stored in the setup phase of the iterative method and multiplications with Ã are performed
directly in every step of the iterative method. Therefore, besides the costs connected with the
stopping criterion and the back-scaling of the solution, as described above, the only additional
cost of the preconditioned iteration is the matrix scaling in the setup phase.

The preconditioner is computationally cheap and simple, and it improves the convergence
especially if the matrix is badly scaled. On the other hand, in the special case that all diagonal
elements have the same value, the diagonal Jacobi preconditioner does not have any effect on
the spectrum of the matrix. Therefore, it does not improve the convergence considerably in
practical situations where (almost) uniform meshes are used.

Diagonal scaling was implemented and documented by Bijvelds [2003] in connection with a
CG method. He used the preconditioner in a research version of Delft3D-FLOW.

3.2.2 Tridiagonal Jacobi

An improvement of the Jacobi preconditioner can be obtained by including the subdiagonal and
the superdiagonal in the preconditioner, which yields a preconditioner matrix with a bandwidth
1. This tridiagonal Jacobi preconditioner, however, can not be easily applied directly to A
anymore, because the inverse of M is not sparse enough. In fact, it is a matrix whose non-zeros
elements are clustered as blocks with a size kmax×kmax around the main diagonal, where kmax is
the total number of grid layers. Therefore, it is not efficient to store the preconditioned matrix in
memory, as done for diagonal Jacobi, or to calculate the inverse of the preconditioner matrix at
all. Systems of equations are solved instead. To do this efficiently, the matrix is decomposed in
a product of lower and upper triangular parts Ltrid and Utrid. These matrices can be computed
by the first step of the Thomas algorithm [Morton and Mayers, 1994]. Using these factors, the
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preconditioned matrix Ã can be given as U−1
tridL

−1
tridA, L−1

tridAU−1
trid or AU−1

tridL
−1
trid. Within Krylov

algorithms the preconditioner appears only in places where operations y = Ãx̃ have to be
performed. When preconditioning is applied as a (possibly unsymmetric) split preconditioner,
in order to compute

y = L−1
tridAU−1

tridx̃

we successively solve the systems

Utridz = x̃, Ltridy = Az,

which is done efficiently by the second part of the Thomas algorithm with consists of forward
and backward substitution. Left and right preconditioning can be performed in a similar way:

y = U−1
tridL

−1
tridAx : Ltridz = Ax, Utridy = z,

y = AL−1
tridU

−1
tridx̃ : Utridz1 = x̃, Ltridz2 = z1, y = Az2

The tridiagonal Jacobi preconditioner is especially well suited for matrices where the largest
elements are located within the three central diagonals. In the given ordering, these elements
in the pressure matrix are related to the vertical discretization. Suppose we are given a Poisson
matrix of a three-dimensional problem with Dirichlet boundary conditions on a uniform grid. In
this case along each diagonal of the Poisson matrix the elements have the same size. We denote
the absolute value of the non-zero off-diagonal elements according to their origin related to the
discretization, so that, with respect to figure 3.2,

dx = |ei| = |wi| = 1/∆x2,

dy = |ni| = |si| = 1/∆y2,

dz = |ti| = |bi| = 1/∆z2,

dc = |ci| = 2/∆x2 + 2/∆y2 + 2/∆z2.

The relation between the size of any non-zero off-diagonal elements dα for any α = x, y, z and
the main diagonal elements dc is now given by

dα

dc
=

∆x2∆y2∆z2

2∆α2(∆x2∆y2 + ∆x2∆z2 + ∆y2∆z2)
.

If ∆x = ∆y = ∆z, then the factor is dα/dc = 1/6. If however, as in most weakly non-hydrostatic
simulations, ∆z << ∆x and ∆z << ∆y, then it is easy to see that

dx

dc
≪ 1

2
,

dy

dc
≪ 1

2
,

dz

dc
≈ 1

2
.

This means that matrices originating from a discretization with flat cells have small “off-
tridiagonal” elements, and hence, are close to being tridiagonal matrices. In this case the
tridiagonal part of the matrix will be a good preconditioner.

To illustrate the effect of the tridiagonal Jacobi preconditioner on the spectrum of a pressure
matrix with respect to the aspect ratio of the cells, we investigate a 27 × 27 Poisson matrix
originating from a problem with homogeneous Neumann boundary conditions, discretized with
3×3×3 cells . The horizontal spacing is set to ∆x = ∆y = 1. The relative eigenvalue spectrum
for ∆z = 1, ∆z = 0.5 and ∆z = 0.2 with and without the application of the preconditioner is
shown in figure 3.3. The eigenvalues λm are ordered according to size, with λ1 being the smallest
and λ27 being the largest. The condition numbers of all three un-preconditioned matrices are
5.82, the condition numbers of the preconditioned matrices are 4.22, 2.60 and 1.36, respectively.
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For Poisson matrices with a discretization of 15 × 15 × 15 cells we computed a reduction of the
condition number from 103.1 to 69.1 for ∆z = 1.0, to 35.0 for ∆z = 0.5 and to 8.6 for ∆z = 0.2,
using the Matlab eig function. This illustrates the statement that for discretizations with flat
cells a strong decrease in the condition number can be achieved with this preconditioner.
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Figure 3.3: Relative eigenvalue spectrum of a 27 × 27 Poisson matrix originating from uniform
spatial discretizations using three different vertical spacings. The crosses mark eigenvalues of
the original matrix, the circles mark eigenvalues of the matrix after preconditioning with the
tridiagonal Jacobi method.

The tridiagonal Jacobi preconditioner was operational already in the first version of Delft3D-
FLOW with non-hydrostatic capability, but was not documented in the manual. Although for
many practical cases the preconditioner already gives some performance improvement, it is
important that the user is able to choose between different preconditioners according to the
problem to be simulated.

3.2.3 ILU(0)

We have seen that the tridiagonal Jacobi preconditioner already reduces the condition number
by a large amount, when the grid cells are rather flat. For meshes with grid cells that have
similar sizes in the vertical and the horizontal direction, however, it is necessary to include
information about all non-zero elements. This can be done with a preconditioner based on the
incomplete LU-decomposition.

The full LU-decomposition presents a basis for many direct solution methods. It consists of
a factorization of the matrix A in a lower triangular matrix L and an upper triangular matrix
U such that A = LU . It is relatively expensive to compute and store the LU-decomposition
because L and U are much less sparse than A. The complete matrix band is filled with non-zero
elements. These “fill-in” elements in L and U , however, are relatively small compared to the
elements that are located at the non-zero positions of the matrix A.

The incomplete LU-decomposition (ILU) is an approximate factorization that replaces some
of the fill-in elements by zero. More specifically, the ILU(0) decomposition replaces all fill-in
elements by zero, defining the preconditioner matrix M = LU by

li,j = 0 if j > i or ai,j = 0
ui,j = 0 if i > j or ai,j = 0

mi,j = ai,j if ai,j 6= 0,

where ai,j , li,j , ui,j and mi,j are the matrix elements of A, L, U and M , respectively. In this
context, i is the row index and j is the column index. In Saad [2003] the ILU(0) preconditioner
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for a five-diagonal pressure matrix is derived. By doing the same derivation for a seven-diagonal
matrix we find that it is possible to write the ILU(0)-preconditioner as

M = (D + LA)D−1(D + UA),

where LA is the strictly lower triangular part and UA is the strictly upper triangular part of A.
In this form, M is suitable to be used as a split preconditioner. Once the diagonal matrix D is
computed using the ILU(0) algorithm and stored in memory, the preconditioning step can be
easily performed using elements of A.

To calculate D we have to deal with indices related to the space discretization and indices
related to the rows and columns of the matrix. To avoid confusion we will choose m = 1 . . . imax

and n = 1 . . . jmax as the indices related to the space discretization in x- and y-direction and we
use i and j for the position within the matrix. We recall the matrix structure of A as shown in
figure 3.2. The matrix is represented by 7 vectors of length imaxjmaxkmax in such a way that the
vector index is equal to the row-number of the matrix. The algorithm to compute the diagonal
elements of D is now given as a recursive expression for i = nmk = 1 . . . imaxjmaxkmax over all
non-empty cells:

dnmk = cnmk − bnmktnmk−

dnmk−

− enmkwn−mk

dn−mk
− snmknnm−k

dnm−k
, (3.1)

where nmk− denotes the matrix row nmk − 1, nm−k denotes the matrix row nmk − kmax and
n−mk denotes the matrix row nmk − (kmaxmmax).

There are several ways to split M , but we will use

M =
[

(D + LA)D−
1

2

]

︸ ︷︷ ︸

L

[

D−
1

2 (D + UA)
]

︸ ︷︷ ︸

U

, (3.2)

because in the special case of a symmetric matrix A this splitting has the property U = LT ,
which makes the preconditioner applicable to the CG method as well. In this case the ILU(0)
decomposition is equivalent to the Incomplete Cholesky decomposition without fill-in.

If we want to use the preconditioner in the form of (3.2) we either have to store L and
U in memory or we have to perform a multiplication with a diagonal matrix every time we
apply the preconditioner. Therefore, we can save a considerable amount of memory or work
by eliminating the matrix multiplications within the preconditioner. We transform the system
L−1AU−1u = L−1b with u ≡ Ux as follows:

[

(D + LA)D−
1

2

]−1
A

[

D−
1

2 (D + UA)
]−1

u =
[

(D + LA)D−
1

2

]−1
b,

D
1

2 (D + LA)−1A(D + UA)−1D
1

2 u = D
1

2 (D + LA)−1b,

D
1

2 (D + LA)−1D
1

2 D−
1

2 AD−
1

2 D
1

2 (D + UA)−1D
1

2 u = D
1

2 (D + LA)−1D
1

2 D−
1

2 b,

(I + LÃ
︸ ︷︷ ︸

L̃

)−1Ã(I + UÃ
︸ ︷︷ ︸

Ũ

)−1u = (I + LÃ)−1b̃,

with

Ã = D−
1

2 AD−
1

2 ,

b̃ = D−
1

2 b,

LÃ = D−
1

2 LAD−
1

2 ,

UÃ = D−
1

2 UAD−
1

2 ,
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where LÃ is equivalent to the strictly lower triangular part of Ã and UÃ is equivalent to the

strictly upper triangular part of Ã. Note that we can write

u = Ux

= D−
1

2 (D + UA)x

= D−
1

2 (D + UA)D−
1

2 D
1

2 x

= (I + UÃ)x̃

= Ũ x̃

with x̃ = D
1

2 x. Now we can transform the original system Ax = b to the scaled system Ãx̃ = b̃
and apply the L̃Ũ -preconditioned BiCGSTAB method to the scaled system. Since A, b and x
are no longer needed, we can use their computer memory to store Ã, b̃ and x̃. The matrices
LÃ and UÃ are directly obtained from the matrix Ã, without any additional storage or matrix
multiplication. The only additional work is the diagonal scaling of A, b and x before the iteration
and the transformation of x̃ to x after the iteration. Because of this transformation we have to
keep D in memory.

The multiplications of vectors with L̃−1ÃŨ−1 are the computationally most expensive steps
during the BiCGSTAB iteration. Actually one has to solve two triangular systems of equations
and multiply a vector with a matrix. It is possible to save some of this work by applying
Eisenstat’s trick

L̃−1ÃŨ−1u = L̃−1b̃,

L̃−1(L̃ + Ã − L̃ − Ũ + Ũ)Ũ−1u = L̃−1b̃,

Ũ−1u + L̃−1
[

u + (diag(Ã) − 2I)Ũ−1u
]

= L̃−1b̃.

Computing the matrix-vector product with L̃−1ÃŨ−1 costs now only two solutions of triangu-
lar systems, a product of a vector times a diagonal matrix and a few vector additions, while
the matrix-vector product has disappeared. Counting all vector operations for the ILU(0)-
preconditioned BiCGSTAB method with a 7-diagonal matrix, the Eisenstat implementation
will give a performance increase of about 10% for the iterative solver. Considering the total
calculation time and the simplicity of the original algorithm, the gain of using Eisenstats trick is
small. Therefore, though mentioning the possibility of this optimization, it is not implemented
in the code.

