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1. INTRODUCTION

1.1 Scope

In Europe, wake vortex prediction and detection systems are being introduced in order to
increase airport capacity, while maintaining safety. The EC project ATC-Wake aims to
develop a ground based system for ATC (Air Traffic Control) that would allow variable
aircraft separation distances, as opposed to the fixed distances presently applied at airports.
The EC project [-Wake aims to develop an on-board system for pilots in order to minimize
the probability of a wake encounter. As part of these projects, quantitative safety assessments
were performed. So far, the focus of these safety studies was the assessment of the risk related
to the wake encounter itself.

However, for a quantitative safety assessment of the use of wake vortex prediction and
detection systems, the following issues should also be considered:

- Humans working with these systems have to react on alerts, so as to ensure that a pilot
will be able to initiate a wake vortex avoidance maneuver in time.

- If one or more of the system components provide a wrong or erroneous advice, there
will be a higher risk on the presence of (severe) wake vortices. The consequences
might be catastrophic, in case reduced separation is applied.

Therefore, there is a need to understand more clearly what the impact of hazards, human
errors, and system failures is on the incident/accident risk related to the use of wake vortex
prediction and detection systems such as ATC-Wake and also I-Wake.

1.2 Objectives

General Objective:

We aim to analyze the use of two new wake vortex prediction and detection systems. One
ground based systems (ATC-Wake) and one on-board system (I-Wake), both used
independently. We intend to apply a rich variety of mathematical models and methodologies
based on continuous Bayesian Belief Nets (BBNs), discrete BBNs, and Fault Trees. It is our
objective to provide insight into hazards and system failures related to the use of wake vortex
prediction and detection systems. In this context, it is foreseen that the models will be used for
the setting of requirements for these systems.

Particular Objectives:
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This aim is to provide insights into the hazards and system failures related to the use of wake
vortex prediction and detection systems. Three models, developed by NLR, will be analyzed
in detail to support of the setting of requirements. These models are:

- A stochastic model, based on use of continuous Bayesian Belief Nets, for the initial
aircraft separation time between aircraft taking off at a single runway;

- A Fault Tree model for the assessment of the impact of ground based system failures
on a wake vortex detection, warning, and avoidance manoeuvre;

- A discrete Bayesian Belief Net for the assessment of the impact of an on-board system
failure on a wake vortex avoidance manoeuvre.

The main ideas behind the use of Bayesian Belief Nets and the data requirements for the use
of these three models will be investigated. Several questionnaires to elicit required data for the
use of these models from operational experts will be proposed.

1.3 Modelling Approach

Bayesian belief nets (BBNs) become recently very popular models to represent high
dimensional uncertainty distributions. A BBN is an acyclic directed graph in which nodes
represent random variables and the arcs ‘influences’ between variables. We will use BBNs to
analyse and evaluate the hazards and system failures related to the use of wake vortex
prediction and detection systems. The proposed approach includes:

1. A graph and decision theory based model structure representing the stochastic initial
aircraft separation time at the start of roll during ATC-Wake single runway departures is
constructed. It enables the analysis of the safety aspects of the ATC-Wake system and
operational concept in a causal way. The modelling approach will be based on the use of
Continuous Bayesian Belief Nets.

2. A causal model for the assessment of the ATC Wake Detection, Warning and Avoidance
Maneuver is introduced. This BBN will be applied to evaluate the risk of system failure
for the departure operation. We will use two approaches to quantify such a model:
Discrete Bayesian Belief Nets and Fault Trees.

3. A causal model for the assessment of the [I-Wake Detection, Warning and Avoidance
Maneuver probability is introduced. A Discrete Bayesian Belief Net BBN will be applied
to evaluate the risk of system failure for the arrival operation.

In the model for the aircraft separation time the random variables are continuous. We will
follow the copula — vine approach presented in [Kurowicka D., Cooke R.M. 2004]. It allows
nodes having continuous invertible distribution functions. The influences are specified as
(conditional) rank correlations, which are realized by copula that represents (conditional)
independence as a zero (conditional) correlation. Updating such non-parametric BBN requires
re-sampling the whole structure, which is very time consuming. To overcome this problem
the structure is sampled once and used as data to quantify discretized (each node 10 states)
version of continuous structure. This way the reduced assessment burden and modeling
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flexibility of the continuous BBNs is combined with the fast updating algorithms of discrete
BBNSs.

A different approach will be followed for the second model, representing a ground based
wake vortex detection, warning and avoidance maneuver. From the problem statement, we
will initially constrain the variables to take two values or two states. Moreover, we say that
the failure of one the parent-nodes occurs if any one of its components fails. We shall
compare two approaches that may be applied to model the hazard and system failures: the use
of a Fault Tree and a discrete BBN respectively.

A third approach will be followed for the third model, representing an on-board wake vortex
detection, warning and avoidance maneuver. Because of the statement of the problem, we will
initially use a discrete BBN, since we will be able to constrain the variables to take two states.
The use of discrete BBNs as most appropriate approach which may be applied to model the
failure of aircraft/pilot performing a detection, warning, and avoidance maneuver will be
motivated on basis of assumptions made.

1.4 Outline of the Thesis

This thesis describes the results of a graduation project, carried out as part of the Master of
Science Programme in Applied Mathematics at Delft University of Technology. It describes
and discusses a case study in which Discrete and Continuous BBNs are applied for analysis of
wake vortex prediction and detection systems.

Chapter Two deals with ground based prediction and detection systems and its use during
departures from single runways. The application of continuous BBNs, discrete BBNs, and
fault trees to different parts of the ATC-Wake operation is presented and discussed. Chapter
Three deals with the use of an on-board wake vortex detection, warning and avoidance
system. Here, discrete BBN are used to support the setting of requirements for the different
system components. Readers interested in the mathematical foundation of the applied
methods may refer to Chapter Four and the references of this document for more information.
Finally, conclusions and recommendations are given in Chapter Five. The Appendices contain
the questionnaires for the elicitation of the required data from operational experts.
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2. ATC-WAKE MODELS: CONTINUOUS AND DISCRETE
BAYESIAN BELIEF NETS

For a description of the current practice Single Runway Departure (SRD) operation, as
well as the SRD operation as proposed in the ATC-Wake concept refer to [Speijker et al.
2005b, 2005c¢, 2006b].

2.1 ATC-Wake: The Aircraft Separation Time Model

A mathematical model and techniques are introduced to incorporate the role of humans
working with ATC-Wake. Thus, the so called aircraft separation time model is presented
in this Section (see Figure 2.1 in Section 2.1.2). We should point out that a previous
version of this model was developed by NLR, which was slightly adapted [Speijker et al
2005a]. We propose the use of a continuous Bayesian Belief Net to describe the
relationships between the model components.

From the qualitative safety analysis of the ATC-Wake operation [Scholte et al. 2004,
Speijker et al. 2005b], the following two factors were considered there the most relevant
for the construction of a causal model:

- Aircraft separation time (at take off);
- Wake detection, warning, and avoidance manoeuvre.

It is assumed that these two stochastic phenomena are independent. Therefore, for each a
Bayesian Belief Network (BBN) will be constructed. The continuous BBN for the
Aircraft Separation Time is described in this Section. The discrete BBN for the Wake
Detection, Warning, and Avoidance Maneuver is presented in Section 2.2.

For a quantitative assessment of the wake vortex induced risk related to the ATC-Wake
operation with reduced separation, there are three main issues to consider:

— The controller working with the ATC-Wake system has to instruct the pilot to initiate
a wake vortex avoidance manoeuvre, in case an ATC-Wake warning/alert is raised.

— If one or more ATC-WAKE system components provide(s) wrong or erroneous
advice, there will be a higher risk on the presence of (severe) wake vortices. The
consequences might be CATASTROPHIC, because reduced separation is applied.

