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Abstract: This article traces the development of uncertainty analysis through three 

generations punctuated by large methodology investments in the nuclear sector.  Driven 

by a very high perceived legitimation burden, these investments aimed at strengthening 

the scientific basis of uncertainty quantification. The first generation building off the 

Reactor Safety Study introduced structured expert judgment in uncertainty propagation 

and distinguished variability and uncertainty. The second generation emerged in 

modeling the physical processes inside the reactor containment building after breach of 

the reactor vessel. Operational definitions and expert judgment for uncertainty 

quantification were elaborated. The third generation developed in modeling the 

consequences of release of radioactivity and transport through the biosphere. Expert 

performance assessment, dependence elicitation and probabilistic inversion are among 

the hallmarks. Third generation methods may be profitably employed in current 

Integrated Assessment Models (IAMs) of climate change. Possible applications of 

dependence modeling and probabilistic inversion are sketched. It is unlikely that these 

methods will be fully adequate for quantitative uncertainty analyses of the impacts of 

climate change, and a penultimate section looks ahead to fourth generation methods.  

 

1. Introduction 

 

Downside risk drives the policy concern with uncertainty, and without uncertainty there is no 

risk, only adversity. Uncertainty analysis and risk analysis were born under the same star at the 

same time: The Reactor Safety Study (Rasmussen Report, WASH‒1400, 1975) was the first 

comprehensive risk analysis, and also the first major uncertainty analysis….but it was triplets. 

The Rasmussen report also marks the first attempt to use quantitative expert judgment as 

scientific input into a very large engineering study.  This confluence is no coincidence. Risk 

analysis was invented to quantify the probability and consequences of catastrophic events that 
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had not yet happened. Complex systems are functions of their components, and some data at 

the component level are always available, but not enough. Gaps must be filled with expert 

judgment. In addition, there are always questions about the models of the systems. Hence, risk 

analysis, uncertainty analysis and structured expert judgment are joined at the hip. The nuclear 

experience has been impelled by a very high perceived legitimation burden, driving  

uncertainty quantification to become science‒based to the extent possible. Climate change 

poses perhaps the greatest risk humanity has created for itself, and the complexity of the 

system in question ‒ the whole planetary climate ‒ dwarfs that of the systems with which 

uncertainty analysis, risk analysis and structured expert judgment have developed.  

 

This article traces the development of uncertainty analysis since its inception through three 

generations, punctuated by large investments in methodology in the nuclear sector.  The goal in 

tracing these developments is to gather momentum for the challenges of the fourth generation 

that lies ahead. Society does not have time to re‒learn painful lessons of the past 50 years.   

Those lessons may be encapsulated as: 

1. Quantify uncertainty as expert subjective probability on uncertain quantities with 

operational meaning 

2. Apply probabilistic inversion to obtain distributions on unobservable variables  

3. Assess dependence between uncertain quantities  

4. Assess expert performance in panels of independent experts 

It is unlikely that these methods will be fully adequate for quantitative uncertainty analyses of 

the impacts of climate change, and a penultimate section looks ahead to fourth generation 

methods.  

 

1. First Generation 

 

Throughout the 1950's, the US Atomic Energy Commission pursued a philosophy of risk 

management based on the "maximum credible accident". Because "credible accidents" were 

covered by plant design, residual risk was estimated by studying the hypothetical consequences 

of "incredible accidents." An early study (AEC 1957) focused on three scenarios of radioactive 

releases from a 200 megawatt nuclear power plant operating 30 miles from a large population 

center.  Regarding the probability of such releases, the study concluded that "no one knows now 

or will ever know the exact magnitude of this low probability." Successive design 

improvements were intended to reduce the probability of a catastrophic release of radioactivity.  

Such improvements could have no visible impact on the risk as studied with the then current 

methods.  On the other hand, plans were being drawn for reactors in the 1000 megawatt range 

located near population centers, and these developments would certainly have a negative impact 

on the consequences of the "incredible accident". 