If we perform the experiments from the previous section on a 3× 3× 3 grid with the ILU(0)
preconditioner, we obtain condition numbers of the preconditioned system of 1.39, 1.34 and 1.13
for ∆z = 1.0, 0.5 and 0.2, respectively, whereas the original system had a condition number of
5.82. The relative eigenvalue spectrum is shown in figure 3.4. The experiments on a 15×15×15
grid yield 11.3, 9.94, 4.91 versus 103.1 of the original system.

3.2.4 Modified ILU(0)

In the ILU(0)-decomposition we set mi,j = ai,j if ai,j 6= 0. A similar decomposition is the MILU
decomposition, which is achieved by using row sums in a way that

li,j = 0 if j > i or ai,j = 0
ui,j = 0 if i > j or ai,j = 0

∑

i
mi,j =

∑

i
ai,j
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Figure 3.4: Relative eigenvalue spectrum of a 27 × 27 Poisson matrix originating from uniform
spatial discretizations using three different vertical spacings. The crosses mark eigenvalues of
the original matrix, the circles mark eigenvalues of the matrix after preconditioning with the
ILU(0) method.

which leads to the recursive loop for i = nmk = 1 . . . nmaxmmaxkmax over

dnmk = cnmk − bnmk(tnmk− + wnmk− + nnmk−)

dnmk−

− enmk(tn−mk + wn−mk + nn−mk)

dn−mk

− snmk(tnm−k + wnm−k + nnm−k)

dnm−k
.

It is easy to generate an interpolation between the ILU(0) and the MILU preconditioner by
including a parameter αmilu, so that ILU(0) is obtained when αmilu = 0 and MILU is obtained
when αmilu = 1. We call this method MILU(αmilu). The resulting expression is

dnmk = cnmk − bnmk(tnmk− + αmilu(wnmk− + nnmk−))

dnmk−

− enmk(wn−mk + αmilu(tn−mk + nn−mk))

dn−mk

− snmk(nnm−k + αmilu(tnm−k + wnm−k))

dnm−k
.

We calculate the condition number of the preconditioned 15 × 15 × 15 Poisson matrix with
MILU(αmilu) preconditioning. By doing a few tests we found that αmilu = 0.95 is close to
the optimum value. We see that there is some gain when MILU(0.95) is used instead of the
ILU(0)-factorization in this case: The condition numbers were 5.16, 4.48, 3.53 versus 103.1 of the
original system. Since the condition number is only one index of predicting the convergence of
the BiCGSTAB method, practice must show whether the application of the MILU-factorization
really gives a significant performance improvement. If the few extra operations in the setup
phase are neglected, the additional cost per iteration step is zero compared to ILU(0), therefore
even a small improvement of the convergence behavior is directly rewarded in overall speed of
the computation.

To illustrate the convergence of the presented preconditioners, the Matlab test problem of
section 3.1 is considered again, using the same random right hand side and initial values. The
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matrix is modified to represent an aspect ratio ∆z/∆x = ∆z/∆y = 1 in a first computation
and ∆z/∆x = ∆z/∆y = 0.2 in a second computation.

Figure 3.5 shows the convergence of the BiCGSTAB method with the diagonal Jacobi, the
tridiagonal Jacobi and the ILU-based preconditioners ILU(0), MILU and MILU(0.5), where
αmilu = 0.5 was found to be close to optimum after doing a few tests. There is no difference
between the diagonal Jacobi preconditioned and the unpreconditioned iteration, so the unpre-
conditioned iteration is not shown explicitly in the plot. For ∆z/∆x = ∆z/∆x = 0.2 we can
see that the ILU-based preconditioners have a much steeper convergence curve than the Jacobi-
based preconditioners, and that the MILU(0.5) is the best preconditioner among the ILU-based
ones. When we choose ∆z/∆x = ∆z/∆x = 0.2, then we see that the tridiagonal Jacobi precon-
ditioner is almost as good as the ILU-based preconditioners. Considering that the tridiagonal
Jacobi preconditioner is relatively cheap per time step, it may be that it outperforms the other
preconditioners in terms of wall-clock times. For a comparison of wall-clock times for a realistic
test case computed with Delft3D-FLOW, see section 4.3.
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Figure 3.5: Convergence of the BiCGSTAB method with different preconditioners for a per-
turbed Poisson equation. In the case that ∆z/∆x = 1 the combination of ILU(0) and MILU
with a parameter α = 0.5 gives best results. The difference between the tridiagonal Jacobi
preconditioner and the ILU preconditioner is mainly depending on the value of ∆z/∆x.
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3.3 Starting values and stopping criteria

An iterative method takes an initial guess of the solution and updates this guess every step
until a good approximation of the solution is obtained with a sufficient accuracy. It is good to
have a starting guess available that is close to the actual solution, so that only a few iterations
are needed until the approximation is sufficiently accurate. It is necessary to define what is
“sufficient accuracy” based on some problem-related quantity. The discussion about starting
values and stopping criteria involves some physical relations. Therefore, we have to switch from
the unspecific and general unknown x used in previous sections to the specific unknown ∆p of the
actual pressure-correction system. To compare unknowns of different time steps we add an index
to the pressure-correction. We define the pressure-correction at time step n as ∆pn = pn+1 − pn

and we denote the initial guess of the iterative method at time step n with ∆pn
0 .

Two simple choices of initial values for the pressure-correction at time step n are ∆pn
0 = 0

and ∆pn
0 = ∆pn−1, where ∆pn−1 is the solution of the previous time step. One could also think

of a linear extrapolation ∆pn
0 = ∆pn−1 + (∆pn−1 −∆pn−2) to get a better estimate. A few runs

with a simple test case in the development phase of the solver have showed that ∆pn
0 = ∆pn−1

gives an improvement over ∆pn
0 = 0, but the extrapolation does not have significant effect on

the convergence. Therefore, simply the solution of the previous step is used as an initial value
in the BiCGSTAB solver of Delft3D-FLOW. In the very first time step the starting guess is set
to the hydrostatic pressure, because no better guess is readily available.

Besides the initial guess, every iterative method to solve a linear system requires a criterion
that determines when to step out of the iteration. Finding a good termination criterion is more
difficult than finding a good initial guess.

Iterative methods are able to find the solution of a given system with an accuracy of almost
the order of magnitude of the machine precision if the system is sufficiently well conditioned.
The actual advantage of iterative methods, however, is their capability to produce results with
a lower, but still sufficient, accuracy within a much shorter calculation time. The stopping
criterion prescribes the compromise between the accuracy of the solution and the time spent to
find this solution.

When we want to solve a system of equations originating from a discretized partial differential
equation, the stopping criterion should be satisfied if the solution has an accuracy of the size of
the discretization error. The stopping criterion could also express some physical condition or the
reduction of the initial error by a certain factor. If the solution of a linear system of equations
is only a part of another solution process, like a pressure-correction method, then the accuracy
of the iterative solution should be compared to the accuracy of the overall process.

One way to formulate a stopping criterion for a system Ax = b is to measure the error
ei = x − xi in some vector norm. If we knew the error ei, we could stop iterating if the error
norm ||ei|| became smaller than some tolerance. But knowing ei, we would even be able to
calculate the true solution directly from x = ei + xi. Unfortunately, calculating the error is
as hard as calculating the true solution, because Ax = A(xi + ei) = b and so Aei = b − Axi.
Therefore, one is usually satisfied if a bound of the error norm can be measured, for example

||ei|| ≤ ||A−1|| · ||b − Axi||, (3.3)

where ||A−1|| is a matrix norm of the inverse of A, which is compatible with the vector norm
used. The term

ri ≡ b − Axi (3.4)

is called the residual. From (3.3) it is clear that if ||A−1|| · ||r|| is smaller than some tolerance
then also ||ei|| is smaller than this tolerance. The problem yet to be resolved is the efficient
estimation of ||A−1||, which is possible only in special cases (see Barrett et al. [1994]).
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Instead of using an error bound, our aim is to find a physical quantity that can be used as
a stopping criterion. Therefore, recall the origin of the system to be solved: In section 2.5 the
pressure-correction equation is derived from the momentum correction equations, here shown
without space discretization,

un+1 = −∆tθ
∂∆p

∂x
+ un+1∗

vn+1 = −∆tθ
∂∆p

∂y
+ vn+1∗

wn+1 = −∆tθ
∂∆p

∂z
+ wn+1∗.

(3.5)

It is required that ∆p is computed in such a way that the final velocity satisfies

∂un+1

∂x
+

∂vn+1

∂y
+

∂wn+1

∂z
= 0.

We know that we are not able to calculate the solution of the pressure-correction equation
accurately in the presence of numerical errors. This means we approximate ∆p by ∆p̂ in a way
that

∂un+1

∂x
+

∂vn+1

∂y
+

∂wn+1

∂z
= ec, (3.6)

where ec is some error. In fact, equation (3.6) expresses that ec is the divergence of the final
velocity field. By substituting (3.5) in (3.6) we obtain the pressure-correction equation

∆tθ

(
∂2∆p̂

∂x2
+

∂2∆p̂

∂y2
+

∂2∆p̂

∂z2

)

=
∂un+1∗

∂x
+

∂vn+1∗

∂y
+

∂wn+1∗

∂z
+ ec. (3.7)

An important observation is that the divergence of the final velocity field is equivalent to
the residual in the iterative solution method. To show this, suppose we discretize (3.7) so that
we can write it in matrix form

A · (∆p̂) = b + ec, (3.8)

where A is the matrix resulting from the discretization of the left-hand side and b is the dis-
cretized divergence field of the preliminary velocity field. If we stop the iteration at step i, the
substitution of (3.8) with xi ≡ ∆q̂∗ in (3.4) reveals that ec = ri. So the residual of the iterative
method can be used to limit the divergence of the final velocity field.

To measure the size of the residual we need to transform the information contained in the
elements of the residual vector to a single number. To keep the formulas simple we say that the
residual has k elements and to access one element of the residual we use only one a single index
from 1 to k. A way to measure the size of the residual is using a p-norm

||r||p =
( k∑

j=1

|rj |p
)1/p

,

where p ∈ R and p ≥ 1. Usual choices of p are 1, 2 and ∞. The infinity norm can be written as
||r||∞ = maxj |rj |. One has to bear in mind that p-norms with p < ∞ scale with k1/p. This is
unproblematic if the stopping criterion has the form of ||r||p < ǫ||x||p for an arbitrary vector x
with k elements, because both sides of the inequality scale with the same number. If we have a
criterion in the form of ||r||p < ǫ, however, the choice of ǫ must be based on information about p
and k. Therefore, if ǫ is meant to be a limit for the divergence of the final velocity field, should
use p = ∞.
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There exist alternatives to using a p-norm of the residual as a stopping criterion. One could
think, for example, of the spatial average of the absolute divergence field,

ravg =

∑k
j=1 ∆xj∆yj∆zj |rj |

∑k
j=1 ∆xj∆yj∆zj

.

In case of a uniform grid

ravg =
k∑

j=1

|rj |/k = ||r||1/k,

which shows the relationship between the average and the 1-norm. In general we can interpret
the average as the 1-norm of a weighted residual according to

ravg = ||a · r||1,

where the vector a consists of elements

aj =
∆xj∆yj∆zj

∑k
i=1 ∆xi∆yi∆zi

.

Up to now we are able to define the size of the final divergence in terms of its maximum or
its average absolute. To formulate a stopping criterion, we still require an inequality. The most
obvious choices are:

• Bind the divergence: To limit the divergence directly in terms of a number ǫ, we can
formulate the stopping criterion ||ri|| < ǫ. This gives a absolute bound on the error
introduced by the iterative method in each time step. The accuracy of the solver is
independent on the initial guess. Therefore, it is considered quite a save bound. However,
if the error in the preliminary velocity field is very large, then making the divergence of the
final velocity field very small does not necessarily mean that the error of the final velocity
field is very small, too.