— The separation distance/time will vary along the flight track, and will usually not be
exactly the same as the separation minima advised by the Separation Mode Planner.
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2.1.1 Brief Introduction to the Application of continuous BBNs for The
Aircraft Separation Time Model

Bayesian belief nets (BBNs) become recently very popular models to represent high
dimensional uncertainty distributions. BBN is an acyclic directed graph in which nodes
represent random variables and the arcs ‘influences’ between variables'. We have used
BBNs to build the Aircraft Take Off Separation Time model. Random variables in this
model are continuous but not necessarily normally distributed. Hence the known normal
BBNs [Cowell, R.G. et al 1999] cannot be applied here.

We could discretize our continuous variables and transform our problem to a discrete
BBN. However, if we decide to choose not too crude discretization (more than 2 states)
the assessment burden that we would have to deal with would be too cumbersome. If only
two states for variables are used, the results will not be very precise.

The new approach to continuous BBNs using vines [Bedford T.J., Cooke R.M. 2002] and
copula that represents (conditional) independence as a zero (conditional) correlation was
introduced in [Kurowicka D., Cooke R.M. 2004]. It allows nodes having continuous
invertible distribution functions. Hence this approach is not restricted to any parametric
form (as normal BBNs). The influences are specified as rank correlations and conditional
rank correlations. This approach allows traceable and defensible quantification methods
but it comes at a price: these BBNs must be evaluated using Monte Carlo simulation.

We follow the copula — vine approach presented in [Kurowicka D., Cooke R.M. 2004]
for the Aircraft Take Off Separation Time model. All marginal distributions and
(conditional) rank correlations are specified. The BBN has to be sampled. We present a
comprehensive description of the application of this methodology to the Aircraft Take
Off Separation Time model.

Updating such non-parametric BBN requires re-sampling the whole structure. This is not
as elegant as updating discrete BBNs and is very time consuming. To overcome this
problem the structure is sampled once and used as data to quantify discretized (each node
10 states) version of continuous structure. This way the reduced assessment burden and
modeling flexibility of the continuous BBNs is combined with the fast updating
algorithms of discrete BBNs [Hanea A., Kurowicka D., Cooke R.M. 2005].

2.1.2 Description of the Model and Data

The causal model for the aircraft separation time is presented in Figure 2.1. The non-
parametric continuous BBN for such a causal model and the explanation of every node
are shown. Here, we will follow the ‘copula — vine’ approach to continuous BBNs
[Kurowicka D., Cooke R.M. 2004] and associate nodes with continuous invertible

' A wider overview about BBNs and related mathematical definitions is presented in Chapter 4.
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distributions, influences with (conditional) rank correlations. In order to quantify such a
BBN using the ‘copula — vine’ approach, we need to specify all one-dimensional
marginal distributions and the (conditional) rank correlations.

Aircraft Take Off

Separation Time
9
Mo =0.3121 (“)
Foajor = 0.35537

ATCo Take Off

Clearance Time | Pilot Take Off Time
@) Prescribed Time ®)
Spacing
Msje = -0.6565 r,, = 0.7651 (4)
L r,, = 0.5698
Majs = 0.3669
Wind Nowcast Error Runway/Tower I I
Er(r5<;r Con(tGr;)IIer Separation Mode Error ATC
Planner Failure Supervisor
@ (3)

|r21 =-0.6898

Wind Forecast Error

(€0

Figure 2.1: BBN for the aircraft separation time model
The explanation of the nodes in the BBN in Figure 2.1 is as follows:

— Aircraft Take Off Separation Time (9): Time difference between start of roll of the
leader and the follower aircratft.

—~ ATCo Take Off Clearance Time (7): Time difference between start of roll of the
leader and take off clearance of the ATCo for the follower aircraft.

— Pilot Take Off Time (8): Time difference between take off clearance of the ATCo
and the start of roll of the aircraft.

— Prescribed Time Spacing (4): Separation Time Prescribed by the ATC supervisor for
a departing leader and follower aircraft combination (in ATC-Wake Mode).

— Separation Mode Planner Failure (2): Time difference between output of the
Separation Mode Planner (i.e. Separation Time Advise) and the separation time that
should be advised.

-~ Wind Forecast Error (1): Meteo system wind profile forecast error at reference
height (10 m altitude).

- Wind Nowcast Error (5): Meteo system wind profile nowcast error at reference
height (10 m altitude).

— Error Runway/Tower controller (6): Time difference between Separation Time
prescribed by the ATC Supervisor and Take Off Clearance Time.

— Error ATC Supervisor (3): Time difference between Separation Time prescribed by
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the ATC Supervisor and the separation time that should be advised.

Throughout, when we talk about the univariate continuous random variables we denote
them by the upper X, ’s. Realizations of these random variables will be denoted by the

lower cases x;’s where i refer to their corresponding number in the BBN. How to get the

distributions of all nodes is described in Section 2.1.3. Since the influences are associated
with (conditional) rank correlations (which does not depend on marginal distribution
functions) then one may separate information about dependence and marginal
distributions. We can easily transform variables to uniforms on (0,1). This can be done

as follows:

If F, denotes the cumulative distribution function of the i-th node hence the variables X,
then U, = F,(X,) is a variable uniform on (0,1).

After specification of the dependence structure on transformed to uniforms variables,
they will be transformed back to their original distributions by applying inverse

transformation X, = F,'(U,).

l

The protocol to assign (conditional) rank correlations to the arcs of the BBN; as well as,
the procedure of sampling the structure for transformed variables are shown in the
Section 2.1.4.

We point out that the probability distributions for the nodes in the BBN and (conditional)
rank correlations are elicited using expert opinion [theory and methodology regarding
structured expert judgment is found in Cooke R.M. 1991, Cooke R.M., Goossens L.H.J.
1999]. Initial data used to obtain insight were obtained through the application of
questionnaires (See questionnaires and provided data in Appendix A.1).

2.1.3 Expert Distributions

Some marginal distributions for the Aircraft Take Off Separation Time Model have to be
obtained from experts. In this context, we briefly present the Expert Judgment
methodology which can be used to accomplish this task. An important step of the
classical model [Cooke R.M. 1991] is the combination of all experts’ assessments into
one combined uncertainty assessment on each query variable. Here, we present the
combination scheme named Equal weight decision maker, which gives each expert equal
weights. Another scheme based on performance of experts on questions has successfully
been applied in several studies [See Cooke, 1991; Cooke R.M., Slijkhuis K.A.; Cooke
R.M., Goossens L.H.J., 1999; L.H.J. Goossens, R.M. Cooke 1996]. For practical reasons,
we suggest the use of the equal weight combination scheme.
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First of all, experts are asked to assess their uncertainty distribution via specification of a
5%, 25%, 50%, 75%, and 95%-iles for unknown values for each variable of interest. To
build experts distribution we find minimum information distribution with respect to
background measure satisfying expert’s quantiles. The following procedure is used. Let
q, (e) be the i% quantile of expert e. We assume that this minimum information
distribution is restricted to a bounded interval. The intrinsic range or bounds for the
variable distributions is obtained using the 10% overshoot rule: The smallest interval
containing all assessments for a given item is overshot above and below. The expert’s
information scores are affected by the choice of the overshot; making this overshoot very
large tends to suppress differences in the experts’ information scores, however the effect
is very low. First we find the lowest and the highest values named,

[ = min{gs(1)....q;(6)}, h = max{gy(l),.... 455(6)}
Then we set
g(e) = 1-0.1x[n-1],
and similarly,
g,(e) = h=0.1x[n-1],

The intrinsic range is thus [g, (e), g, (e)]. The distribution of expert e is then approximated
by linearly interpolating the quantile information (g,(e), 0), (g5(e), 0.05), (g4(e), 0.25),
(g50(€),0.5), (g,5(€).0.75) , (gs,0.95), and (g,(e).1). This is the distribution with

minimum information (with respect to distribution on the intrinsic range) that satisfies the
expert’s quantiles [Cooke R.M., 1991]. The above procedure gives us a distribution

function F, ; for expert j on variable i. We specify equal weight (Ej to each distribution

and the combined distribution function is now Z(ljFI . » see [Cooke R.M., 2001;
Joe

Bedford T.J., Cooke R.M. 2003].