 

The desire to quantify and evaluate the effects of these improvements led to the introduction of 

probabilistic risk analysis (PRA). Whereas the earlier studies had dealt with uncertainty by 

making conservative assumptions, the goal now was to provide a realistic, as opposed to 

conservative, assessment of risk. A realistic risk assessment necessarily involved an assessment 

of the uncertainty in the risk calculation. The basic methods of PRA developed in the aerospace 

program in the 1960s found their first full-scale application, including accident consequence 

analysis and uncertainty analysis, in the Reactor Safety Study of 1975. Costed at 70 man-years 
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and four million 1975 dollars, the study was charged to “consider the uncertainty in present 

knowledge and the consequent range in the predictions”. The study’s appendix on failure data 

contains a matrix of assessments of failure rates by 30 experts for 61 components (many cells 

are empty). The study team represented the failure rates as log normal distributions meant to 

cover both the variability in failure rates for components in different systems and also the 

uncertainty in the data. Its method for doing this was not transparent. Monte Carlo simulation 

propagated these (independent) distributions through the risk model. This was the first study of 

this magnitude to (a) treat expert probability assessments as scientific data, (b) quantify a large 

engineering model with subjective probability distributions and (c) propagate these distributions 

through the model with Monte Carlo simulation.  

 

The Reactor Safety Study caused considerable commotion in the scientific community, so much 

so that the US Congress created an independent panel of experts, the Lewis Committee (Lewis 

1979), to review its  "achievements and limitations". Citing a curious method for dealing with 

model uncertainty (the so-called square root bounding model
1
), whose arbitrariness “boggles the 

mind,” the panel concluded that the uncertainties had been "greatly understated", leading to the 

study's withdrawal
2
. However, the use of structured expert judgment and uncertainty 

quantification were endorsed and became part of the canon. Shortly after the 1979 accident at 

Three Mile Island, a new generation of PRAs appeared in which some of the methodological 

defects of the Reactor Safety Study were avoided. The U.S. NRC released the PRA Procedures 

Guide in 1983, which shored up and standardized much of the risk assessment methodology. An 

extensive chapter devoted to uncertainty and sensitivity analysis laid out the basic distinctions 

between sensitivity analysis, interval analysis and uncertainty analysis, and addressed 

interpretational and mathematical issues.  In as much as a boggled mind is an uncertain mind, 

the contretemps over the square root bounding model may be seen as the first foray into model 

uncertainty. The Reactor Safety Study served as model for many probabilistic risk analyses with 

uncertainty quantification in the nuclear, aerospace and chemical process sectors.   

 

The main features of first generation uncertainty analyses are 

 Structured expert judgment with point estimates 

 Distinction of physical variability and uncertainty 

 Propagation of uncertainty with Monte Carlo simulation 

 

 

2. Second Generation 

 

In 1987 the US Nuclear Regulatory Authority issued a draft Reactor Risk Reference Document 

(USNRC 1987 NUREG‒1150) focused on processes inside the containment, in the event of 

breach of the reactor vessel. Extensive use was made of expert judgment, not unlike the 

methods in the Reactor Safety Study. Peer review blew the draft document out of the water, 

                                                 
1
 The probability of one control rod failing to insert was assessed as 10‒3

 per demand. If three adjacent rods fail to 

insert, overheating may occur. If the failures are completely independent the probability of three failures is 10‒9
, if 

they are completely dependent it is 10‒3
.  The square root bounding model uses the root of the product, i.e. 10‒6

. 
2
 "…in light of the Review Group conclusions on accident probabilities, the Commission does not regard as reliable 

the Reactor Safety Study's numerical estimate of the overall risk of reactor accident"(US NRC press release 1979). 
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triggering a serious investment in expert judgment methodology. In 1991, a suite of studies, 

known as NUREG-1150 (USNRC 1991), appeared that set new standards in a number or 

respects. Most importantly, experts were identified by a traceable process and underwent 

extensive training in subjective probability assessment. Instead of giving point estimates, 

experts quantified their uncertainty on the variables of interest (Hora, S. and Iman, R 1989). 