• Reduce the divergence of the intermediate velocity field by a factor. The criterion ||ri|| <
ǫ||b|| expresses the fact that the goal of the non-hydrostatic extension is to improve the
hydrostatic guess. If the guess is not very accurate, we do not need to calculate the
pressure-correction very accurately either, which saves computation time. If the diver-
gence of the preliminary velocity field is already very small, however, there might be a
lot of iteration steps necessary to make it even smaller. This is the case when a solution
approaches a steady state. In this case, making the convergence error very small is not
meaningful if other errors of the numerical scheme are much larger.

• Reduce the initial residual by a factor. The bound ||ri|| < ǫ||r0|| leads to an approximately
constant work load every time step. If ∆pn

0 = 0 is chosen as an initial guess, then this
criterion is equivalent to the previous one. If we use the ∆pn

0 = ∆pn−1, then we might
have a better initial guess and, therefore, a smaller initial residual. Still, the algorithm
will try to increase this residual by a constant factor. In case of an almost steady state,
the algorithm will still perform a lot of iterations per time step.

Since the last criterion does not reward the use of a good initial guess, it is not as useful as the
second criterion, although both criteria will lead to similar numbers of iterations in case that
no good initial guess is available. The best stopping criterion for most practical applications is
a combination of the first and the second criterion,

||ri|| < ǫ1 or ||ri|| < ǫ2||b||. (3.9)
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If the preliminary velocity field has already a relatively small divergence, then we only iterate
until the divergence reaches ǫ1, so that the number of iterations goes to zero when the velocity
field approaches a steady state. If the preliminary velocity field has a very high divergence, then
we decrease that divergence only by the factor ǫ2, because the error is expected to be large,
anyway, even if the divergence is small. By setting either ǫ1 or ǫ2 to zero we obtain one of the
first two criteria.

3.4 Implementation

A pseudo-code of the final implementation of the BiCGSTAB algorithm with MILU precondi-
tioning is given as algorithm 3. The special form of the preconditioner, as described in sections
(3.2.3) and 3.2.4 leads to a more complicated algorithm then when we had stored the matrices
L and U directly in memory. However, in the chosen form the algorithm is more efficient with
respect to memory requirements. In the beginning of the solution process the matrix and the
right-hand side are scaled with D−1/2 and the scaled system is used as the actual system to be
solved. Only at the end and for the stopping criteria it is required to transform to the unscaled
quantities.

Compared to algorithm 1, the iteration loop is shifted, so that the stopping criterion is at
the beginning of the iteration. This has the following advantage: If a very good initial guess is
available, then it can be directly used as a final solution without actually doing a single iteration.
This is may be the case when the time step is set to a very small value or when the solution
reaches a steady state. Then only every few time steps a Krylov iteration needs to be done to
update the pressure.

After checking for convergence with the updated residual, there is another check with the true
residual. This check is computationally expensive, because it involves a matrix-vector product.
Still, it is necessary, because it is reported in van der Vorst [1992] that the updated residual
may differ by orders of magnitude from the true residual, and convergence in terms of the true
residual is what we actually require.

The preconditioner is applied as a right preconditioner to the scaled system, so that the
preconditioned and the unpreconditioned updated residual are the same. The additional cost
to compute the final solution from the preconditioned solution could be avoided by using the
preconditioned search directions in line 25. This means that the scaled solution is directly
obtained without an additional system to be solved at the end of the iteration.

There are several possible divisions by zero in the algorithm. Therefore, before the divisions,
it is checked, whether the divisor is zero. If this is the case, the algorithm is restarted at line 6.
The checks for divisions by zero are not mentioned in the pseudo-code.
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Algorithm 3 BiCGSTAB method with MILU preconditioning

1: take x̃0 from the previous time step (zero in first step)
2: generate matrix A and right-hand side b
3: compute D of the MILU decomposition of A
4: Ã = D−1/2AD−1/2

5: b̃ = D−1/2b
6: pi = r̄0 = r̃0 = b̃ − Ãx̃0

7: ρ0 = (r̄0, r̃0)
8: for i = 0 . . . N do

9: rupdate = D1/2r̃i

10: if ||rupdate||∞ < ǫ1 or ||rupdate||∞ < ǫ2||b|| then

11: rtrue = D1/2(b̃ − Ãx̃i)
12: if ||rtrue||∞ < ǫ1 or ||rtrue||∞ < ǫ2||b|| then

13: leave for-loop
14: else

15: restart
16: end if

17: end if

18: p̂ = Ũ−1L̃−1pi (forward/backward substitution)
19: v = Ãp̂
20: αi = ρi/(r̄0, v)
21: s = r̃i − αiv
22: ŝ = Ũ−1L̃−1s (forward/backward substitution)
23: t = Ãŝ
24: ωi = (t, s)/(t, t)
25: x̃i+1 = x̃i + αip̂ + ωiŝ
26: r̃i+1 = s − ωit
27: ρi+1 = (r̄0, r̃i+1)
28: βi = (ρi+1/ρi)(αi/ωi)
29: pi+1 = r̃i+1 + βi(p

i − ωiv)
30: end for

31: compute solution x = D−1/2x̃ using most recent value of x̃i
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Chapter 4

Simulations

In this chapter we want to study the accuracy and the efficiency of the numerical scheme de-
scribed in chapter 2. In section 4.1 we consider the accuracy with respect to the damping and
the phase speed of waves for a simple test problem with a standing wave in a basin. In this
case we are able to combine the outcome of analytical considerations with actual simulations.
In section 4.2 the wave propagation over a submerged bar is modeled in the x-z-plane. This
is a more demanding simulation, because it features non-linear effects and waves with different
wave speeds and wave length. In section 4.3 the efficiency of the solver will be tested with a
three-dimensional model of a ship lock.

4.1 Standing wave in a basin

A standard test problem to investigate the accuracy of a numerical scheme for wave problems is
the two-dimensional vertical (2DV) simulation of a standing surface wave with a small amplitude
in a closed water basin. The basin has a rectangular shape with a length L and a mean water
level H. Free-slip conditions are prescribed at all boundaries except the free surface. Initially,
the water is at rest and the water level is prescribed as

ζ(x, 0) = Aζ,0 cos(kx), 0 m ≤ x ≤ L.

When all non-linear, viscous and turbulent effects are neglected, the solution for the water level
is an undamped linear wave, which makes this test case interesting for an analytical study.

To examine the numerical scheme with respect to wave applications a distinction between
different types of waves can be made, using the linearized dispersion relation

ω = ±
√

gk tanh(kH), (4.1)

which relates the angular frequency ω with the wave number k and the mean water depth H,
provided the amplitude is relatively small compared to k and to H. Other variables of possible
interest are the phase velocity vp = ω/k, the wave length λ = 2π/k, the wave period T = 2π/ω
and the wave frequency f = ω/2π. The dispersion describes the dependence of the wave speed
with respect to the depth of the water an the length of the wave. However, in certain cases
only one of both effects is important. Based on the size of kH we can discriminate between the
following types of waves:

• Long waves: When the wave length is significantly greater than the water depth, then
kH ≪ 1. By using a Taylor expansion,

tanh(kH) = kH + O((kH)3)

43
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Therefore, the angular frequency can be approximated by ω = ±k
√

gH and the wave speed
is vp = ±√

gH.

• Short waves: When the kH is in the order of magnitude of 1, then the full relation (4.1)
must be used to describe the dispersion.

• Very short waves: If the value of kH is much larger than 1 than another simplification
can be made. We know that

lim
kH→∞

tanh(kH) = 1,

so we can approximate ω = ±
√

gk. We see that in this case the wave speed vp = ±
√

g/k
is no longer dependent on the depth.

Illustrations of the different types of waves are shown in figure 4.1, where cross sections of
standing waves in a basin with different length are displayed.

x

very short

x

short

x

long

z

Figure 4.1: Typical depth profiles of waves characterized by the attributes ‘long’, ‘short’ and
‘very short’, obtained with the Delft3D-FLOW code. The plots show a cross section view of the
horizontal velocity of a simple standing wave in a basin, with length to height ratios 200 m : 10 m,
40 m : 10 m and 5 m : 10 m, respectively, which means kH ≈ 0.31, 1.6 and 12.6 from left to right.
Because the amplitude was chosen very small, the surface profile is not visible in the plot.

4.1.1 Damping effect of the time discretization

The solution of the water level in the closed basin can be reasonably well approximated by an
undamped standing harmonic wave, which will serve as an “exact solution” in the following.
After transforming it to the complex domain it is given as

ζ(x, t) = Aζ,0e
i(kx−ωt), (4.2)

the real part of which is the actual wave solution.
The solution of the simulated problem should be close to equation (4.2). However, the

discretization in space and time may introduce artificial damping or amplification, a phase shift
or a deformation of the wave. Here, we concentrate on the artificial damping. To investigate
this effect we consider the solution of the water level at one of the boundaries (x = 0 or x = L),
where cos(kx) = 1. This gives water levels and respective time derivatives of

ζ(0, t) = Aζ,0e
−iωt and

dζ(0, t)

dt
= −iωζ(0, t).
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We can interpret the second equation as an ordinary differential equation. Discretization of the
time derivative with a θ-scheme yields

ζn+1 − ζn

∆t
= −iω(θζn+1 + (1 − θ)ζn). (4.3)

Actually the considered non-hydrostatic free-surface model can not be completely expressed as a
θ-scheme, because several terms in the momentum equations are treated fully explicitly or fully
implicitly. Only in case of a small amplitude these terms are small compared to the θ-discretized
pressure terms and the simplification of above is valid.

Equation 4.3 can be rewritten as
ζn+1 = caζ

n

with

ca =
1 − iω∆t(1 − θ)

1 + iω∆tθ

=

(
1 − iω∆t(1 − θ)

)(
1 − iω∆tθ

)

1 + (ω∆tθ)2
,

where ca is called the amplification factor. The absolute value of the amplification factor denotes
the damping of the solution per time step. It is given as

|ca| =

√

1 + (ω∆t(1 − θ))2

1 + (ω∆tθ)2
. (4.4)

The exact solution contains no damping. Therefore, |ca| should be equal or close to 1.
Looking at (4.4), however, we see that depending on θ the solution may be amplified or damped.
In the case of θ = 0, which yields the forward Euler-scheme, the wave is amplified because
√

1 + (ω∆t)2 > 1. In the case of θ = 1, which yields the backward Euler-scheme, the wave is
damped because 1/

√

1 + (ω∆t)2 < 1. For the Crank-Nicolson method, with θ = 1/2, neither
damping nor amplification is present.

Equation (4.4) gives rise to an amplitude function An
ζ in discrete time, which is obtained

using
An

ζ = |ζn| = |(ca)
nζ0| = |ca|nAζ,0,

which is equivalent to the time-continuous function

Aζ(t) = Aζ,0(t) · exp

{
t

∆t
ln |ca|

}

. (4.5)

Note that the logarithm gives rise to a negative exponent for θ > 1/2 and a positive exponent for
θ < 1/2. In the plots we will also show the negative amplitude to make the visible comparison
of the numerical and the predicted solution easier.

The expected numerical solution, including the numerical damping effect due to the time
discretization, is given by

ζ(x, t) = Aζ(t) cos(ωt), (4.6)

which will be a measure to evaluate the numerical experiments shown below.
By setting t equal to the wave period T = ω/2π and dividing by the amplitude, we obtain

the relative damping per wave period,

cper ≈ exp

{
2π

ω∆t
ln |ca|

}

,
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Figure 4.2: Damping of the θ-scheme per wave period for different values of θ plotted as solid
lines. The slashed lines refer to the linearization around ∆t = 0. For ω∆t ≫ 1 the curves
approach 1. This is not shown in the plot since only small ω∆t are relevant for studying the
accuracy of wave solutions.

which is a function of ω∆t and θ. A Taylor expansion around ∆t = 0 gives

cper = 1 + (1 − 2θ)πω∆t + O(∆t2),

which shows that the damping per wave period is of order ∆t for any wave frequency when
θ 6= 1/2.

In figure 4.2 the damping behavior is plotted for some values of θ. Because the damping
factor is linear in ∆t around ∆t = 0 s, the time step has to be chosen small in order to reduce
damping, or θ has to be chosen close to 0.5. The figure also illustrates the instability of the
scheme when θ < 0.5, because then for any ∆t all waves are amplified.