The Expert Judgment methodology presented above can be used to fit distributions on
quantiles given by experts (the questionnaire is formulated in Appendix Al.). Although,
here initial data used to obtain insight are obtained by following another approach. In
order to get marginal distributions, we use means and standard deviations of the marginal
distributions. Hence, probability distributions for the nodes in the BBN have been
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estimated. Those considered adequate for the marginal distributions required are
presented in Appendix A17.

In this respect, four variables were assumed to have the following gamma distributions:
X, ~ Tlx,|81,1.1111) , X, ~ T[(x,]323.9741,0.2778) , X, ~ I(x,|9.0001,3.3333) ,

X9~F(x9 |64, 1.8750). On the other hand, we assume that the variables having normal
distributions are: X, ~ N(0,2.89), X,~ N(0,100), X, ~ N(0,100), X, ~ N(0,0.0625),
X,~N(0,25) (see Appendix A.1, ATC-Wake D3_5b and D3_6b for the details).

2.1.4 ‘Copula — Vine’ Approach to Continuous BBN for The Aircraft
Separation Time Model

We use the protocol presented in [Kurowicka D., Cooke R.M. 2004] to specify
(conditional) correlations to be required from experts in the continuous BBN for the
aircraft separation time. As we already said these correlations are assigned to the directed
arcs of the BBN.

First we choose the sampling order 1, 2, 3,4, 5, 6, 7, 8, 9 for the BBN structure, such that
the ancestors of a node appear before that node in the ordering. This order is not unique;
we could have chosen a different sampling order. Observe Figure 2.1, the node
“Prescribed spacing”, numbered 4 has as ancestors the nodes “Error ATC Supervisor”,
“Separation Mode Planner Failure”, and “Wind Prediction”; thereby, they were placed in
the ordering before node 4 as nodes 3, 2 and 1, respectively.

We write the complete factorization and underscore the nodes which do not have a direct
“influence” with the conditioned variable, i.e., which are not its parents, and hence are
not necessary in sampling it. This factorization is

P(1,2,3,4,5,6,7,8,9) = P(1) P(2|1) P(3]21) P(4|321) P(5]4321) P(6|54321)
P(7|654321) P(8|7654321) P(987465321) (1)

If we drop the underscored variables, we obtain the standard factorization for the BBN
given as follows [Pearl J. 1988, Jensen F.V. 1996]:

P(X,X,,...X,) =

TP (x| pa(x))) @)

i

where pa(X,) denotes the parents of variable X,.

? These probability distributions were fitted by using the distfool of the Statistics Demo in Matlab.

-9.
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To sample a distribution specified by a continuous BBN we use the sampling procedure
for the D -vine [Kurowicka D., Cooke R.M. 2006]. For each part of the factorization we

build a D-vine on K variables denoted by DX = D(K, CX, IX). The ordering of the
variables is very important. We start with the variable K ; then the dependent variables,
CX. and, at the end the independent variables, I*

a) Let us start with the first term of the factorization, P(1) . Since variable X, neither has
dependent variables, nor independent ones, C' = I /= ¢. Then, the D -vine for X, is

trivial, we denote it by O'=D(1). To sample X ,» we can just sample a uniform random
variable,

X = u . 3)
b) Second part of the factorization gets a bit more complicated. We take P(2 | 1) .

r21

C={1}, I'=¢ = n,
Figure 2.2: O for the BBN for the aircraft separation time with 9 variables

In Figure 2.2, we can see the D -vine O’ and sets of independent and dependent variables
for X,. There are no underscored variables, hence I =¢. The set of dependent variables
C’ consists of the variable X,, so the ordering of {7 is as in Figure 2.2. To specify
dependence between X, and X,, it is required to assign a rank correlation 7, to the edge
between X, and X, in O’ and equivalently to the corresponding arc in the BBN in

Figure 2.1. The graphical representation of the sampling procedure is shown in Figure
2.3:

-10 -
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Xl
u, =X,
XZ
0
1

Figure 2.3: Graphical representation of sampling value of x, in o

We acquire a value of variable X,, say x, in 0. The horizontal axis represents the
random variable X,, and its parent X, is placed on the vertical axis. The diagonal band
copula’ [Cooke R.M., Waij R. 1986] realizes the correlation 7, between these random
variables. Value X, = x, is known from the first term of the factorization, this allows us
to calculate the conditional distribution of X, given variable X, = x,, denoted by Fz‘1 f

we sample value of the independent uniform variable U, =u, and invert it with respect to
£y, then we get the desired value x,. So, the sampled value of variable X, is obtained

as
xz = F27‘11;x1 (uZ) ‘ (4)
Third part of the factorization can be now considered.

0) P3[21)

? This copula will be used in the text only to visualize the sampling procedure, since it can be easily drawn.
Although, for applications we will use Frank’s copula [Frank M.J. 1979] as it does not add much
information to the product of margins, enjoys the zero independence property and has a close form of
conditional and inverse conditional distributions. For further details and mathematical background see
Chapter 4.

-11 -



3
TUDelft
Chapter 2. ATC-Wake Models: Continuous and Discrete Bayesian Belief Nets Tiichs (iyarchin e

.......................

Figure 2.4: O’ for the BBN for the aircraft separation time with 9 variables

For the third part of the factorization K =3, and variables X, and X, are underscored,
that is, X, and X, are independent of X,. C’ = ¢ and I’ = {2, 1 } Hence, the order of

the variables is O = D(3, 2, 1). Variables X , and X, were already sampled so we are
now interested only in information about variable X,, hence the information in the left-

most part of the vine (stood out area in Figure 2.4). Both r, , Ty, are equal to zero

because X, is independent of X, and X,.

Therefore, to sample random variable X, we just sample the value of the independent

uniform variable U, , say u,
X, = Uy %)
We turn to the fourth part of the factorization.

d) P(4[321)

Figure 2.5: O’ for the BBN for the aircraft separation time with 9 variables

For the fourth term of the factorization K = 4; the set of dependent variables consists of
variables X, and X,, hence C* = {3,2}; and, variable X, is underscored I*= {1}, i.e.,

-12 -
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variable X, is independent of variable X, given X, and X,. We have O'= D (4, 3, 2,

1). Notice that the order of the variables stays the same as in O’. We are only interested in
information about variable X, as variables X,, X, and X, were already sampled. We

have that 7,,;, =0, due to independence between variables X, and X, given X, and

X, . The correlations 7,; and r,,, need to be specified”.

23

The equality of the top correlation in 0, ¥, 13, to zero, makes quantile functions Fl‘ 5, and

1]32
F i independent , hence we can reduce D’ to a vine on three variables, in this case D 4,
3, 2) (circled area in Figure 2.5). Every time when some of the highest order (conditional)

correlations of the left-most part of the vine are equal to zero, the D-vine can be reduced
in a similar way. This simplifies the sampling of variable X, that does not depend on

value of the variable X,. From previous factorizations we know that the rank correlation
1, 1s equal to zero. The sampling procedure for the variable X,, say x, is shown in
Figure 2.6.