Expert probability distributions were combined with equal weighting. In addition, experts were 

extensively involved in elaborating alternative modeling options and providing arguments pro 

and con. Latin hypercube sampling was implemented as a quasi‒random number sampling 

technique with greater efficiency than simple Monte Carlo sampling. Perhaps the most 

significant innovation in this period was the decision to elicit expert subjective probabilities 

only on the results of possible observations, and not on abstract model parameters. Indeed, this 

study had to contend with the poorly understood physical processes inside the reactor 

containment after breach of the reactor vessel. There was great uncertainty regarding the 

physical models to describe these phenomena, and opinions were sharply divided. It would be 

impossible to ask an expert to quantify his/her uncertainty on a parameter in a model to which 

(s)he did not subscribe.   

  

The NUREG‒1150 methods found traction outside the nuclear engineering community. The 

National Research Council has been a persistent voice in urging the US government to deal with 

uncertainty. “Improving Risk Communication” (NRC 1989) inveighed against  minimizing 

uncertainty. The landmark study “Science and Judgment” (NRC 1994) gathered many of these 

themes in a plea for quantitative uncertainty analysis as “the only way to combat the ‘false sense 

of certainty’ which is caused by a refusal to acknowledge and (attempt to) quantify the 

uncertainty in risk predictions.” Following the NUREG‒1150 lead, in 1996 the National 

Council on Radiation Protection and Measurement issued guidelines on uncertainty analysis 

with expert judgment. The US EPA picked this up shortly thereafter in Guidelines for Monte 

Carlo Analysis (1997) and cautiously endorsed the use of structured expert judgment. In 2005 

the US EPA’s Guidelines for Carcinogen Risk Assessment (EPA, 2005)  (p. 3‒32) advised that 

“…the rigorous use of expert elicitation for the analyses of risks is considered to be quality 

science.”  EPA’s first expert judgment study concerned mortality from fine particulates and 

was completed in 2006 (Industrial Economics 2006).  

 

The work of Granger Morgan’s Carnegie Mellon group fits best in this category. In a widely 

cited passage, Henrion and Morgan (1990, p.50) endorse Ron Howard’s clairvoyant test: 

"Imagine a clairvoyant who could know all facts about the universe, past, present and future. 

Could she say unambiguously whether the event will occur or had occurred, or could she give 

the exact numerical value of the quantity? If so, it is well-specified."  If a model contains terms 

that do not pass the clairvoyant test, then the model is ill‒specified and should go back to the 

shop.  

 

In the heat of the fray the clairvoyant test proves a bit too severe. A simple example illustrates 

the point, and tees up a later discussion of probabilistic inversion. A power law describes the 

lateral dispersion (x) of a contaminant plume at downwind distance x as  

 

1) (x) = Ax
B
 .  
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In a constant wind field, the dispersion coefficients A and B have a clear physical meaning as 

constants in the solution of the equations of motion for fluids. In reality, the wind field is not 

constant, there is vertical wind profile, Coriolis force, plume meander, surface roughness, etc. 

There are no such constants,  no omniscient entity could determine their values and (A,B) fail 

the clairvoyant test. In practice such power laws are used with coefficients that depend inter alia 

on surface roughness, release height and atmospheric stability, which may be characterized in a 

variety of ways. The important thing is not how an omniscient being would determine these 

values (which is impossible), but how WE would determine them. We must specify a virtual 

measurement procedure which we would use to determine their values. If the virtual 

measurement procedure is not one with which experts are familiar and comfortable, then expert 

elicitation may will not be possible on (A,B) directly, and inversion procedures described in 

section 4 will be required. The term “operational definition” was proposed by the physicist P.W. 

Bridgeman (1927); let us relax the clairvoyant test to the “Bridgeman test
3
”:  Every term in a 

model must have operational meaning, that is, the modeler should say how, with sufficient 

means and license, the term would be measured.   