We want to test if the numerical damping rate of the solution of the closed basin test case
behaves like the analytical prediction. We consider a basin with a length of L = 20 m and a
depth of H = 10 m. We set the initial water level amplitude to Aζ,0 = 0.1 m, which is reasonably
small to prevent noticeable nonlinear effects for a sufficiently long simulation time. We set the
wave length equal to the length of the basin, λ = L = 20 m, which leads to a wave number of
k ≈ 0.314 m−1. The wave number is relatively small, so the wave can be categorized as a very
short wave. According to the linear dispersion relation (4.1), using a gravity g ≈ 9.81 m/s2 we
obtain the angular frequency ω ≈ ±1.75 s−1. The experiment is set up in Delft3D-FLOW with
11 horizontal layers, located between z = −10.5 m and z = 0.5 m. To obtain a 2DV model with
the three-dimensional code, only a single grid layer is used in the y-direction. Further, we use 40
cells to discretize in x-direction, so that ∆x = 0.5 m and we set ∆t = 0.12 s. The CFL number
with respect to the wave propagation is given as (ω/k) · ∆t/∆x ≈ 1.34.

The result of a simulation using θ = 1 in Delft3D-FLOW with the method described in
chapter 2 is shown in figure 4.3, together with the envelope according to (4.5) and the damped
solution according to (4.6). The solution shows that the prediction of the damping rate was
accurate and, thus, the damping related to the time discretization is indeed the most prominent
error source. The plot also shows that the numerical solution does not exhibit any significant
phase shift with respect to the analytical phase shift.

Now we decrease θ in the time integration of the surface equation and the momentum
equations to 0.5. As explained above, the damping due to the time discretization should be
completely eliminated. The result of the computations is shown in figure 4.4 together with the
predicted solution (4.6), which reduces to the exact solution (4.2) for x = 0 or x = L. Indeed,
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Figure 4.3: Water level at x = 0 with θ = 1. The numerical solution is marked with circles,
the predicted solution and amplitude are plotted with solid and dotted lines, respectively. The
predicted solution is equivalent to the exact solution multiplied with the amplitude function
(4.5).

the damping is not visible anymore and an accurate solution is obtained. The conclusion is
that, in order to eliminate wave damping, θ should be chosen 0.5. The scheme considered in
this thesis contains explicit terms (θ = 0) in the momentum prediction equations. Therefore, in
some cases it may be necessary to set θ slightly larger than 0.5 in order to achieve stability. In
the basin test case considered here, it turned out that choosing θ = 0.5 was stable.
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Figure 4.4: Water level at x = 0 with θ = 0.5. The numerical solution is marked with circles and
the exact solution is shown as a solid line. The close match shows that the numerical damping
in figure 4.3 was mainly caused by the time discretization.

We are interested if the damping behavior of the Bijvelds scheme is similar to a θ scheme
with θ = 1. Therefore, we perform further numerical experiments, comparing both schemes to
the analytical predictions used in the previous studies. We extend the model to take different
wave lengths into account: We choose L = 200 m, 20 m, 5 m and set the wave lengths equal to
L. The first case, L = 200 m almost allows for a hydrostatic assumption, because the angular
frequency obtained form the hydrostatic dispersion relation ω = ±k

√
gh differs only about 2 %

from the agular frequence obtained by the general linear dispersion relation (4.1). The third
case is a clear example of a very short wave which can be described almost perfectly with the
deep water relation ω = ±

√
gk.

We decrease the initial amplitude to Aζ,0 = 0.01 m in order reduce nonlinear effects which



48 CHAPTER 4. SIMULATIONS

could come into play as L = 5 m. For the discretization, we again use 40 grid cells in x-direction,
so that ∆x = 5.0 m, 0.5 m, 0.125 m. Some adjustment had to be made in order to compare the
schemes successfully: For the case L = 5 m the waves were already very short, so that most
of the information was contained in a thin layer below the surface. In order to capture this
layer, the grid had to be refined in this region. Still using 11 layers, the relative layer thickness
was chosen ∆x/H = 0.01, 0.01, 0.01, 0.02, 0.03, 0.04, 0.05, 0.09, 0.14, 0.20, 0.40 from top to
bottom. To achieve wave damping rates similar to those of the experiments done above, ∆t
had to be chosen such that ω∆t is similar in all three cases. Still, the time steps had to be
easily expressible in minutes to comply with the Delft3D-FLOW input file format. Choosing
∆t = 0.3 s, 0.06 s, 0.03 s met all these requirements.

Figure 4.5 shows the results of the computations. It turns out that for all kH-values the
Bijvelds scheme exhibits less damping than the present scheme. The damping per wave period
for the present scheme matches well with the analytical predictions. For the Bijvelds scheme the
damping is less. In both schemes the damping per wave period did not show any dependency
on kH. However, the Bijvelds scheme exhibits a phase error that seems to depend on the wave
length. Especially in the cases of L = 20 m and L = 5 m the phase shift is clearly visible in the
plot.

The results give rise to two questions: Why does the Bijvelds scheme exhibit significantly
less damping than the present scheme with θ = 1? And why does it have a large phase error
when short waves are simulated?

The answer of the first question will be given below. For the second question a first idea is
to check if the improved implementation of the dynamic surface condition is the reason. If so,
setting α = 0 would result in similar phase errors for both schemes. Numerical experiments,
however, showed that there was no significant dependency on the choice of α. A case where the
implementation of the dynamic surface condition is important will be shown in section 4.1.3. It
is suspected that the phase error is a result of the particular splitting of the equations. However,
further studies, involving a deeper analysis of the Bijvelds scheme, will be required to gain better
understanding of the phase error.

The ADI scheme in the prediction step is one of the main differences between the method
featured in this thesis and the method of Bijvelds, and the ADI scheme is also the cause for
the difference in the damping behavior that was found above. A thorough analysis of the ADI
prediction scheme is presented in appendix C, where the analysis of the previous section is
extended to a system of three variables in two dimensions. Instead of an amplification factor, an
amplification matrix is found. Inspection of the eigenvalues of this matrix reveals the damping
and phase error of the scheme. We find the non-trivial eigenvalues

λ2/3 =
1 − 1

4(ω∆t)2 ±
√

−(ω∆t)2 + 1
16(ω∆t)4

1 + 1
2(ω∆t)2

. (4.7)

To be consistent with the notation of the previous section we denote the common absolute value
of both eigenvalues λ2/3 of the ADI scheme as |ca|. Ignoring the higher order term in the square
root, the damping per time step is given by

|ca| =
1 + 1

4(ω∆t)2

1 + 1
2(ω∆t)2

. (4.8)

As done in the previous section, we can compute the envelope function and the damping per
wave period. Adding the envelope function to the plot, see figure 4.6, we see that the damping
behavior of the Bijvelds scheme is predicted correctly.
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Figure 4.5: Solution of basin test case with different wave lengths, θ = 1 (crosses: pressure split,
circles: no pressure split, solid and dotted lines: prediction for un-split scheme). The character-
istic dimensionless numbers are kH ≈ 0.31, 3.1, 12.6 (top to bottom) and ω∆t ≈ 0.092, 0.11, 0.11,
respectively.
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Figure 4.6: Solution of basin test case with different wave lengths, θ = 1 (crosses: pressure split,
circles: no pressure split, solid and dotted lines: prediction for un-split scheme). The slashed
line shows that the predicted damping behavior of the Bijvelds method after analyzing the ADI
prediction scheme.
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4.1.2 Damping effect of upwind discretization

The test case in section 4.1.1 revealed that the error due to the implicit time integration method
can cause numerical damping. If a higher order scheme is used for the time discretization, or
if a sufficiently small time step is used, then the error due to the space discretization becomes
important for the overall accuracy of the solution. It is known that a first order upwind scheme
used for discretizing an advection term introduces an error of order O(∆x), which acts like an
artificial viscosity term. As mentioned at the end of section 2.3, in the non-hydrostatic module
of Delft3D-FLOW the horizontal advection terms are discretized with a multidimensional first
order upwind scheme, which simplifies to a standard first order upwind scheme in case of 2DV
simulations. In cases where the spatial step size or the velocity is large, the error due to the
space discretization can no longer be ignored. In this section the effect of this error is studied
analytically and numerically.

The practical motivation for the investigation of the error related to the upwind discretization
comes from simulations done with the basin test case with L = 5 m and H = 10 m. The wave
has a wave number of k = 2π/(5 m) ≈ 1.26 m−1 and a water level amplitude of 0.1 m. We chose
∆t = 0.012 s and θ = 0.5 to prevent visible time discretization effects. The spatial step was set
to ∆x = 0.25 m. The resulting horizontal velocity in the top layer is given in the figure 4.7 on
the left. Over a longer period of time there is a prominent wave damping, even when θ = 0.5
is used. The damping does not decrease with a smaller time step. Furthermore, the damping
is not exactly exponential, as in the case of the damping due to the time discretization scheme.
However, the damping is less for longer waves or waves with a smaller amplitude. These findings
indicate that the error has its origin in a spatial discretization. More specifically, the first order
multi-directional upwind discretization of the horizontal advection terms is thought to be the
main reason, since the viscosity was set to a negligibly small value and the vertical advection
terms are discretizeted with a second order accurate method.

One way to verify that the upwind terms are really the cause of the damping is to see what
happens if these terms are set to zero in the scheme. The result can be seen in figure 4.7 on
the right. Now the damping is much less, which means a better numerical approximation of
these terms is required to get more accurate results. It must be mentioned,however, that the
computations became instable after about 150 s of simulation time and that important physical
effects like the steepening of waves and different flow phenomena require the inclusion of the
horizontal advection terms in the equations.

To get some more insight in the behavior of the numerical solution, we want to estimate the
damping effect of the first order upwind discretized advection term analytically. For simplicity
we focus on the term u ∂u/∂x, which is included explicitly in the u-momentum equations. For
pure wave problems both u and ∂u/∂x are oscillating around zero and there seems no obvious
way to linearize one or the other. However, under certain assumptions it is possible to perform
a non-linear analysis. In order to keep the analysis relatively simple we do not take the full
numerical scheme into account, but merely consider the one-dimensional equation

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
= f(u(x, t), x, t), (4.9)

because we are mainly interested in a qualitative study of the damping introduced by the dis-
cretization of the advective terms. Since we do not have ∂u/∂x in the discretized state space,
we have to discretize it with the help of neighboring velocity points, which introduces a space
discretization error. To get an estimation of that error we assume that a velocity u(x) is given at
a certain fixed time t0. We assume that the function f(x, t) has such a form that a wave-solution
exists and the velocity may be written as

u(x) = A(t)ei(kx−ωt).
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Figure 4.7: Damping effect of the upwind discretization of the horizontal advection terms. The
plots shows u(t) in the top layer at a horizontal position of x = 1.25 m. A wave with a water
level amplitude of 0.1 m and a wave length of 5 m in a 10 m deep basin was simulated using 11
layers, ∆t = 0.012 s and ∆x = 0.25 m. The plot on the left shows the results obtained with the
Borsboom model, in the picture on the right the horizontal advection terms were left out in the
equations. The slashed line indicates a simple exponential function, which can not be fitted well
to the envelope of the solution.

The exact value of u ∂u/∂x is then given as

u(x)
∂u(x)

∂x
= ikA(t)2e2i(kx−ωt) = iku(x)2.

Now we will compute the value of u ∂u/∂x when a first order upwind method is used. In analogy
to the expression of the exact value we introduce the notations

u(x)
∂u(x − ∆x

2 )

∂x
and u(x)

∂u(x + ∆x
2 )

∂x

for the values of the upwind discretized terms, depending on the sign of u(x). First, we consider
the case of u > 0:

u(x)
∂u(x − ∆x

2 )

∂x
= u(x)

u(x) − u(x − ∆x)

∆x

= A(t)ei(kx−ωt) A(t)ei(kx−ωt) − A(t)ei(kx−∆x−ωt)

∆x

=
A(t)2

∆x
e2i(kx−ωt)(1 − e−ik∆x)

and using a Taylor approximation around ∆x = 0,

e−ik∆x = 1 − ∆xik +
∆x2i2k2

2
, (4.10)

we can write

u(x)
∂u(x − ∆x

2 )

∂x
=

A(t)2

∆x
e2i(kx−ωt)(1 − 1 + ∆xik − ∆x2i2k2

2
)

= ikA(t)2e2i(kx−ωt)(1 − ∆xik

2
)

= u(x)
∂u(x)

∂x
(1 − ∆xik

2
).
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In case of u < 0 the same analysis leads to

u(x)
∂u(x + ∆x)

∂x
= u(x)

∂u(x)

∂x
(1 +

∆xik

2
).