Figure 2.6: Graphical representation of sampling value of x, in D

* Note that we can change the ordering in 0" to 4, 2, 3, 1, which allows us another possibility to specify
conditional rank correlations, given as r,, and Fapa - Hence, we have the following two possibilities to

specify (conditional) rank correlations in 0.

k=4 C'={32f, I'={i} = {rﬂ }Or{r“ }
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Since X, and X, were already sampled then values of X, = x, and F,,(x,) are known.

203

We conditionalize copulas with correlations 7,; and 7,

)3 on value of X;=ux; and

Fz‘s(xz), respectively. We calculate conditional cumulative distribution functions £,
and F, 42 (see Figure 2.6). We sample the value of the independent uniform variable U,

say u, invert it with respect to £ ,, and get value of the quantile £, ; which leads to x, .

3

Hence, x, is sampled as follows:

Xy = F4_\13:x3 (F4_\123:x2 (”4))- (6)
Now, we consider the fifth term of Equation 1.

) P(5]4321)

In this term, we have K = 5, the set of dependent variables is empty (C ° = ¢) and the
rest of the variables are underscored I'° = {4, 3,2,1 }, that is, variable X, is independent

of X,, X,, X;, X,. We can then use the following ordering for DO=D (5,4,3,2, 1),

which after incorporating all zero correlations in the left most part of the vine simplifies
to D (5). We are not required to specify any (conditional) rank correlation. Value x; of

X, in O’ is found by simply sampling the value of the independent uniform random

variable U; = u;

Xy = Us. 7
Similarly, we can get value x, for the sixth term of the factorization.
) Plo|s4321)

We have K =6, C/ = ¢ and I'= {5, 4,3,2,1 }, that is variable X is independent of X,
X,, X;, X,, X;. Then, the ordering of D’ is the following D’'=D (6, 5,4,3,2,1),
which simplifies to D (6). Hence

Xg = Ug. (®)

We present the seventh term of the factorization.
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o) P(7]654321)
r 0

E 76 E E

r

75(6

Figure 2.7: O’ for the BBN for the aircraft separation time with 9 variables

This part of the factorization has K =7, the set of dependent variables consist of two
variables X and X, then C ” = {6,5} and there are four underscored variables I~ =

{4, 3,2,1 } Hence, O'=D (7,6,5,4, 3,2, 1), the order of the variables stays the same (7,
6, 5,4, 3,2, 1) as for the previous vines. So far, we have sampled variables X,, X,, X;,
X,, X; and X, so we only need to incorporate the information about variable X,

given in the left-most part of 0. Notice that, we have reduced O as we did for O to D

(7, 6, 5). We must assign rank correlation r,, to the edge that connects variables X, and
X, in O’ and equivalently to the corresponding arc in the BBN in Figure 2.1. We must
also incorporate information about the conditional dependence of variables X, and X,
given variable X in form of conditional correlation 7, >, hence 15| 18 assigned to the

arc between X, and X, in the BBN in Figure 2.1. From previous factorizations we find

that 7, is equal to zero.

Now the sampling procedure can be represented graphically as

> As we mentioned for 0, variables in O’ can be given in the different order (7, 5, 6), if it is the case 7,

and Vs are being needed. Hence, we have the following possibilities to specify (conditional) rank

correlations in O

c’=1{6,5}, I'’= {4,3,2,1} = {r”’ }or{r” }

r75\6 rm\s
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Figure 2.8: Graphical representation of sampling value of x, in D (7,6,5).

Figure 2.8 shows the sampling value of x, in D (7, 6, 5). It can be obtained in a way

analogous to obtaining value x, . We get

X = F7_\16:x6 (F7_\165;x5 (u7 ) ) )

Now, we shall explain the case of the eighth part of the factorization.

h) P(8]7654321)

In this term, K = 8, the set of dependent variables is empty, C * = ¢ and I ¢ =
{7, 6,5,4,3, 2,1}, that is variable X, is independent of X, X,, X,, X,, X,, X, and
X, . Hence, we use the following ordering for D’=D (8,7,6,5,4, 3,2, 1) which reduces
to D (8). The sampling value of x, is obtained by just sampling the independent uniform

variable Uy, say u,
Xy = Ug. (10)
Finally, the ninth part of the factorization is shown.

i) P(9]87465321)

-16 -



]
TUDelft
Chapter 2. ATC-Wake Models: Continuous and Discrete Bayesian Belief Nets Tiichs (iyarchin e

E Fee E 0 E 0 E
0

r97\a

r

94|78

Figure 2.9: 0’ for the BBN for the aircraft separation time with 9 variables

We can see in this term of the factorization that K =9, the set of dependent variables has
three variables, C° = {8, 7,4} and the underscored variables are I’ = {6, 5,3, 2,1}.
Hence, the ordering of the variables is given as D’=D9,8,7,4,6,5,3,2,1). Finally,
following the same procedure as above, & is reduced to a sub-vine on four variables,
namely, D (9, 8, 7, 4). We are only interested in the information about variable X,. We
can assign a rank correlation 7, to the edge of D’ and equivalently to the arc between
variables X, and X, in BBN in Figure 2.1. We also need to incorporate the information
about two conditional dependences

and 7, ., (we know values of variables X, and

r97\8 4|87

X, from D and D', respectively, see Equations 9 and 10)°.

Figure 2.10 shows the sampling procedure to realize (conditional) correlations in 0.

® As we said before, if we can change the order of the parents; we may have several possibilities to specify
conditional rank correlations, namely,

I,

r98 98

97 97

C’=1{8,7,4},I’= {6,5,3,2,1} =

r97\x ’ r94\8 4 798\7 ’ r94\7 ’

r94\s7 r()7\34 r94\73 r98\74

or

r9s\4 r97\4

r97\48 rosw
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Xa F7 |8
l r97\8 :
F7 |8 (X7 )
F
XS
X Fy s (X

e F

1 9/8

9|87

Figure 2.10: Graphical representation of sampling value of x, in Iog

Since X,, X, and X; were already sampled then values of X, =1x,, F7‘8(x7) and

F

4187

the values of X, =x,, F7‘8(x7), and F4‘87(x4), respectively. We calculate conditional

(x,) are known. We conditionalize copulas with correlations 7, Ty and 7y, i, on

cumulative distribution functions Fyg, Fyg and Fj 574 (see Figure 2.10). We sample the
value of the independent uniform variable U, , say u, invert it with respect to £, and

get value of the quantile F| ., which is used to get quantile E;\s , which leads to x, .

|87

The sampling procedure of x, in D’ yields,

x9 = F9_‘;§:x8 (F‘)_‘17,8:x7 (F‘)_‘il,7,8:x4 (u9 ))) (1 1)
We conclude that the following rank correlations must be specified:

(12)

{rzla T35 Taz|3> P76 7516 Toss Tog s> ”94\87}

We have specified eight (conditional) correlations for the BBN structure shown in Figure
2.1 the same as the number of arcs in this BBN. Conditional independence properties of
the BBN were used to simplify the sampling procedure in D -vines.

In principle, it is not necessary to draw D -vines to see which (conditional) correlations
are necessary for calculations. One can follow the algorithm presented below:

e Find sampling ordering. An ordering such that all ancestors of node i appear

before i in the ordering. A sampling ordering begins with a source node and ends
with a sink node.
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¢ Index the nodes according to the sampling order 1, ..., n.

e Factorize the joint in the standard way (Equation 2) following the sampling order.

e Underscore those nodes in each condition, which are not parents of the
conditioned variable and thus are not necessary in sampling it.
The underscored nodes could be omitted thereby yielding the familiar
factorization of the BBN as a product of conditional probabilities, with each node
conditionalized on its parents (for source nodes the set of parents is empty).

e For each term i with parents (non-underscored variables) i ...7,(;, associate the

arc i, , — i with the conditional rank correlation
V(i, lp(l)),k=0
I"(i, ip(i)—k ‘l.p(i)’ cees ip(i)—k+1 ), 1<k< p(l)—l (13)

where the assignment is vacuous if { ey () }:¢. Assigning conditional rank

correlations for i = 1, ..., n, every arc in the BBN is assigned a conditional rank
correlation between parent and child.