 

Morgan and Henrion (1990) also advise against combining expert judgments in the event of 

disagreement. Rather, the analyst should seek to understand the reasons for the disagreements 

and if these cannot be resolved, should present all viewpoints. This position is echoed in a 

report of the U.S. Climate Change Science Program (Morgan et al 2009). In second and third 

generation studies, there is ample documentation of experts’ rationales, from which one quickly 

realizes that expert disagreement is inherent in the partial state of scientific knowledge. The 

scientific method is what creates agreement among experts - if the science is not there yet, then 

experts should disagree. Indeed, if scientists all agreed in spite of partial knowledge, science 

would never advance. Expert agreement cannot be a legitimate goal of an expert judgment 

methodology.  Preserving and reporting the individual opinions is essential, but in complex 

studies combining the expert’s opinions is also essential. In the third generation study reported 

in the next section, not combining experts would have meant presenting the problem owner with 

67 million different Monte Carlo exercises. Important applications to aspects of the climate 

change problem are published in (Morgan and Kieth 1995, Zickfeld et al 2010).  

 

The main features of second generation uncertainty analyses are 

 Experts quantify their uncertainty as subjective probability 

 Experts’ distributions are combined with equal weighting, or not combined 

 Extensive ‘accounting trail’ traces the expert judgment process, including expert 

recruitment, training, and interviewing, documentation of rationales, data sources, and 

models. 

 Use of Latin Hypercube sampling.  

 

 

3. Third Generation 

 

                                                 
3
 The philosophy of science has studied ‘theoretical terms’ at great length, and shown that scientific theories relate 

to observations in ways which are much more complex than term‒wise operational definitions. None the less, this 

simple Bridgeman criterion is adequate for a first pass. 
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From 1990 through 2000 a joint US-European program, hereafter called the Joint Study, 

quantified uncertainty in the consequence models for nuclear power plants.  Expert judgment 

methods were further elaborated, as well as methods for screening and sensitivity analysis. 

European studies spun off of this work perform uncertainty analysis on European consequence 

models and provide extensive methodological guidance.  With 2,036 elicitation variables 

assessed by 69 experts spread over 9 panels and a budget of $7 million 2010 dollars (including 

expert remuneration of $15,000 per expert), this suite of studies established a benchmark for 

expert elicitation, performance assessment with calibration variables, expert combination, 

dependence elicitation and dependent uncertainty propagation  (see SOM for details and 

references). The expert judgments within each panel were combined with both equal weighting 

and performance based weighting. Since the panel outputs feed into each other sequentially, to 

arrive at a distribution for the study’s endpoints without combining the experts, there would be 

67 million possible sequences.  

 

2
nd

 generation studies trained experts in being ‘good probability assessors’ but no validation of 

actual performance was undertaken. In the joint study experts assessed their uncertainty on seed 

or calibration variables from their field in addition to the variables of interest. Considerable 

effort went into finding suitable calibration variables (for examples, see SOM). Performance 

measurement in terms of statistical likelihood and informativeness has the multiple benefit of 

(a) raising awareness that subjective probabilities are amenable to objective empirical control, 

(b) enhancing credibility in the combined assessments and (c) enabling performance based 

combinations of expert distributions as an alternative to equal weighting.  

 

In earlier studies the distributions of uncertain variables are assumed to be independent. In 

complex models this is untenable. Consider a few examples from consequence models: 

 

 the uncertainties in effectiveness of supportive treatment for high radiation exposure in 

people over 40 and people under 40;  

 the amount of radioactivity after one month in the muscle of beef and dairy cattle; and 

 the transport of radionuclides through different soil types. 

 

The format for eliciting dependence was to ask about joint exceedence probabilities: 

“Supposing the effectiveness of supportive treatment in people over 40 was observed to be 

above the median value, what is the probability that the effectiveness of supportive treatment in 

people under 40 would also be above its median value?” Experts quickly bought into this 

format. Dependent bivariate distributions were found by taking the minimally informative 

copula that reproduced these exceedence probabilities.  

 

One of the most challenging innovations was the use of probabilistic inversion. Simply put, 

probabilistic inversion denotes the operation of inverting a function at a (set of) (joint) 

distribution(s). Whereas standard parameter estimation fits models to data, probabilistic 

inversion may be conceived as a technique for fitting models to expert judgment.   A simple 

illustration is given in section 4.2.  