The local discretization error is the difference between the exact operator applied to u(x)
and the upwind operator applied to u(x). It is given as

ǫ = u(x)
∂u(x)

∂x
− u(x)

∂u(x ± ∆x)

∂x

= ±u(x)
∂u(x)

∂x

∆xik

2

= ±iku(x)2
∆xik

2

= ∓k2u(x)2∆x

2
,

where the right hand side in the last line has reversed signs, so it is negative when u < 0. We
can also write ǫ for any direction of u as

ǫ =
k2|u|∆x

2
· u.

The relative error with respect to the velocity has the dimension 1/s and is given by

ǫrel =
ǫ

u
=

k2|u|∆x

2
.

We want to estimate the value of ǫrel to get an idea of the damping introduced by the upwinding.
It is unhandy that ǫrel is depending on u. By averaging over a period and a wave length of |u|
we want to obtain an ǫavg which is not dependent on time and space anymore. Let the exact
solution may be given as A(t) sin ωt sin kx. We want to average ǫrel over [0, T/2] and [0, π/k].
This means we have to solve the integral

ǫavg =
k2∆x

2

2

T

k

π

∫ T
2

0

∫ π
k

0
|u(t)| dx dt

=
k3∆x

πT

∫ T
2

0

∫ π
k

0
A(t) sin ωt sin kx dx dt

This integral can not be computed, because we do not know A(t). We can only use the assump-
tion that the damping effect is relatively small within the time interval [0, T/2], which means
that the damping takes place on a much larger time scale than the oscillation of the solution.
Then the factor A(t) can be put out of the definite integral. We obtain an averaged relative
error per second of

ǫavg ≈ A(t)k3∆x

πT

∫ T
2

0

∫ π
k

0
sinωt sin kx dx

≈ A(t)k3∆x

πT

2T

πk

≈ 2A(t)k2∆x

π2
.
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We want to approximate the envelope of the numerical solution using the knowledge about ǫavg.
For this purpose we can say that per time step the upwind scheme introduces a damping error
of ǫavg · ∆t. We discretize the velocity amplitude A(t) in time to get An, given by the relation

An+1 = An(1 − ǫavg∆t) = An

(

1 − 2Ank2∆x

π2
∆t

)

. (4.11)

Starting with some initial amplitude, it is straightforward to solve this equation numerically to
get an approximation of A(t).

Note that we have used several assumptions to study the effect of the upwind scheme: We
assumed that the damping happens on a sufficiently longer time scale than the oscillation, which
is reasonable in the considered test case. Furthermore, we assumed that u is a function of x
and t only, in other words, the depth profile is assumed to be uniform. In reality, the velocity
decays with the depth, and so does the relative damping, because it is a function of u. However,
it would be difficult to include this nonlinear effect in the analysis. As a third assumption we
neglected the interdependency of the equations and terms and considered only a single simplified
equation. Still, having found a relation for the damping of the simplified example, we should
expect that at least qualitatively the results carry over to the complete scheme.

Figure 4.8 compares the approximation of A(t), obtained using equation (4.11), with the
numerical solution of the basin test problem as described above. It can be seen that the damping
behavior is predicted quite well, even with the analysis of the simplified scheme. This indicates
that, indeed, the damping comes from the upwind discretization.
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Figure 4.8: Result of the simulation (thin black line) with the analytically predicted velocity
amplitude (bold gray line). The result

To eliminate the damping due to the spatial discretization of the advective terms in the
horizontal direction, higher order schemes should be considered. A second order central scheme
is no possible candidate, because it introduces numerical wiggles when the velocity is large.
Higher order upwind schemes or flux-limiter schemes are known to exhibit much less damping
than first order upwind. However, after Godunov’s theorem higher order scheme are not total
variation diminishing (TVD) and, therefore, not completely free of numerical wiggles. This
means that the first order upwind scheme is more robust than any higher order alternative, but,
as we have seen, not always accurate.
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4.1.3 Phase error

To reduce the error introduced by the dynamic condition at the surface, an interpolation factor
α was introduced in section 2.5, equations (2.42) and (2.43). When this factor is chosen 0, then
the surface pressure discretization used by Bijvelds [2003] is obtained, where the pressure in the
center of the surface cell is set to zero. If the water level is everywhere situated close to the cell
centers, then the error will still be small in the Bijvelds approach. If, however, the water level
is situated close to the upper or lower cell faces, then the error will be large. Furthermore, the
vertical cell size has to be small in order to reduce the error.

We consider the basin test case described above, where we investigate the solutions obtained
with the new and with the old approach using different displacements of the grid relative to the
physical domain, as sketched in figure 4.9. The vertical grid with 11 layers is located between
zbot = −10.5 m + zoffset and ztop = 0.5 m + zoffset. The displacement is given as zoffset = −0.3 m,
0 m, 0.3m. With an amplitude of Aζ,0 = 0.1 m, the water level is still contained completely in
one grid layer, so that any effect connected with the movement of the surface through different
grid layers is avoided.
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Figure 4.9: Displacement of the grid (gray lines) relative to the physical domain (blue area). In
the top cells the distance between the pressure points (crosses) and the water surface (curly line)
determines the phase error, when the hydrostatic approximation is used in these cells. From left
to right: ztop = 0.2 m, 0.5 m, 0.8 m

The results of the computations, which were done using θ = 0.5, ∆t = 0.12 s, ∆x = 0.5 m and
L = 20 m, are shown in figure 4.10. For ztop = 0.5 m both surface representations lead to results
that comply with the analytical result. When the grid is displaced, then the results differ.
The hydrostatic approximation in the surface cells leads to a phase error with the following
properties:

• When the zero-pressure point is situated below the surface (ztop = 0.2 m), then the wave
moves faster than the analytical phase speed.

• When the zero-pressure point is situated above the surface(ztop = 0.8 m), then the wave
moves slower than the analytical phase speed.

These statements are true as well for the improved surface condition, as can be seen in the plot,
but the phase error is much smaller in this case.

The results show that the grid should always be located such that the pressure points are
near the water surface. However, using the improved boundary condition strongly reduces the
effect of the grid placement. In many applications with strong surface dynamics it is not possible
to keep the distance between surface and pressure points small, therefore it is recommended to
use the improved surface representation in cases, where a correct phase speed is important.



56 CHAPTER 4. SIMULATIONS

0 5 10 15 20 25 30
−0.1

−0.05

0

0.05

0.1
ztop=0.2m

w
at

er
 le

ve
l [

m
]

0 5 10 15 20 25 30
−0.1

−0.05

0

0.05

0.1
ztop=0.5m

w
at

er
 le

ve
l [

m
]

0 5 10 15 20 25 30
−0.1

−0.05

0

0.05

0.1

time [s]

ztop=0.8m

w
at

er
 le

ve
l [

m
]

Figure 4.10: Water level ζ(t) at the left boundary of a closed basin with initial cosine profile. The
solid line shows the exact solution, the crosses show the numerical solution using a hydrostatic
approximation in the top layer and the circles show the solution obtained with an interpolated
surface condition. The grid is placed in such a way that the discretized pressure points are below
the free surface (upper plot), near the free surface (middle plot) and above the free surface (lower
plot).
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4.2 Wave propagation over a submerged bar

After having tested the behavior of the numerical scheme with respect to a short harmonic wave
with a fixed wave length, we now want to investigate a case that includes waves with multiple
wave lengths and speeds. When waves travel through a domain with a varying depth, higher
harmonics may be generated, which travel with a smaller velocity according to the dispersion
relation.

A well-known test case to study the accuracy of a numerical scheme with respect to wave
dispersion are the experiments performed by Beji and Battjes [1993]. They introduced harmonic
water waves at one side of a 30 m long flume with a still water depth of 0.4 m. The waves traveled
over a submerged bar, as sketched in figure 4.11. On the other side of the flume an artificial
beach was placed to hinder wave reflections. The measurements show that, as the wave travels
over the bar, the amplitude steepens and higher harmonics are introduced. At the falling slope
of the bar these harmonics become free as they start traveling at different speeds.

The boundary conditions we will compare our simulations with comply with the test case A
described by Dingemans [1994]. Sine-shaped surface waves with an amplitude of Aζ = 0.01 m
and a period of T = 2.02 s are imposed at the left boundary.
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Figure 4.11: Sketch of the geometry used in the Beji-Battjes simulation, including the positions of
the considered measurements at x = 10.5 m, 13.5 m, 15.7 m and 19.0 m and the layer distribution
(dotted lines). At the left boundary surface waves with a sine shape are imposed, at the right
boundary a sponge layer is implemented.

To simulate the Baji-Battjes test problem A, the domain was discretized with 10 equidistant
layers in vertical direction, located between zbot = −0.40 m and ztop = −0.03 m. With this
equidistant layer distribution only three layers remained active on top of the bar. In x-direction
the domain between x = 0 m and x = 25 m was discretized with 2000 grid cells of uniform step
size ∆x = 0.0125 m. This small step size was found to be necessary to prevent artificial damping
of higher harmonics. A sponge layer was used to prevent wave reflection at the right boundary.

For the time discretization a step size of 0.012 s was used. A criterion for the choice of
the time step is given in Delft3D-FLOW user manual [Del, 2006], where it is recommended to
choose ∆t ≤ T/40. Considering that the period of the highest dominant harmonics found in the
experiment is T ≈ 0.5 s, this criterion is just fulfilled. Another constraint is the CFL-number
related to the wave speed, which is important when θ is chosen close to 0.5. The fastest waves are
the longest waves in the deepest water. Using ω ≈ π s−1 of the imposed wave in connection with
equation (4.1), the wave number of the fastest waves is approximately k ≈ 1.7 m−1. We obtain
a CFL-number for the imposed wave of (ω/k) · (∆t/∆x) ≈ 1.8. This gives a clear indication
that ∆t should not be increased much more. In order to prevent possible stability problems we
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used a minimum θ of 0.55.
First, we apply the scheme of Bijvelds [2003] to the model problem. The results shown in fig-

ure 4.12 reveal that the wave is damped too much. Most detail with respect to higher harmonics
is lost. The method presented in this thesis, using θ = 1, exhibits even more damping, as is
illustrated in figure 4.13. This conforms with the findings of section 4.1.1 for the basin test case.
If, however, the time discretization scheme is close to the second order Crank Nicolson scheme,
the damping can be greatly reduced. Choosing θ = 0.55, as shown in figure 4.14, eliminates
most of the damping and the results of the simulation match well with the measurements. In
the simulations with the present scheme the improved surface condition was used. Additional
experiments using a hydrostatic approximation in the surface cells, setting α = 0, resulted in a
small but visible effect on the accuracy of the solution, as shown in figure 4.15. Finally, to verify
that it is not possible to use a much smaller number of vertical layers with the present scheme,
we present the result of a computation with merely 5 layers in figure 4.16.
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Figure 4.12: Results of a simulation of the Beji-Battjes experiment obtained with the Bijvelds-
scheme. The numerical damping is mainly caused by the time discretization and the ADI
scheme.
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Figure 4.13: Results of a simulation of the Beji-Battjes experiment using the scheme presented
in this thesis with θ = 1. Even more damping than in the Bijvelds-scheme is present.
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Figure 4.14: Results of a simulation of the Beji-Battjes experiment using the scheme presented
in this thesis with θ = 0.55. The almost second-order time discretization scheme eliminates
most of the numerical damping.
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Figure 4.15: Results of a simulation of the Beji-Battjes experiment using the scheme presented
in this thesis with θ = 0.55, but with α = 0 so the pressure is hydrostatic in the surface cells. In
comparison to figure 4.14 the difference between simulation and experiment is slightly larger.
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Figure 4.16: Results of a simulation of the Beji-Battjes experiment using the scheme presented
in this thesis with θ = 0.55, but discretized with only 5 layers. The scheme fails to compute the
correct wave patterns at distances x = 15.7 m and x = 19.0 m
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4.3 Density driven flow in a ship lock

In chapter 3 the preconditioned BiCGSTAB solver for the pressure-correction system was de-
scribed. In this section we analyze the performance of the new solver with a three-dimensional
flow test case related to an engineering problem. Apart from that we briefly discuss some
physical aspects of the simulation.