In Section 2.1.5, the procedure of how the values of the required conditional and
unconditional rank correlations are obtained is presented. There, an expert assessed
excedence probabilities over original variables. We show in details how from these
elicited excedence probabilities the (conditional) rank correlations become known.

2.1.5 Procedure to obtain the Values of the Required Conditional and
Unconditional Rank Correlations

Assuming copula a unique joint distribution could be determined and sampled based on
the previous protocol. The (conditional) rank correlations associated with each edge are
determined. And these can be realized by the copula. For that, we do not only require
one-dimensional marginal distributions, but also to quantify the uncertainty of the
conditional dependencies of the BBN.

Thus far, we have obtained marginal distributions associated with the nodes of the
continuous BBN for the aircraft separation time and we know which (conditional) rank
correlations —influences in the BBN— are required. These (conditional) rank correlations
could be non constant. This would complicate their realization and elicitation. In this
way, it is convenient to work with constant conditional rank correlations. We consider the
joint normal copulae where (conditional) rank correlations are constant and an
appropriate close-functional form of the density function can be implemented in Matlab.
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It is proven to be difficult for experts to assess (conditional) rank correlations directly
[Kraan B. 2002]. Thereby, excedence probabilities are to be elicited. From the answers to
the elicitation format shown in Appendix A.2, we will obtain the (conditional) rank
correlations as follows.

We will start by describing the procedure to obtain the rank correlation r,, between
variables X, and X,. An expert assessed the P(X 22X,y ‘X = ), 1.e. probability that

X, 1s bigger than or equal to its median given that X, is bigger than or equal to its

median. An example of an appropriate question to elicit this probability is as follows [see
questionnaire about Conditional and Unconditional Rank Correlations in Appendix A.2]:

Consider the relationship between the following two variables:

1. Suppose that the Wind Prediction was observed to be above its median value. What is
your probability that the Separation Mode Planner Failure would also lie above its
median value?

Probability [0, 1] : 0.25

This can be shortened as
X, : Wind Prediction [m/sec] X, : Separation Mode Planner Failure [sec]

X, zx )?

Suppose: X, >x, ;whatis P(XZ > X,

Hence, expert has specified P(F X, (x,)>1/2 ‘F X, (x,)=1/ 2) . We can also transform
Fy (xl.) to standard normal variables by applying the following Y, = ¢~ (F P (xl. )) i=1,2
and treat this problem as finding correlation p,, of joint normal distribution for which the
conditional probability is P(Y2 >0 |Y1 > 0).

We require the rank correlation 7,, . The standard bivariate normal distribution of
transformed to standard normal random variables Wind Prediction and Separation Mode
Planner Failure —Y;, Y, — has a density function which depends on their product moment
correlation p,, . We first find p,, and then using Pearson transformation [Pearson K.
1907] we obtain corresponding value of r,, (see below). Density function for joint
normal distribution is:

T 9)=fpn)= (yzz‘z”””l*yf)j (14)

1
21— P2, eXPL 21-p3,)
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. 0 1L py
where p,, is a parameter between -1 and 1, (Y1 , Yz) ~ N ol . The
P21
conditional probability
P\Y,>20(1Y,=20) PY,=20(]Y, =0
P(v,20]Y,>0)= (200%20)_Ar 200K ):2P(Y220ﬂY120)

P(Y, >0) 1/2

00 00 1 2 _2 2
S 1) dy, dy, =[ [——==exp _bi=2purp+47) dy,dy,.  (15)

:200
Z[ 00 my1- p3, 2(1_/0221)

O 8

The following figure shows how the above conditional probability changes depending on
the value of p,, . It was obtained by numerical integration in Matlab’.

Plot to find the product moment correlation between \f and Y,
1 s B o B R s B S B e A
I e e e e e
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Product moment correlation between Y, and Yo rhoY v
12

Figure 2.11: Conditional Probability P(Y, >0|Y, >0) versus p,,

" Two functions which depend on Y, ¥, and p,, are created. The first function evaluates the integrand for
the bivariate joint normal distribution, which is expressed by a double integral in Equation (15). This
integrand accepts a vector Y, and a scalar Y, and returns a vector of values of the integrand. Then, an
additional function uses a Matlab function named dblquad which numerically evaluates the double integral
taking as integrand the previous created function. For that, we also need to specify the limits of integration
over which the double integration and a tolerance are required. Being a time consuming task to evaluate the
double integration from 0 to infinity in Matlab, the limits of integration were chosen from 0 to 5. It is
pointed out that these limits of integration and a tolerance of 1x10°° give a very good approximation of the
results.
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In Figure 2.11, the horizontal and vertical axis represent the product moment correlation
between Y, and Y, and the conditional probability calculated with Equation 15,

respectively. Hence, when we know value of P(Y2 > O|Y1 > 0) the corresponding value of
P, can be read from this figure. Notice that if P(Y2 2O|Y1 20)=0 then p, =-1, if
P(Y2 ZO|Y1 20)=1 then p, =1, and, if P(Y2 20|Y1 ZO)=0.5 then p, =0 . The

relationship shown in Figure 2.11 can be used to recover all unconditional rank
correlations from BBN in Figure 2.1.

An expert stated that the value of P(X ) 2 Xy ‘X = )20.25. Then from Figure 2.11

we read p, =-0.70672 . Hence, the required rank correlation with Pearson’s
transformation [Pearson K. 1907] is as follows:

P, = garcsin(&j = -0.6898. (16)
Vs 2

Now, we consider three variables: Separation Mode Planner Failure, Error ATC
Supervisor, and Prescribed Spacing, X,, X;, X, respectively. We require the values of

rank correlations 7,; and 7,, ;. We first find r,; by considering two variables Error ATC

Supervisor and Prescribed Spacing. In this case, our expert assessed the
P\X, 2x,, ‘X3 = )=0.7, then p,,=0.58786 (see Figure 2.11) and r,; = 0.5698.

To find 7,, ; We must consider Separation Mode Planner Failure, Error ATC Supervisor,

and Prescribed Spacing that gives us after transformation to normals three-dimensional
distribution of random vector (Yz, Y., Y4). Variables Y,, Y, are independent. Using vector

notation y,;,, = (yz, Vs y4) € R’ , we can write the trivariate joint density function as

f (@ )= mexr{—%(@ )szl (@ )} (17)

1 0 py
where V,;,, =| 0 1 pg, IS a covariance matrix, with determinant
Pp Pu 1

| V234| =1-p;, — ps,. The value of p,,=0.58786 was already assessed. We must now find
pP., - Expert is asked the following question P(X § 2 Xy ‘X 32X, X, 2 x25o). After

transformation to normals we get that the P(Y4 >0 | Y,>20,Y, 2 O) is provided.
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Relationship between p,, and probability obtained from experts is
00 00 00 1 1 . .
P(Y4 2 O|Y3 20,7, 2 0) = 4IIIS—GXP[__(y234) Vi (y234):|dy2dy3dy4- (18)
000+/87 | V234| 2= -

Knowing p,,, p,; and p;,, now we can calculate partial correlation p,, .,

Pirs = Py _2,032 ',0432 . (19)
\/1—,043\/1—,032

For joint normal distribution partial and conditional correlations are equal, hence

Par3 = Puyy); and with Pearson transformation we can obtain 7,, ;. Figure 2.12 shows the

relationship between p,,.; and P(Y4 > O|Y3 >0,Y, > O) for p,,=0.58786 corresponding to
P(X4 2 X, ‘X3 =2 )20.7. Notice that possible values of P(Y4 >0 |Y3 20,7, 2 0) are in
the interval [0.40438, 0.99555]. This fact is explained in the following way. The
information about P(X 42Xy, ‘X ;2 x350) tells us how much variability of X, is
explained by X,. The P(X § 2 Xy ‘X 32X, X, 2 xzso) gives how much more variability

of X, can be explained by adding information about variable X, being bigger than its
median. If one already explained significant portion of X, then it is not much left to

explain by X,. Notice that if P(X 42Xy ‘X 32 x350) is equal to 0.5 which gives that X,
and X, are independent (information about X; does not constrain X, ), then the possible

values for P(X § 2 Xy ‘X 32X, X, 2 xzso) are the whole interval [O, 1].