 

The important features of 3
rd

 generation uncertainty analyses are 
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 Measurement of expert performance in terms of statistical likelihood and 

informativeness 

 Enabling performance based combinations of expert distributions 

 Dependence elicitation and propagation 

 Probabilistic inversion for obtaining distributions on unobservable model parameters 

 

Compared to the resources available for nuclear safety, the uncertainty analyses of integrated 

assessment models are a cottage industry. All the greater is our debt to those who have pursued 

this work. The social priorities expressed by this fact merit sober reflection.  The following 

section sketches how 3
rd

 generation techniques might be applied in climate change uncertainty 

analyses. 

 

4. Application of third generation techniques 

 

In striving for science based uncertainty quantification, the nuclear experience yields four 

lessons that may be directly applied to uncertainty quantification with regard to climate change.  

 

4.1Operational meaning 

 

Independent experts can assess uncertainty with respect to possible physical measurements or 

observations. In doing so, they may apply whatever models they like, and must not be 

constrained to adopt the presuppositions of any given model.  Operational meaning is most 

pertinent to Integrated Assessment Models (IAMs) with regard to discounting.  The 

Supplementary Online Material (SOM) contains a derivation of the Social Discount Factor 

(SDF) and Social Discount Rate (SDR) as 

 

2) SDF = e
 t( + G(t))

;  SDR =  + G(t) 

 

where  is the rate of pure time preference,  is the coefficient of constant relative risk aversion 

and G(t) is the time average growth rate of per capita consumption out to time t.  

 

It is generally recognized that the discount rate is an important driver, if not the most important 

driver, in IAMs. Some (Stern 2008 ) see a strong normative component. Others infer values for 

 and  from data. (Evans and Sezer 2005). Nordhaus (2008) equates the SDR to the observed 

real rate of return on capital with a constant value for G(t), and sees  and  as “unobserved 

normative parameters” (p. 60 ) or “taste variables” (p. 215) which are excluded from uncertainty 

quantification. Pizer (1999) assigns distributions to  and . Nordhaus and Popp (1996) put a 

distribution on . Weitzman (2001) fits a gamma distribution to SDR based on an expert survey. 

Frederick, Lowenstein and O’Donoghue (2002, p 352) note that “virtually every assumption 

underlying the DU [discounted utility] model has been tested and found to be descriptively 

invalid in at least some situations”. They also cite the founder of discounted utility, Paul 

Samuelson: “It is completely arbitrary to assume that the individual behaves so as to maximize 

an integral of the form envisaged in [the DU model]”( p. 355)  Weitzman (2001) and Pizer and 

Newell (2003) show that uncertainty in the discount rate drives long term rates down.  

 

We may distinguish variables according to whether their values represent 
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a) Policy choices 

b) Social preferences 

c) Unknown states of the physical world. 

Uncertainty quantification is appropriate for (b) and (c) but not for (a). We see that various 

authors assign time preference and risk aversion to both (a) and (b). Given the paramount 

importance of discounting for the results of IAMs, resolving disagreement about whether this 

can be uncertain deserves high priority. A proposal based on probabilistic inversion is advanced 

below.  

 

4.2  Probabilistic inversion 

 

In 3
rd

 generation nuclear studies, experts were often unwilling or unable to quantify uncertainty 

on model parameters without clear operational meaning with which they were familiar.  

Examples included the dispersion coefficients mentioned earlier, and also transfer coefficients 

in environmental transport models. The simple power law for dispersion coefficients is most 

intuitive.  Asking experts for their joint distribution over (A, B) would require the experts to 

propagate that distribution through the power law Ax
B 

 to optimally approximate his/her  

uncertainty in the lateral or vertical dispersion at downwind distances x from 500 meters to 10 

km. That would be an excessive cognitive burden. The solution is to ask experts to quantify 

their uncertainty on the spreads (xi) at several downwind distances x1,…xn, using whatever 

model they like, from which the analyst finds a distribution over (A, B) that best reproduces the 

experts’ uncertainty. This operation is termed probabilistic inversion and has become a 

mainstay in uncertainty analysis. The joint study applied it extensively to obtain distributions 

over coefficients in environmental transport models.  Note that the (xi) are directly observable, 

whereas the (A, B) are not. 