4.3.1 Model setup

We consider a 75 m long section of a 61 m wide ship lock that has several inlets in the lower area
of the side walls. The 10 inlets in the computational domain have square sections of 2 m× 1.5 m
(width times height) and are located at distances of 15 m apart from each other. Initially the
ship lock is filled with 20 m deep water at rest. The water constant initial a salinity of 10 ppt
(parts per thousand). At t = 0 s the inlets are opened and water with a salinity of 3 ppt streams
in with a velocity of 1.08 m/s perpendicular to the side walls. A sketch of the problem is given
in figure 4.17. We are interested in the development of the flow and the salinity field as well
as the surface elevation during 15 min simulation time. We can compute the expected rise of
the mean water level at the end of the simulation, given the size and the number of inlets, the
inflow velocity, the area of the ship lock section. We find that a mean water level difference of
H(900 s) − H(0 s) ≈ 6.37 m.
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Figure 4.17: Sketch of the ship lock test case.

The domain is discretized with 40 grid layers between zbot = −0.5 m and ztop = 39.5 m,
with a size of the grid cells of 1 m × 1 m × 1 m. The computational domain consists of 96 075
discretization cells at the beginning of the simulation and 123 525 discretization cells at the end
of the simulation. The time step is set to 0.3 s, so 3000 time steps will be performed in total.
The CFL number with respect to flow was expected to be less than 0.4, based on the inflow
velocity. The CFL number with respect to the longest possible waves will be approximately
5, which is rather large and indicates that these waves can not be captured accurately in the
model. In order to avoid any possible stability problems with respect to the wave propagation
we set θ = 1, which will lead to additional wave damping, as we have seen in previous sections.
However, since in this test case our focus is the flow field, we do not need to simulate the wave
motion very accurately, as long as it is not expected to influence the flow field significantly.

The test case is run using the BiCGSTAB method in connection with the improved surface
condition given by (2.42) and (2.43). A MILU preconditioner with αmilu = 0.95 is used to speed
up the convergence, as described in section 3.2. The value of αmilu was found by performing
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several short test runs with different values and observing the number of iterations. Choosing
0.95 yielded heuristically a good convergence rate, but the method was not very sensitive to the
choice as long as αmilu was chosen within the range 0 ≤ αmilu ≤ 0.99. As a stopping criterion
(see equation (3.9)) we used

||ri||∞ < 10−3 or ||ri||∞ < 10−10||b||∞.

The small value of 10−10 for the second statement was chosen in order to actually let the first
statement ||ri||∞ < 10−3 determine the number of iterations.

In order to make the experiment traceable, some other parameters have to be mentioned.
The particular choice of the parameters are disputable, but since we are not interested in quan-
titative results with respect to the flow and salinity field, we only mention them here: The stan-
dard k-ǫ turbulence model of Delft3D-FLOW was applied, with background horizontal viscosity
and diffusivity of 10−2 m2/s and 10−4 m2/s and background vertical viscosity and diffusivity of
10−6 m2/s and 10−7 m2/s and an Ozmidov length scale of 1 m.

4.3.2 Results of the simulation

The results of the simulations obtained with the present scheme are shown in figures 4.18 to
4.22. In figure 4.18 a cross-section parallel to the x-z-plane is shown, at y = 38 m, where the
middle pair of inlets is located. Since the inflowing water has a lower salt concentration than
the water that is already in the lock, rising plumes are formed near the inlets. The velocity in
x-direction of the inflowing water is quite large. Therefore, the plumes do not rise straight up,
but tilt towards the center of the lock. The water in the rising plume is mixed quickly with
the surrounding saltier water. In the beginning the two opposite plumes appear symmetric to
each other. Later the symmetry disappears with increasing time, and the flow pattern becomes
irregular. At t = 900 s we see that the water level has risen about 6 m and the water in the lock
is diluted by the inflowing water.

The three-dimensional salinity field at t = 900 s is shown as cross sections in different direc-
tions in the figures 4.19 to 4.21. Large-scale turbulence can be observed and the rising plumes are
tilted randomly also in y-direction, although the inflow velocity is perpendicular to the y-axis.

Pronounced surface patterns are formed as soon as the plumes hit the free surface. This is
shown in figure 4.22. The white spots are uprisings from the surrounding water level due to
the positive vertical velocity of the velocity in the center of the plume. They are surrounded
by regions with a lower surface level, where the velocity is directed downward. With increasing
time also the surface patterns become more and more irregular.

4.3.3 Numerical aspects

The initial conditions and the boundary conditions are not fully compatible, because the initial
velocity field does not match with the prescribed velocity at the inlets. A few time steps
are needed where the numerical scheme has to deal with the resulting transient effect. This
is reflected in the number of iterations necessary to solve for the pressure-correction in the
beginning of the solution process. In the beginning more than ten iteration were necessary, but
within about 20 time steps the number of iterations decreased to merely 2 or 3. The convergence
error bound was set to (10−4), which was found to be sufficient for qualitatively good results. A
smaller number yielded more iterations, for example when using ||ri||∞ < 10−7 about 6 iterations
were required for convergence.

The time step of 0.3 s was chosen with respect to stability. A larger time step lead to eventual
break-downs of the simulation. With respect to the accuracy of the flow field a smaller time step



4.3. DENSITY DRIVEN FLOW IN A SHIP LOCK 63

0

10

20

30
t = 0 s

z−
z bo

t [m
]

t = 24 s t = 48 s

0

10

20

30
t = 72 s

z−
z bo

t [m
]

t = 96 s t = 120 s

0 15 30 45 60
0

10

20

30
t = 192 s

x [m]

z−
z bo

t [m
]

0 15 30 45 60

t = 360 s

x [m]
0 15 30 45 60

t = 900 s

x [m]

Figure 4.18: A vertical cross-section of the lock at a location of y = 38 m at different simulation
times. The color scale denotes salinity values between 3 ppm (red) and 10 ppm (blue).
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Figure 4.19: Horizontal sections of the lock at different distances from the bottom at a simulation
time of t = 900 s. The color scale denotes salinity values between 7 ppm (red) and 8.5 ppm (blue).
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Figure 4.20: Vertical sections along the lock at different x-locations at a simulation time of
t = 900 s. The color scale denotes salinity values between 7 ppm (red) and 8.5 ppm (blue).
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Figure 4.21: Vertical cross sections of the lock at different y-locations near the central pair of
jets at a simulation time of t = 900 s. The color scale denotes salinity values between 7 ppm
(red) and 8.5 ppm (blue).
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Figure 4.22: Relative water level at different simulation times. The color scale denotes a de-
viation from the mean water level from -0.5 cm (blue) to 2 cm (red). The difference between
the maximum and minimum water level was 2.6 cm, 2.9 cm and 2.0 cm at times 120 s, 360 s and
900 s, respectively.

seems not necessary. Having a smaller time step, however, would result in even less iterations
per time step.

It is interesting that an important aspect of the spacial discretization of the momentum
equations can be seen in the plots. In figure 4.18, at time t = 192 s we see wiggles at the
interfaces between sweeter and saltier water at x ≈ 20 m and x ≈ 40 m. These wiggles are
obviously caused by the vertical discretization of the advective terms, which is done with a
central scheme. The results show that for strongly non-hydrostatic applications this is not a
good choice.

4.3.4 Performance of the solvers

We now want to compare the effect of the solution time of the pressure-correction equation on
the total solution time. The pressure solver is an expensive part of the overall solution process
in terms of wall-clock time, but the time spent in other parts of the code may still overweight
the cost of the pressure solver. In practice, improving the solver only makes sense, if it has a
noticeable effect on the overall solution process.

The simulation described above will serve as a reference to other combinations of solution
methods with preconditioners. We now want to compare the performance of the following two
discretizations of the free surface and respective iterative methods:

• BiCGSTAB method with the improved surface discretization, which leads to an unsym-
metric system matrix,

• CG method with the hydrostatic assumption in the surface cells, obtained by setting α = 0,
which leads to a symmetric matrix.

With the comparison between the two approaches, we can estimate how much it costs, in terms
of wall clock time, to use the improved surface representation, and if the use of a non-symmetric
solver adds a lot of overhead to the total computation time.

The comparison of the solvers and respective surface discretizations is made using also dif-
ferent types of preconditioning:

• no preconditioning,
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• diagonal Jacobi preconditioning,

• tridiagonal Jacobi preconditioning,

• MILU(0.95) preconditioning.

The computational speed that is gained through a better preconditioner might compensate for
the additional cost related to the non-symmetric solver. Moreover, also the CG method will
benefit from a better preconditioner, which means that computations done with the Bijvelds
approach could be done more efficiently, too.

Combining the two iterative methods with the four alternative variants of preconditioning
lead to a total number of 8 simulations, which were done on a Windows-PC with an AMD
Athlon-64 4000+ processor with a clock speed of 2.41 GHz and 2 GB RAM. The simulations of
all eight simulations give qualitatively the same result in terms of the flow and salinity field,
independent of the methods and preconditioners used. Small quantitative differences can be
explained with the onset of turbulence and the respective chaotic behavior of the flow field.

If one and the same simulation is run twice on the same hardware, it will most probably
not take the same wall clock time, but there will be some fluctuation. Therefore, all runs
were done several times and the simulation time of individual runs were shortened. Doing 9
runs of all eight simulations with a simulation time of 5 min was achievable within reasonable
total wall clock time on the hardware used. We additionally performed 9 runs of the standard
hydrostatic model of Delft3D-FLOW to estimate the computational overhead that is produced
by the non-hydrostatic module.

The mean wall clock times are shown in figure 4.23. There is not much performance differ-
ence between the tridiagonal Jacobi preconditioner, the diagonal Jacobi preconditioner and the
unpreconditioned iteration. In these three cases the CG method solving the symmetric system is
faster than the BiCGSTAB method solving the unsymmetric system. The MILU preconditioner
speeds up the computation of both iterative methods. Now the two methods need approximately
the same computation times. The BiCGSTAB method seems a bit faster, but the difference is
marginal.

It is important to recognize that the speed-up of the non-hydrostatic part of the code is much
larger than the speedup of the whole program. The comparison to the hydrostatic code, which
does not include the solution of a pressure-correction equation, shows that not much more can
be gained by trying to speed up the non-hydrostatic part of the computations even further.

4.3.5 Influence of the aspect ratio

In section 3.2.2 we explained why the tridiagonal Jacobi preconditioner is expected to be a
good preconditioner if ∆z ≪ ∆x and ∆z ≪ ∆y. With a modification of the ship lock test
case described above we want to investgate how the MILU and tridiagonal Jacobi precondi-
tioner perform for discretizations with flat cells. We have seen in section 3.2.3 that the MILU
preconditioner is able to reduce the conditioner number of the considered matrix more than
tridiagonal Jacobi preconditioner. However, the MILU preconditioner is at the same time more
expensive than the diagonal Jacobi preconditioner if the work per iteration step or the work in
the setup phase is considered. Therefore, it is expected that there is a point where the reduction
of iteration numbers of the MILU preconditioner and the efficiency of the tridiagonal Jacobi
preconditioner balance each other.

To compare the dependencies of the two preconditioners on the aspect ratio with each other,
we modify the test case shown above by compressing the grid and the geometry in vertical
direction by factors 2, 4 and 8, respectively. This means that the height of the grid cells, the
height of the inlets and the initial water level were decreased by the same factor. Again, we did
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Figure 4.23: Comparison of wall clock times of the ship lock test case with different precondition-
ers. The simulation time was 5 min. The red bars show the calculation times when the improved
surface discretization is used and the pressure-correction is solved with the BiCGSTAB method.
The blue bars show the calculation times when the hydrostatic assumption is used in the surface
cells (α = 0). The slashed line denotes the wall clock time of the hydrostatic computation.