-23 -



Chapter 2. ATC-Wake Models: Continuous and Discrete Bayesian Belief Nets Tiichs (iyarchin e

Plot to find rho42;3
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P(Y4 > 0|Y3 20,Y,2> 0) (Yz, 8 independent)
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Partial correlation coefficient rho42_3

Figure 2.12: Conditional Probability P(Y4 >0 |Y3 >0,Y, > 0) Versus Py, 5 = Pu» ¥, and
Y, independent

In this case, expert gave P(X4 = ‘X3 2x, 5 X, 2%, ): 0.8 then p,, ; = p,,; would
be equal to 0.38184. This leads to r,,; as follows:

oy = garcs,in(@j — 0.3669 (20)
b4 2

Similarly, we can get r;; and r; ;. Expert assessed the P(X 72X ‘X 6 = Xg, )20.8, then
P7=0.80874 (see Figure 2.11) and hence r,, =0.7951.

When variables Wind Error, Error Runway/Tower Controller and Aircraft Traffic
Controller Take Off Clearance Time are considered we get the following results. The

relationship between p,;. and P(Y7 > O|Y6 20,7, 2 0) for p,,=0.80874 corresponding to
P(X 72X ‘X 6 2x650)=0.8 i1s shown in Figure 2.13. Observe that possible values of
P(Y7 20|Y6 >0, Y, 20) are in the interval [0.60159,0.99719]. Here, the expert stated
P(X7 2 X, ‘Xs 2 Xg,» X5 2 xsso) =0.7 then Pis6 = Prsis would be equal to -0.67403.

Thereby, the conditional correlation 7|, equals to -0.6565.

5|6
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Plot to find rho75;6
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Figure 2.13: Conditional Probability P(Y7 > O|Y6 >0,Y, > 0) Versus Pisis = Prsigs Vs

and Y, independent

Now, the last correlations to be required are 7, We start by computing 7,

97185 Toal7s -
corresponding to variables Pilot Take Off Time and Aircraft Take Off Separation Time.

Since P(X, > x,, | X, > x,, J-0.6 then p,,—0.30854 and 1, =0.2958.

On the other hand, Aircraft Traffic Controller Take Off Clearance Time, Pilot Take Off

Time and Aircraft Take Off Separation Time: X,, X, and X, are considered to
calculate 7,, ;. Our expert gave a value of P(X = ‘X g 2 X 5 X7 2 X, )=0.7, which is

between the interval [0.20907, 0.99053]; then we will get the partial correlation
Por:s = Poys =0.32538. From this partial correlation, we can get 7,,,,=0.3121 (see Figure

97 |8
2.14).
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Plot to find rho%;7
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Figure 2.14: Conditional Probability P(Y9 > 0|Y8 20,7, > 0) Versus Pos = Porg» 17 and

Y, independent

Now, to find Toa s

Clearance Time, Pilot Take Off Time and Aircraft Take Off Separation Time variables:
X,, X,, Xy, X, that give us after transformation to normals four-dimensional

we consider Prescribed Spacing, Aircraft Traffic Controller Take Off

distribution of random vector (Y,, Y,, ¥, ¥,). Variables ¥,, ¥, are independent, as well as
Y., Y;. Using vector notation y,,,, = (y4, V75 Vgo y9) e R*, we can write the joint density

function as

F i) = Wﬁexp[—%(@) Vi ()| e
4789

1 0 0 py

0 1 0 py
0 0 L g

Pos Py Pos 1
| Visso|=1= pay, = Pa; — pas - The values of p,,=0.30951 and p,,=0.30854 were already

where the covariance matrix is given as Vo = with determinant

assessed. We must now find p,, . Expert is asked the following question
P(X 9 2 Xg ‘X g2 X s Xy 2x, Xy 2x, ) After transformation to normals we get that

P(Y9 > O|Y8 >20,Y,20,Y, 2 0) 1s provided.
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Relation between p,, and probability obtained from expert is

=~
\Y
(e

~~

P(Y,20|Y,20,7, >0,
Q0 00 00 O 1 1 ~ .
= 2JIII4—GXP[_E(y4789) Vrso (y4789 ) :l dy,dy,dydy,  (22)
0000 4/7T | 4789|
Knowing py,, py; pos and py, . = 0.20454, now we can calculate p,,., and hence

Poszr and 7, ;.

Expert provided a value of P(X9 2 X, ‘Xg 2xy s Xy 2%, , Xy2x, )= 0.8 , which is
between the interval [0.40068, 0.99145]; then we will get the partial correlation,

Pos.s = Posy _2p98 * Pga - =0.32447 (23)
\/l_p% '\/1_p84

which we need in order to compute

Doner = Poss ~ Poz:s " Prass
94;87 =
\/1 - P927;8 : \/1 - p724;8

For joint normal p,,.s; = 0y, |4, - This value can be obtained from Figure 2.15. Hence, the

=0.37. (24)

value of r, is calculated as follows

94|87

Togg7 = %arcsin(%} =0.35537 (25)

_27-



]
TUDelft
Chapter 2. ATC-Wake Models: Continuous and Discrete Bayesian Belief Nets Thbilers (el cu

Plot to find rho

94)87
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Figure 2.15: Conditional Probability P(Y, >0|Y, >0,Y,>0,Y, >0) versus
Posjsy = Poasr s Yy» ¥y and Y7, ¥ are independent

Therefore, all the values of the conditional and unconditional rank correlations required
for calculations of the Aircraft Separation Time model were obtained. In Figure 2.1,
(conditional) rank correlations obtained with the above procedure are assigned to each arc
of the BBN. The rank correlation specification on a BBN plus copula determines the
whole joint distribution [Kurowicka D., Cooke R.M 2004]. The following section
analyzes updating the conditional probability of the Aircraft separation Time given some
observations on certain variables.

2.1.6 Updating the BBN with Knowledge

In the previous section the (conditional) rank correlations required to sample the BBN
structure of the Aircraft Separation Time model shown in Figure 2.1 were obtained.
Continuous marginal distributions of each variable are derived as described in Section
2.1.3.

In this section, we aim to update our network given that some values of the variables
become known.

If for instance, new policies are proposed to be implemented, updating the BBN structure
allows us to evaluate the impact of such policies on our variable(s) of interest.

Updating can be performed in two different ways:
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a. Updating with the Density Approach

If some of the variables become known, the results of sampling the aircraft separation
time model conditional on these known values can be obtained by using the density
approach [Kurowicka D, Cooke R.M. 2006; Hanea A., Kurowicka D, Cooke R.M. 2005].

The joint density for the aircraft separation time model is as follows [Kurowicka D,
Cooke R.M. 2006; Hanea A., Kurowicka D, Cooke R.M. 2005]:

f(xp - ) ( ) (xz) f(x9) = CIZ(FXI (xl )s FX2 (xz ))034 (FX3 (x3 )= FX4 (x4 ))
42\3( X, (x, ’Exp( X, (¥ ))cm( Xé(x6) FX7(X7))C75\6(FX5(XS)’ F7\6(FX7 (x7)))
098( X, (xs) X, (x9)) 97\3( 9\3(FX9 (x9))a FX7 (x7)) C94\87(F;\87(FX9 (xo)): FX4 (x4)) (26)

The bivariate copula used in Equation 26 is the Frank’s copula®. The conditionalization
can be accomplished by considering x, =60 . Having the density we can carry out

updating.