  

This technique might be applied to the Social Discount Rate +G(t) (eq.2).  In Weitzman’s 

expert survey (2001) experts are asked for their “professionally considered gut feeling” over the 

“real interest rate …to discount over time the (expected) benefits and (expected) costs of 

projects to mitigate the effects of climate change” (p. 266).  The results are summarized as a 

gamma distribution with mean 3.96% and standard deviation 2.94%. The SDR depends on time 

through the average growth rate. If the dependence on growth were captured in the elicitation, 

then the example would closely resemble the dispersion coefficient case discussed in section 2. 

Suppose for the sake of illustration that experts were asked for their “professional gut feeling” 

for the real interest rate given that the time average growth rate of consumption was fixed at 

respectively 1.5, 2.5 and 3.5. Suppose that their answers can be represented as gamma 

distributions (2.5, 1.5), (3, 2) and (5, 2.5) with where (,)  denotes the gamma 

distribution with mean  and standard deviation . The inversion problem is then: 

 

Find a distribution over (, ) such that 

 + 1.5  is distributed as (2.5, 1.5) 

 + 2.5  is distributed as (3,2) 

 + 3.5  is distributed as (5, 2.5) 

 

A joint distribution over (, ) approximately satisfying these constraints can be found with the 

iterative proportional fitting algorithm. The SOM provides explanation and background. 
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4.3 Dependence modeling   

 

Dependence between uncertain parameters often makes a relatively small contribution to overall 

uncertainty, but sometimes the contribution is large, and for this reason it cannot be 

categorically ignored. Even small correlations, when they affect a large number of parameters, 

can have a sizeable effect.   

 

Dependence in forcing factors of climate sensitivity is an example where the effect of 

dependence might be large. Following (Roe 2009), the equilibrium change in global mean 

temperature relative to a reference scenario is proportional to 1/(1fi), where fi are feedbacks 

from climate fields not in the reference scenario. There is considerable scatter in estimates of 

feedbacks fi . Positive dependence between the fi could inflate the variance of fi, pushing 

probability mass toward one and greatly enlarging the uncertainty of climate sensitivity.  On the 

economic side, dependence may be suspected between total factor productivity, the depreciation 

rate of capital, the price of a backstop technology and the rate of decarbonization, as all could be 

influenced by technological change. If potential dependencies are identified, they can be 

quantified in a structured expert elicitation. For unobservable parameters such as time 

preference and risk aversion, probabilistic inversion offers more perspective.  

 

The subject of dependence modeling involves three questions: 

i. How do we obtain dependence parameters? 

ii. How do we represent dependence in a joint distribution? 

iii. How do we sample a high dimensional joint distribution with dependence? 

 

These questions are closely related, since the way we sample must determine how we represent 

dependence in a joint distribution, and that in turn drives the sort of dependence information we 

acquire. This subject merits a book unto itself (Kurowicka and Cooke 2006); this article can do 

no more than posit answers to the above questions: 

i. Dependence parameters are obtained by expert elicitation or by probabilistic inversion 

ii. Dependence between pairs of variables is represented by rank correlations, together with 

a copula 

iii. The pairs of correlated variables are linked in structures which can be sampled 

 

Explaining the reasons behind these choices would take us very far afield (the SOM gives 

background).  The importance of the choice of copula merits brief discussion.   A bivariate 

copula is a joint distribution of the ranks or quantiles of two random variables. Different types 

of copula having the same rank correlations can give different results, even in simple examples.  

Let X,Y and Z be three exponential variables with unit expectation and pair wise rank correlation 

of 0.7.  Different copulae may be chosen to realize these correlations. The normal copula is the 

rank distribution of the bivariate normal distribution. It is always tail independent: for any non-

degenerate correlation, the probability of two variables exceeding a high percentile approaches 

the independent probability as the percentile becomes greater. It is the only copula implemented 

in commercial uncertainty analysis packages, and its uncritical use has been blamed for reckless 

risk taking on Wall Street (Salmon 2009).  The “mininf” copula (Bedford and Cooke 2002) is 

the copula realizing the stipulated correlations which is minimally informative with respect to 
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the independent copula. The Gumbel copula has upper tail dependence. Consider the product X 

 Y  Z; its mean relative to the independent distribution increases by factors 3.9, 2.9 and 4.8 for 

the normal, min inf and Gumbel copulae respectively. Bearing in mind that this is a very simple 

example, the “copula effect” is significant, though of course the greatest effect would be 

ignoring dependence altogether.  The SOM provides background and graphs. 