9 runs of each simulation and measured the wall clock times. The respective wall clock timings
needed for 5 min simulation time and the mean numbers of iterations are presented in figure
4.24. What we can see is that indeed the tridiagonal Jacobi becomes more efficient than the
MILU(0.95) as ∆x/∆z and ∆y/∆z become larger. Although the MILU(0.95) preconditioner
reduces the mean number of iterations more than the tridiagonal Jacobi preconditioner for the
considered aspect ratios, the computational overhead of the MILU(0.95) preconditioner makes
it more inefficient when flat geometries with flat discretization cells are considered.
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Figure 4.24: Wall clock times and iteration numbers of the ship lock test case solved with the
BiCGSTAB method over a simulation time of 5 min. The efficiency of the tridiagonal Jacobi and
the MILU preconditioners was tested for different aspect ratios of the problem and the grid. In
the left plot the mean wall clock time over 9 runs is shown with a solid line and the individual
runs are shown with a dotted line.

4.3.6 Constancy condition

Another aspect of the numerical scheme is demonstrated on basis of the ship lock model. In
section 2.6 two methods were presented to update the final velocity field. One possibility was
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the use of the momentum correction equations and the other one was the use of the continuity
equation. As the main reason for using the continuity equations the mass conservation property
was mentioned. In order to test the mass conservation of the non-hydrostatic model in depen-
dency of the method used to update the vertical velocity, we changed the initial salinity of the
original ship lock model to a constant field of 3 ppt. If the model is mass conserving then the
salinity field should remain unchanged up to machine precision. In section 2.6 we predicted that
the maximum divergence will be of the size of the convergence error of the iterative solver. This
error will carry over to the salinity field, if the momentum equation are used for the update
of the vertical velocity. In the computations we used a stopping criterion with a divergence
bound much higher than the machine precision. Therefore, the deviations of the salinity field
are expected to be considerable larger than the machine precision. In the computations we use
a convergence bound for the iterative method of 10−2 instead of 10−4. Figure 4.25 shows the
result of the computation with the different update methods. It becomes clear, why the continu-
ity equation should be used for transport problems. The result also verifies that the numerical
scheme is strictly mass conservative.
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Figure 4.25: Salinity of the y = 38 m cross section (top) and the z = 1 m horizontal section
(bottom) of the ship lock after a simulation time of t = 60 s. To test the mass conservation the
initial salinity and the inflow salinity were set to 3 ppt. For the update of the vertical velocity the
momentum correction equation (left) and the continuity equation (right) were used. When the
momentum equation was used, the extremal values throughout the whole domain were 2.987 ppt
and 3.013 ppt and the mean was 3.0004 ppt. When the continuity equation was used, then the
values differed from 3 ppt with little more than machine precision.



Chapter 5

Conclusions and recommendations

This thesis describes a three-dimensional model to simulate non-hydrostatic free-surface flows.
In the presented approach the pressure is not split in its hydrostatic and non-hydrostatic com-
ponents and the pressure in the surface cells is not assumed to be hydrostatic. The scheme is
found to have the following properties:

• The improved implementation of the pressure boundary condition at the free surface leads
to a more accurate representation of the phase speed of traveling waves, almost independent
of the location of the free surface relative to the grid points.

• The θ-scheme for the time discretization is able to reduce the damping of waves when
θ ≈ 0.5. Thus, the presented method is much more accurate than the Bijvelds scheme for
applications involving wave propagation.

• The first-order multi-dimensional upwind scheme leads to substantial damping when short
waves with a significant amplitude are considered.

• The numerical solution of the wave propagation over a bar (Beji-Battjes test case) matches
well with the experiment when 10 equidistantly distributed layers are used in the calcula-
tion.

• Using the interpolated surface condition gives visible improvements on the result of the
Beji-Battjes test case. The choice of the time integration parameter θ, however, is more
important than the surface discretization.

The improved surface representation leads to asymmetry in the matrix of the pressure-correction
equation. The CG-method, which was already available in Delft3D-FLOW, could not be applied
anymore and a non-symmetric solver had to be implemented. The BiCGSTAB method with
MILU preconditioning is found to be a good replacement for the CG method:

• When MILU preconditioning is used, the improved surface discretization in combination
with the BiCGSTAB method does not add any significant computational cost compared
to the previous surface discretization combined with the CG method.

• The tridiagonal Jacobi preconditioner, which was already available in Delft3D-FLOW, is
well suited for weakly non-hydrostatic applications with discretization cells that are rather
flat. By using the MILU preconditioner for strongly non-hydrostatic flow applications with
similar horizontal and vertical grid sizes, the wall clock time of the overall solution process
is decreased.

69
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We recall that the main difference between the Bijvelds model and the model presented in this
thesis is the pressure handling. Other features, like the discretization of the advective and
diffusive terms, are the same in both methods. This leads to the following recommendations:

• Since in strongly non-hydrostatic environments the grid spacing and the velocity compo-
nents are often of similar size in all directions, the discretization of the vertical advection
terms should be reconsidered. For strongly non-hydrostatic applications there is no reason
anymore to treat horizontal and vertical terms differently.

• To overcome the damping due to the first order multi-dimensional upwind scheme a more
accurate scheme, such as a higher-order upwind or a flux-limiter scheme, should be applied.

• Further research should be done on the applicability of the surface boundary condition
with respect to the tangential stress. In the presented test cases the surface gradient was
relatively small so that zero stress in horizontal direction was a good approximation. For
strongly non-hydrostatic applications with large surface gradients this may no longer be
the case.



Appendix A

Splitting error

We are given the numerical scheme

fn+1 = fn − ∆t(Afn + (B1 + B2)f
n+1),

which is identical to
fn+1 = (I + ∆tB1 + ∆tB2)

−1(I − ∆tA)fn. (A.1)

We also consider the split scheme given as

fn+1∗ = fn − ∆t(Afn + B1f
n+1∗)

f̃n+1 = fn+1∗ − ∆tB2f̃
n+1,

or equivalently,

(I + ∆tB1)f
n+1∗ = (I − ∆tA)fn

(I + ∆tB2)f̃
n+1 = fn+1∗,

which can be reduced to

(I + ∆tB1)(I + ∆tB2)f̃
n+1 = (I − ∆tA)fn,

(I + ∆tB1 + ∆tB2 + ∆t2B1B2)f̃
n+1 = (I − ∆tA)fn,

and finally

f̃n+1 = (I + ∆tB1 + ∆tB2)
−1(I − ∆tA)fn − (I + ∆tB1 + ∆tB2)

−1∆t2B1B2f̃
n+1.

Using a Taylor series expansion around ∆t = 0 we get

f̃n+1 = (I + ∆tB1 + ∆tB2)
−1(I − ∆tA)fn − ∆t2B1B2f̃

n+1 + O(∆t3). (A.2)

The splitting error is given as
ǫ = f̃n+1 − fn+1.

Comparing (A.1) and (A.2) we see that

ǫ = ∆t2B1B2f̃
n+1 + O(∆t3).
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Appendix B

Alternative surface
pressure-correction equation

In section 2.5 we have derived the pressure correction equations. The equations for the surface
cells contained the variable q at the old time level. It also possible to formulate the equations
without using q, so that it is not necessary to compute the non-hydrostatic pressure at all.

We start by linearizing the pressure condition at the new time level around the water level
at the old time level, which yields

0 = pn+1|z=ζn+1 ≈ pn+1|z=ζn + (ζn+1 − ζn)
∂pn

∂z
|z=ζn = 0.

We have pressure variables only at discrete locations along the z-axis. Therefore we realize the
pressure at the free surface with a linear inter-/extrapolation using the pressure of the cell below
the surface cell,

pn+1|z=ζn ≈ pn+1|z=zk
+

zk − ζn

zk − zk−1

(
pn+1|z=zk−1

− pn+1
k |z=zk

)
.

For the second term we use

(ζn+1 − ζn)
∂pn

∂z
|z=ζn = (ζn+1 − ζn)

(

− g +
∂qn+1

∂z
|z=ζn

)

≈ −g(ζn+1 − ζn),

to get the following linearized pressure condition at the surface:

0 = pn+1|z=zk
+

zk − ζn

zk − zk−1

(
pn+1|z=zk−1

− pn+1
k |z=zk

)
− g(ζn+1 − ζn),

which can be written for discretized variables as

αn
i,jp

n+1
i,j,k−1 + (1 − αn

i,j)p
n+1
i,j,k − (ζn+1 − ζn)g = 0, ki,j

min < k = ki,j,n
max (B.1)

with

αn
i,j =

zk − ζn
i,j

zk − zk−1
=

zk+1/2 + zk−1/2 − 2ζn
i,j

zk+1/2 − zk−3/2
, ki,j

min < k = ki,j,n
max . (B.2)

It is easy to verify that by choosing αn
i,j = 0 we do not obtain a formula equivalent to (2.39).

The aim of using the pressure condition was to eliminate the water level term in the dis-
cretized momentum correction equation (2.36), where we have the unknown ∆p instead of pn+1.
Therefore, we rewrite equation (B.1) as

ζn+1 − ζn =
αn

i,j

g
(∆pi,j,k−1 + pn+1

i,j,k−1) +
(1 − αn

i,j)

g
(∆pi,j,k + pn+1

i,j,k)
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Now we are able to eliminate the water levels from (2.36) to obtain the pressure-correction

equation for surface cells

−
αn

i,j∆pi,j,k−1 + (1 − αn
i,j)∆pi,j,k

g∆t

+ θζ∆tθ
(

Dxx(∆p) + Dyy(∆p) − ∆pi,j,k − ∆pi,j,k−1
1
2(∆zn

i,j,k−1 + ∆zn
i,j,k)

)

= θζ

(

Dx(un+1∗) + Dy(v
n+1∗) + wn+1∗

i,j,k−1/2

)

+ (1 − θζ)
(

Dx(un) + Dy(v
n) + wn

i,j,k−1/2

)

+
αn

i,jp
n
i,j,k−1 + (1 − αn

i,j)p
n
i,j,k

g∆t
, ki,j

min < k = ki,j,n
max .



Appendix C

Analysis of the ADI scheme

In the following the schemes that are important for understanding the prediction step in Delft3D-
FLOW are investigated by calculating the eigenvalues of the amplification matrix, which give
useful information about the damping and the phase error of the numerical solution. In the
analysis only the time dependency of the schemes is studied.

The Bijvelds scheme features an ADI scheme to spatially uncouple the unknowns in the
prediction step, while for example Casulli [1999] solves the coupled system iteratively with a
conjugate gradient method. In a hydrostatic environment (q = 0) and assuming the advective
and viscous terms are small the ADI scheme can be written in a simplified, linearized form as

un+1∗ − un

∆t
= −g

∂ζn+1/2∗

∂x

ζn+1/2∗ − ζn

∆t
= −H

2

(
∂un+1∗

∂x
+

∂vn

∂y

)

vn+1∗ − vn

∆t
= −g

∂ζn+1∗

∂y

ζn+1∗ − ζn+1/2∗

∆t
= −H

2

(
∂un+1∗

∂x
+

∂vn+1∗

∂y

)

,

where H is the mean water level. It is assumed that the amplitude of ζ is small compared to
the total water depth. For the analysis of the scheme we assume that the variables u, v and ζ
are harmonic waves, given by

u = u0 ei(kxx+kyy−ωt), v = v0 ei(kxx+kyy−ωt), ζ = ζ0 ei(kxx+kyy−ωt).