In order to update the BBN structure we have to re-sample it. Each time, new evidence is
obtained. We avoid re-sampling the whole structure several times in the Frank’s copula —
vine updating by doing so once with the copula — vine approach and then using Netica,
which performs fast updating. This method called “Hybrid method for Continuous
Bayesian Belief Nets” was introduced in [Hanea A., Kurowicka D, Cooke R.M. 2005].

b. Vines-Netica Updating

In the vines-Netica updating, the BBN structure can be sampled once with the ‘copula —
vine’ approach described in Section 2.1.4. Then, conditional probability tables are created
by incorporating this sample into a discrete BBN in Netica with ten states’. There
updating can be performed. When the discrete BBN is already constructed, we might
observe some events, then for certain variable(s) we know the value of, we enter that
value as a finding (also known as "evidence"). Then Netica does probabilistic inference
to find beliefs for all the other variables —indicating the subjective probabilities—. The
final beliefs are sometimes called posterior probabilities (with prior probabilities being
the probabilities before any findings were entered). This probabilistic inference done
using Bayes' theorem and an improvement of the algorithm found in [Lauritzen S.L.,
Spiegelhalter D.J. 1998] is called belief updating.

¥ For a mathematical description of this copula see Chapter 4 or refer to [Frank M.J. 1979].
? The theoretical quantiles for each variable used to build the discrete BBN in Netica are found in Appendix
A.l.
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Now, some comparisons and results of these different ways of updating are presented.
Figure 2.16 shows the BBN from model given in Figure 2.1 modelled in Netica. The
variables are discretized in ten states having taken into account the 10, 20, ... percentiles
of their probability distributions (theoretical quantiles)'®.

Equal sized intervals from the samples over original variables —which bounds are the
minimum and maximum of each sample— are used to create the BBN in the Figure 2.17.
Although a discretization with equal intervals allows us to appreciate the continuous
distributions of each variable, it is not convenient to capture changes in the model when
updating is done. Therefore, the BBN in the Figure 2.16 is used in forthcoming
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Figure 2.16: Aircraft Separation Time model in Netica using 4x10° samples''. Nodes
were discretized with the values of the theoretical quantiles on the BBN. This BBN will
be used in order to appreciate changes produced by conditionalizing the aircraft
separation time with regard to a/some known values of the variables.

12 See [Appendix A.1].
" For illustrative purposes, the case file incorporated in Netica to create those BBNs in Figures 2.15 and

2.16 has 4x10° samples which were obtained using the sampling procedure described in Section 2.1.4.
Conditional probability tables are created instantaneously.
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Figure 2.17: Aircraft Separation Time model in Netica using 4x10° samples. Equal
intervals are taken into account to build the BBN in order to appreciate the continuous
gamma and normal distributions of the variables.

Direct quantification of the discretized to 10 states for each variable BBN would require
the specification of 12,150 probabilities in the conditional probability tables, whereas the
quantification with continuous nodes requires nine algebraically independent
(conditional) rank correlations and the specification of the nine marginal distributions.
This demonstrates the reduction of assessment burden once we have quantified influences
as (conditional) rank correlations. The probability tables of the discrete BBN are filled
using the samples which are obtained for its continuous version.

In order to create the BBN for the Aircraft Separation Time model, we need to know
which number of samples is appropriate to get a precise estimation of the conditional
probability tables for the Aircraft Separation Time. If conditional probability tables are
estimated with sufficient number of samples, then estimating them with slightly increased
number of samples will not change this estimate much. Hence we take two sample files,
say with N and M samples, respectively. We estimate both conditional probability tables
and calculate the Maximum norm and Euclidean norm of both estimates'. By increasing
the number of samples in both files we can observe that the Maximum norm and

2 The maximum norm and Euclidean norm are calculated by using the following formulas:
MN=max, j.|a. —b, | and EN= Z(ai,/ -b,, )2 , respectively.

i J iJ
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Euclidean norm stabilizes at a level, the number of samples corresponding to it will be
used to build probability tables. These results are shown in Table 2-1.

Interval

(Number GHsamplss Maximum Euclidean

in thousands) norm Norm
10-25 0.44 6.46
25-50 0.23 5.57
50-75 0.22 4.65
75-100 0.19 4.01
100-200 0.19 3.38
200-300 0.14 2.61
300-400 0.10 2.21
400-500 0.10 1.95
500-600 0.08 1.77
600-700 0.07 1.62
700-800 0.07 1.52
800-900 0.08 1.43
900-1000 0.06 1.33

Table 2-1: The maximum norm and Euclidean norm of the difference between
probability tables of the Aircraft Separation Time (X 9) created using different sample

sizes are calculated.

The results of the maximum norm in Table 2-1 show that the biggest change in the
maximum norm is from 0.44 to 0.23. After that, the maximum norm will vary slowly

until the difference between probability tables for X, created using 1x10° and 2x 10’
samples is considered.

A good estimation of the conditional distribution of the aircraft separation time
conditioned to certain values of X, is then obtained by considering a file of 1x10’
samples. The next notorious change in the maximum norm is found when the difference
between probability tables for X, created using 4x10° and 5x10° samples is
considered. The maximum norm stabilizes in a value equal to 0.10.

On the other hand, the Euclidean norm stays constant until the difference between
probability tables for X, created using 3x10° and 4x10° is considered. After that, the

changes in the Euclidean norm are rough (see Table 2-1 and Figure 2.18). We conclude
that 4x10° samples are enough for our calculations.
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Figure 2.18: Euclidean norm of the difference between two probability tables of the
Aircraft Separation Time (X, ) created using samples of different sizes.

Another way to find the precise number of samples to obtain a good estimation of the
conditional probability tables is that proposed in [Hanea A., Kurowicka D, Cooke R.M.
2005], which is also implemented in our case. Thus, the conditional distribution of the
Aircraft Separation Time (X, ) given some values of the Pilot Take Off Time (X, ) where

only 1x10* samples were used is presented in Figure 2.19.

Conditional distribution of the Aircraft Separation Time 10000 samples, gamma and normal marginal distributions
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Figure 2.19: Comparison between the results of updating using Frank’s copula and vines
(solid blue lines) and Netica (dotted red lines). Sample files using 1x10* samples are
created. The conditional distribution of X |43.3157 < X, <88.946 is obtained.

There is a big difference between conditional distribution obtained using vine—copula

method and Netica. This proves that 1x10* samples are not enough to build conditional
probability tables.

If we now consider a sample file of 4x10° samples, as before a very good estimation of
the conditional distribution of the aircraft separation time is obtained. These results are
shown in Figure 2.20. Here, the agreement between the two methods is precise.

Conditional distribution of the Aircraft Separation Time 400000 samples, gamma and normal marginal distributions
1 T T
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Figure 2.20: Comparison between the results of updating using Frank’s copula and vines
(solid blue lines) and Netica (dotted red lines). Sample files using 4x10° samples are
created. The conditional distribution of X |43.3 157 < X, <98.4 is obtained"’.

From Figure 2.20, we can observe a discrepancy in the first and the last intervals of the
discretization. There the results given by Netica-vine updating differ from those given by
the Copula-vine updating. The discretization of the nodes was made according to their
quantiles, thereby the first and the last intervals of the discretization for each variable are
wider than the rest of the intervals (which are very narrow). For the variable Aircraft

" The maximum and minimum values of the samples differ when the number of samples differs. Because
of this, the intervals for which X, belong to are not equal in Figures 2.19 and 2.20.
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Separation time (X, ), the first and the last discretization intervals together amount 74%
of the sample width. In order to plot the conditional distribution of the Aircraft
Separation time (X, ) from Netica, uniform samples from each discretization interval are

drawn. This is visible in Figure 2.20 as straight lines at the beginning and at the end of
the conditional distribution of the Aircraft Separation time appeared.