 

4.4  Performance assessment 

 

Weitzman (2001) and Nordhaus (1994) conducted expert judgment exercises on the discount 

rate, and the damages from climate change, respectively. These are not fully 3
rd

 generation 

studies, but they are very valuable. For the most part, however, uncertainty analysis has been 

performed by the modelers themselves putting distributions on the parameters of their models. 

That this is not a good idea became starkly evident when the Joint Study results were compared 

with previous “in house” uncertainty quantifications done by the modelers themselves. The 

in‒house confidence bands were frequently narrower by an order of magnitude or more (see 

SOM).  

 

The Joint Study applied a scheme of performance measurement for probabilistic assessors 

previously developed in Europe (Cooke 1991), both to experts and to combinations of experts.  

Experts quantify their uncertainty by giving median values and 90% central confidence bands 

for uncertain quantities, including quantities from their field whose true values are known 

post‒hoc. Experts and combinations of experts are treated as statistical hypotheses. Performance 

is measured in terms of statistical accuracy and informativeness. Statistical accuracy is the 

p‒value at which the experts’ probabilistic assessments, considered as a statistical hypothesis, 

would be falsely rejected.  These measures are combined to form weights so as to satisfy a 

scoring rule constraint: an expert maximizes his/her expected long run weight by stating 

percentiles corresponding to his/her true beliefs. The only way to game the system is by being 

honest.  The nuclear experience with structured expert judgment is representative of the larger 

pool of applications (Cooke and Goossens 2008, Aspinall 2010). Some experts give stunningly 

accurate and informative assessments.  Although many ‘expert‒hypotheses’ would be rejected 

at the 5% significance level, the combinations generally show good statistical performance (see 

SOM for details). 

 

5. The Fourth Generation: model uncertainty 
 

Opponents of uncertainty quantification for climate change claim that this uncertainty is “deep” 

or “wicked” or “Knightian” or just plain unknowable. We don’t know which distribution, we 

don’t know which model, and we don’t know what we don’t know.  Yet, science‒based 

uncertainty quantification has always involved experts’ degree of belief, quantified as subjective 

probabilities. There is nothing to not know. The question is whether the scientific community 

has a role to play in the quantification of climate uncertainties. If we cannot endorse a science 

based quantification of uncertainty for climate change, should we be building quantitative 

models at all?  

 

That said, model uncertainty seems much greater and more pervasive for climate change than in 

the first three generations. Nonetheless, existing techniques for capturing model uncertainty  
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appear applicable. This is not the place to elaborate and evaluate these options.  Instead, this 

section illustrates two techniques, stress testing and model proliferation; the SOM contains 

further suggestions in this direction.   

 

5.1 Stress testing models: Bernoulli dynamics 

 

Stress testing means feeding models extreme parameter values to check that their 

behavior remains credible. In physics stress tests in the form of thought experiments play an 

important role in model criticism. When Einstein imagined accelerating a classical particle to 

the speed of light, using the Lorentz transformation, he found that time would stop in the 

particle’s reference frame.  Failing this stress test motivated the development of special 

relativity. We apply an illustrative stress test to the economic growth dynamics underlying 

many IAMs.  

 

Economic growth dynamics is often based on a differential equation solved by Jacob 

Bernoulli in 1695 (see SOM). Neglecting climate damages and abatement costs, a Cobb-

Douglas function combines total factor productivity A(t), capital stock K(t) and labor
 
N(t)at time 

t: 

  

3) Output(t) = A(t)K(t)
γ
N(t)

1-γ
; 0 <  < 1. 