Putting these solutions in the scheme, we obtain

un+1∗ = un − ∆tgikxζn+1/2∗

ζn+1/2∗ = ζn − ∆t
H

2
i(kxun+1∗ + kyv

n)

vn+1∗ = vn − ∆tgikyζ
n+1∗

ζn+1∗ = ζn+1/2∗ − ∆t
H

2
i(kxun+1∗ + kyv

n+1),

By substituting the second equation in the first and fourth equation, ζn+1/2∗ can be elimi-
nated. The resulting three equations can be written in form of a system Un+1∗ = AUn with
Un+1∗ = (un+1∗, vn+1∗, ζn+1∗)T and Un = (un, vn, ζn)T . The amplification matrix A has three
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eigenvalues. One eigenvalue is given by λ1 = 1, the other two are given by

λ2/3 =
1 − 1

4(ω2
x + ω2

y)∆t2 ±
√

−(ω2
x + ω2

y)∆t2 + 1
16(ω2

x − ω2
y)

2∆t4

(1 + 1
2ω2

y∆t2)(1 + 1
2ω2

x∆t2)
, (C.1)

where ωx = kx
√

gH and ωy = ky
√

gH are the angular frequencies in the respective directions.
The eigenvalue λ1 = 1 is related to the eigenvector ~v1 = (−ω/kx, ω/ky, 0), which is perpen-

dicular to the direction of wave propagation. When waves traveling along one of the coordinate
axes are considered, one of the momentum equations can be left out and, as a result, only the
eigenvectors λ2 and λ3 remain. These are related to the propagation of the velocity and the
surface elevation through space. They contain both real and imaginary components for small
values of ∆t. The eigenvalues depend on the direction of the wave. To clarify this, we assume
an absolute angular frequency ω that satisfies ω2 = ω2

x + ω2
y . For example, a wave that travels

exactly in x-direction is obtained by substituting ωx = ω and ωy = 0 in (C.1), which leads to

λ2/3 =
1 − 1

4(ω∆t)2 ±
√

−(ω∆t)2 + 1
16(ω∆t)4

1 + 1
2(ω∆t)2

.

A wave that travels in a 45-degree angle to the x-axis is characterized by ωx = ω/
√

2 and
ωy = ω/

√
2. Now (C.1) simplifies to

λ2/3 =
1 − 1

4(ω∆t)2 ±
√

−(ω∆t)2

1 + 1
2(ω∆t)2 + 1

16(ω∆t)4
.

It can be shown that for sufficiently small ∆t the directional anisotropy becomes smaller than
other errors. A Taylor expansion of (C.1) reveals that the directional dependency decreases
third order in time:

λ2/3 = 1 ± iω∆t − 3

4
ω2∆t2 ±

17ω4
x + 30ω2

xω2
y + 17ω4

y

32ω2
iω∆t3 + O(∆t4).

After having studied the ADI scheme, we now consider a θ-scheme for the prediction step in
a hydrostatic environment. The linearized, simplified scheme is given as

un+1∗ − un

∆t
= −θg

∂ζn+1∗

∂x
− (1 − θ)g

∂ζn

∂x
vn+1∗ − vn

∆t
= −θg

∂ζn+1∗

∂y
− (1 − θ)g

∂ζn

∂y

ζn+1∗ − ζn

∆t
= −θH

(
∂un+1∗

∂x
+

∂vn+1∗

∂y

)

− (1 − θ)H

(
∂un

∂x
+

∂vn

∂y

)

.

Using the same assumptions as in the previous analysis, the scheme is written as

un+1∗ = un − ∆tgikx(θζn+1∗ + (1 − θ)ζn)

vn+1∗ = vn − ∆tgiky(θζ
n+1∗ + (1 − θ)ζn)

ζn+1∗ = ζn − ∆tHikx(θun+1∗ + (1 − θ)un) − ∆tHiky(θv
n+1∗ + (1 − θ)vn)

The eigenvalues of the amplification matrix are λ1 = 1 and

λ2/3 =
1 − θ(1 − θ)(ω∆t)2 ±

√

−(ω∆t)2

1 + θ2(ω∆t)2
,
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with ω2 = ω2
x + ω2

y . This shows that the θ-scheme without ADI splitting does not introduce a
directional anisotropy.

Now we want to investigate the damping and the phase error of both the ADI and the θ-
scheme. By investigating the damping we are not only able to assess the accuracy of a numerical
scheme, but also its stability. A scheme is only stable if none of the possible wave modes is
amplified. The phase error is important to describe the capabilities of a numerical scheme to
obtain the correct speed of propagating waves.

The damping per time step is given by the absolute value of the complex eigenvalues. Figure
C.1 shows the damping factors per time step of the considered prediction schemes. For the
ADI scheme the damping in two different wave directions is plotted and for the θ-scheme the
damping for θ = 1 is shown. It can be seen in the plots that the directional dependency of
the ADI scheme is small compared to the overall damping error, especially for small ω∆t. In
practical applications the time step with respect to the angular frequency is chosen such that
ω∆t is much smaller than 1, because much more than 2π ≈ 6 time steps are needed to resolve a
complete wave period accurately. Therefore, with respect to accuracy only the plot on the right
side of figure C.1 is important. With respect to stability all modes must be stable. Therefore,
the full scale of ω∆t is important. Both bifurcation branches stay below 1 even as ω∆t → ∞,
so the scheme is stable.

The main reason for the study of the prediction schemes was that the damping of the
Bijvelds scheme was different from a θ-scheme with θ = 1. The plots show that the particular
ADI scheme is the reason. It is noted that by choosing θ = 1/2 in the θ scheme, we are able
to get zero damping. This flexibility is the reason that the θ-scheme is preferred over the fixed
implementation of the prediction scheme of Bijvelds.
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Figure C.1: Damping behavior of the considered ADI scheme with respect to the angle between
the wave direction and the x-axis(0, 45). For comparison, the θ-scheme with θ = 0.5 and θ = 1
is shown. The plot on the right shows a magnification of the box shown in the upper-left corner
of the plot on the left.

So far we have analyzed the damping behavior of the prediction scheme. To analyze the
phase shift, we consider again the change of the solution after a single time step. The phase
shift of the numerical solution is arg(λ2/3) and the phase shift of the true solution is ±ω∆t.
Figure C.2 shows arg(λ2/3)/(ω∆t), which is the relative phase shift of the numerical solution
with respect to the true solution. The deviation from 1 or −1, respectively, is the phase error.
In the figure also the phase shift of the Crank-Nicolson scheme (θ = 0.5) is shown. Although we
have seen above that the damping error was zero, we observe that the scheme has a non-zero
phase error. It is interesting that the phase shift of the Crank-Nicolson scheme is the same as
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the phase shift of the ADI scheme with an 45-degree angle between the wave and the coordinate
axes. The angular dependency of the phase error, however, is small compared to the total phase
error. The figure also shows that the implicit Euler scheme exhibits a large phase error.
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Figure C.2: Relative phase error of the considered ADI scheme with respect to the angle between
the wave direction and the x-axis. For comparison, the θ-schemes with θ = 0.5 and θ = 1 are
shown. The plot on the right shows a magnification of the box shown in the upper-left corner
of the plot on the left.



Bibliography

A. Arakawa and V.R. Lamb. Computational design of the basic dynamical processes of the
UCLA general circulation model. Methods in Computational Physics, 17:173–265, 1977.

S. Armfield and R. Street. An analysis and comparison of the time accuracy of fractional-
step methods for the Navier-Stokes equations on staggered grids. International Journal for

Numerical Methods in Fluids, 38(3):255–282, 2002.

R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

S. Beji and J.A. Battjes. Experimental investigation of wave propagation over a bar. Coastal

Engineering, 19(1-2):151–162, 1993.

M. Bijvelds. Numerical modelling of estuarine flow over steep topography. PhD thesis, TU Delft,
2001.

M. Bijvelds. A non-hydrostatic module for Delft3D-Flow. Technical report, WL|Delft Hy-
draulics, 2003.

M. Borsboom. Discretization of physical domain and equations. Memo, October 2007.

M.M. Busnelli. Numerical Simulation of Free Surface Flows with Steep Gradients. PhD thesis,
TU Delft, 2001.

V. Casulli. A semi-implicit finite difference method for non-hydrostatic, free-surface flows. In-

ternational Journal for Numerical Methods in Fluids, 30:425–440, June 1999.

V. Casulli and G.S. Stelling. Numerical simulation of 3D quasi-hydrostatic, free-surface flows.
Journal of Hydraulic Engineering, 124(7):678–686, 1998.

V. Casulli and P. Zanolli. Semi-implicit numerical modeling of nonhydrostatic free-surface flows
for environmental problems. Mathematical and Computer Modelling, 36(9-10):1131–1149, De-
cember 2002.

Delft3D-FLOW User Manual. Deltares, November 2006. Version 3.13.

M.W. Dingemans. Water wave propagation over uneven bottoms. PhD thesis, TU Delft, 1994.

O.B. Fringer, M. Gerritsen, and R.L. Street. An unstructured-grid, finite-volume, nonhydro-
static, parallel coastal ocean simulator. Ocean Modelling, 14(3-4):139–173, 2006.

W. Hackbusch. Multi-grid methods and applications. Springer, 1985.

79



80 BIBLIOGRAPHY

M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Res.

Nat. Bur Stand., 49(6):409–436, 12 1952.

M.B. Koyigit, R.A. Falconer, and B. Lin. Three-dimensional numerical modelling of free surface
flows with non-hydrostatic pressure. International Journal for Numerical Methods in Fluids,
40(9):1145–1162, 2002.

A. Mahadevan, J. Oliger, and R. Street. A nonhydrostatic mesoscale ocean model. part i:
Well-posedness and scaling. Journal of Physical Oceanography, 26(9):1868–1880, September
1996a.

A. Mahadevan, J. Oliger, and R. Street. A nonhydrostatic mesoscale ocean model. part ii:
Numerical implementation. Journal of Physical Oceanography, 26(9):1881–1900, September
1996b.

K.W. Morton and D.F. Mayers. Numerical solution of partial Differential Equations. Cambridge
University Press, Cambridge, 1994.

N.M. Nachtigal, S.C. Reddy, and L.N. Trefethen. How fast are nonsymmetric matrix iterations.
SIAM J. Matrix Anal. Appl., 13(3):778–795, 1992.

Y. Saad. Iterative methods for sparse linear systems. SIAM, Philadelphia, 2 edition, 2003.

Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):
856–869, 1986.

G. Stelling and M. Zijlema. An accurate and efficient finite-difference algorithm for non-
hydrostatic free-surface flow with application to wave propagation. International Journal

for Numerical Methods in Fluids, 43(1):1–23, 2003.

H.A. van der Vorst. BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the
solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13(2):631–644, 1992.

C.B. Vreugdenhil. Numerical methods for shallow-water flow. Kluwer, Dordrecht, 1994.

P. Wesseling. An introduction to multigrid methods. Wiley, Chichester, 1992.

P. Wesseling. Principles of Computational Fluid Dynamics. Springer, 2001.

M. Zijlema and G.S. Stelling. Further experiences with computing non-hydrostatic free-surface
flows involving water waves. International Journal for Numerical Methods in Fluids, 48(2):
169–197, 2005.

M. Zijlema and G.S. Stelling. Efficient computation of surf zone waves using the nonlinear
shallow water equations with non-hydrostatic pressure. Coastal Engineering, In Press, 2008.


	Preface
	Summary
	Introduction
	The free-surface problem
	Hydrostatic and non-hydrostatic modeling
	Non-hydrostatic schemes in the literature
	Errors in non-hydrostatic models

	Numerical model
	Model equations
	Computational grid
	Momentum equations
	Continuity equation
	Pressure-correction equation
	Update of variables
	Discussion

	Solution of the pressure-correction equation
	Choice of the solution method
	Preconditioners
	Diagonal Jacobi
	Tridiagonal Jacobi
	ILU(0)
	Modified ILU(0)

	Starting values and stopping criteria
	Implementation

	Simulations
	Standing wave in a basin
	Damping effect of the time discretization
	Damping effect of upwind discretization
	Phase error

	Wave propagation over a submerged bar
	Density driven flow in a ship lock
	Model setup
	Results of the simulation
	Numerical aspects
	Performance of the solvers
	Influence of the aspect ratio
	Constancy condition


	Conclusions and recommendations
	Splitting error
	Alternative surface pressure-correction equation
	Analysis of the ADI scheme
	Bibliography