 

Capital in the next time period is capital in the previous time period depreciated at constant rate 

, plus investment, given as a fraction  of output: 

 

4) K(t+1) = (1‒)K(t) + (t)Output(t)  

 

Take A, and N as constant. Substituting (4) into (5) yields a differential equation whose 

solution is  

 

5) K(t) = [(1  ) AN
1- 

  x=o..t   e
(1)x

 dx   + e
(1)t

 K(0)
 (1)

]
1/(1)

. 

  

This growth dynamics makes strong assumptions; the rate of change of capital depends only on 

the current values of the variables in (3). There is no other “stock variable” whose accumulation 

or depletion affects capital growth. Capital cannot decrease faster than rate (1‒), and it forgets 

its starting point at an exponential rate. To visualize, Figure 1 sets A and N at their initial values 

in the IAM DICE2009, takes values of  and  from DICE and plots two capital trajectories. 

The solid trajectory starts with an initial capital of 1$, that is, $1.510
-10

 for each of the earth’s 

6.437  10
6
 people. The dotted trajectory starts with an initial capital equal to ten times the 

DICE2009 initial value. The limiting capital value is independent of the starting values – with a 

vengeance: the two trajectories are effectively identical after 60 years.  
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Figure 1: Two capital trajectories with DICE with default values, no temperature rise, no 

abatement   K1(0) = 1$ and  K2(0) = 1800 trillion $ 

 

With one dollar, the earth could not afford one shovel, and the consequences of such a shock 

would surely be very different than those suggested in Figure 2.  It is often noted that simple 

models like the above cannot explain large differences across time and geography between 

different economies, pointing to the fact that economic output depends on many factors not 

present in such simple models (Barro and Sala‒i‒Martin  1999, chapter 12).  Negative stress 

test results raise the question, heretofore unasked, for which initial values is the model 

plausible? They also enjoin us to consider other plausible models. 

 

5.2 Model proliferation: Lotka Volterra dynamics 

 

Are there other plausible dynamics? One variation is based on the following simple idea: Gross 

World Production (GWP) produces pollution in the form of greenhouse gases. Pollution, if 

unchecked, will eventually destroy necessary conditions for production. This simple observation 

suggests that Lotka-Volterra, or predator-prey type models.  Focusing on GWP, such a model 

offsets the growth of GWP, at rate , by damages caused by global temperature rise T above pre 

industrial levels. Dell, Jones and Olken (2009) argue that rising temperature decreases the 

growth rate of GWP. Using country panel data, within-country cross-sectional data and cross 

country data they derive a temperature effect which accounts for adaptation: Yearly growth, 

after adaptation, is lowered by   =0.005  per degree centigrade warming. For fixed T, the 

damage would be proportional to current GWP, and for fixed current GWP the damage would 

be proportional to T. The difference equation would then be: 

 

6) GWP(t+1) = (1+)GWP(t) ‒ T(t)GWP(t). 

 

Other equations would capture the dynamics of T(t) in terms of global carbon emissions and the 

carbon cycle. Without filling in these details, we can see where the non‒linear dynamics of (7) 

will lead. As temperature rises, eventually T(t) = . According to the World Bank, GWP has 

grown at 3% yearly over the last 48 years; substitution   = 3% yields a tipping point at T = 



Appearing in Climatic Change  DOI: 10.1007/s10584-012-0634-y 

 

13 

 

6°C. Beyond this point, GWP’s growth is negative. Given the inertia in the climate system, it 

can stay negative for quite some time.  

 

The SOM distinguishes inner and outer measures of climate damages, and a more data driven 

model for the effects of climate change is sketched. 

 

6. Conclusion 

There is one simple conclusion: uncertainty quantification of the consequences of climate 

change should be resourced at levels at least comparable to major projects in the area of nuclear 

safety. Fourth generation uncertainty analyses will hopefully apply the lessons learned in the 

first three generations. Uncertainty should be assessed on outcomes of possible observations by 

independent panels of experts, whose performance is validated on variables from their field with 

values known post hoc. Dependence must be addressed either through direct assessment or 

through probabilistic inversion, and a rich set of models should be developed to deal with model 

uncertainty. 
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