After the sample file is imported in Netica, we conditionalize on high values of the Pilot
Take Off Time (X;). That is, those between its 0.9 and 1.0 quantiles equal to 43.3157

and 98.4, respectively (see Figure 2.21). Samples of the conditional distribution of the
Aircraft Separation Time are created from Netica.
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Figure 2.21: Conditional distribution of X |43.3157 < X, <98.4 in Netica.

It is assumed that Take Off Clearance is provided by the tower (or runway) controller.
The take off then may start, provided that the pilot has completed his/her checklists (i.e.
is ready), at the Take Off Position at a certain distance from the runway threshold. The
pilot selects the take off thrust at the starting time of his/her take off. The aircraft
accelerates during the take off roll. It is up to the pilot to initiate the take off at a suitable
moment after the take off clearance is given by the controller. If the pilot initiate the take
of just after the Take Off Clearance is provided by the tower (or runway) controller the
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Pilot Take Off Time (X, ) will have small values, if the decision of the pilot is to delay
the aircraft to start to roll then the Pilot Take Off Time (X, ) will have big values.

As has been mentioned, the Pilot Take Off Time (X, ) influences directly the Aircraft
Separation Time (X, ). The time difference between the moment when the leader and the

follower aircraft start to roll is more probable to take high values than low values when
the time difference between take off clearance given by the ATCo and the start of roll of
the aircraft is big.

If the values of the Pilot Take Off Time (X, ) are in the interval [43.3157, 98.4], it is
more probable that the values of the Aircraft Separation time (X, ) belong to the interval

[140, 209]. Notice that values between its 70" to 100" percentiles are now very probable.
Conversely, results could be obtained if we conditioned the Aircraft Separation time
distribution on low values of Xj.

We present now the conditional distribution of the Aircraft Separation time (X,) given

the different values of the Prescribed Time Spacing (X 4). The probability of the time

difference between the leader’s starting to roll and the follower aircraft’s starting to roll
being high is high because of the big separation time prescribed by the ATC supervisor
(in ATC-Wake mode). If the values of separation time prescribed by the ATC supervisor
(X 4) are located between the 50™ to 60™ percentiles, the probability of high values of the

Aircraft Separation time (X, ) meaningfully decreases.

There is much difference in the conditional probability of the Aircraft Separation time
(X,) while conditionalized on different values of X,. In Figure 2.1, a rather low positive

conditional rank correlation 7, ., =0.30864 is observed (the unconditional rank

94|87
correlation does not change much, 7, =0.3186 ). The probability of the Aircraft

Separation Time taking small values is high because of the low values of separation time
prescribed by the ATC supervisor.

The conditional distribution of the Aircraft Separation time (X 9) is shown in Figure 2.22.
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Conditional distribution of the Aircraft Separation Time 400000 samples, gamma and normal marginal distributions
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Figure 2.22: Comparison between the results of updating using Netica and 4x10’
samples. Conditional distributions of X9|52.36SX . <77.4458 (green solid line),

X,(89.6298 < X, <92.181 (red solid line) and X,[103.03>.X,>144.02 (blue solid

line)'*.

14 As we said before the maximum and minimum values of the samples differ when the number of samples
differs.
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Figure 2.23: Conditional distributions of X |103.03 > X,2>2144.02.

The results shown so far are based on the conditional distribution of the Aircraft
Separation time (X, ) on certain known values of one variable. We now conditionalize on

the values of the Wind nowcast error (X;) which belongs to the interval [-1.08, -0.3204]

—between its 0.0 and 0.1 quantiles— and the values of the Prescribed Time Spacing (X 4)

which belongs to the interval [77.4458, 81.494] —between its 0.1 and 0.2 quantiles. The
conditional distribution of the Aircraft Separation time (X, ) is obtained by using the two

previous methods compared to that using the normal copula instead of Frank’s copula
(updating using Netica). Notice that the agreement between the three methods is very
accurate. This is shown in Figure 2.24.
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Conditional distribution of the Aircraft Separation Time 400000 samples, gamma and normal marginal distributions
1 T T

09 g
S o8 i
o
S
A 0.7+ B

0

<
Al
8 0.6 - B
i
E»: 05} g
—
[ee]
N,o04f R
X
Al
2 03
3 =T Franks copula - Copula-vine updating
E —— - Franks copula - Netica updating
>5,° 021 Normal copula - Netica updating ]
('R

0.1 e g

/
0 | | | | | | |
60 80 100 120 140 160 180 200 220

XQ

Figure 2.24: Conditional distribution of X, |—1.08 < X,<-0.3204,77.4458< X,

<81.494. Comparison between the results using Frank’s copula and using vines updating
with the copula — vine approach (green solid line), Netica updating (blue dotted line) and
Joint normal copula and vines updating with Netica (red dotted line).

Wind nowcast error (X ) represents the difference between actual wind (measured by the

Detector) and predicted wind (as determined by the Meteo/weather systems). If the actual
wind is stronger than the predicted wind, positive values of X take place. In this case,

the probability of the time difference between the leader’s starting to roll and the follower
aircraft’s starting to roll being small is high. Conversely, the probability of the time
difference between the moment when the leader and follower aircraft start to roll being in
high quantiles is high because of the negative values of the difference between the actual
wind and the wind predicted.

From the model, we can observe that the Predicted Time Spacing (X 4) greatly influence

our variable of interest. If the separation time prescribed by the ATC supervisor is small,
say, between its 0.1 and 0.2 quantiles, the effects of negative values of the wind nowcast
error could be inverted as shown in Figure 2.25.
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Figure 2.25: Conditional distribution of X, |—1.08 < X,<-0.3204,77.4458< X,
<81.494 in Netica.

In Figure 2.26, the conditioning is performing on the values of the Prescribed Time
Spacing (X,) and the Pilot Take Off Time (X,) which belong to their 0.4 and 0.5

quantiles and the values of the Aircraft Traffic Controller (X, ) which belong to its 0.5
and 0.6 quantiles.
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Conditional distribution of the Aircraft Separation Time 400000 samples, gamma and normal marginal distributions
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Figure 2.26: Conditional distribution of X, |87.12609 <X, <89.6298,26.4887 < X,

<28.8965, 89.9074< X, <91.1794 . Comparison between the results using Frank’s

copula and using vines updating using the copula — vine approach (green solid line),
Netica updating (blue dotted line) and Joint normal copula and vines updating with
Netica (red dotted line).

_41 -



]
TUDelft
Chapter 2. ATC-Wake Models: Continuous and Discrete Bayesian Belief Nets Thbilers (el cu

ATD Separation Time [3)

El.l €o... 5.E1

ATCo_TO Clearsnce Tima .. PR Filot Take Off Time (8]
69910 82.7 0 107 e 112 12 < 33810121 )
83710858 D 112 wo 116 1107 18110214 0
85810873 D W cp A S HAte24d 0
BT 3tEss D | m{Tiv e dze Lok W— | MlwE@s 0
Hamalz 100 IO N Ba e
m'z:ggz'ﬁ DE a3y @ dB afd 31'4:334'3 o
02610942 D 132 o 120 3.5 m— 43teF7E 0
4.2t 95.5 i =D Go A O TR K |
6510 114 o 1212 19 4310984 0

9054403 y 276920

Prescribed Time Spacing..

\

5EAto 774 0
fawas 0 Errar ATC Superizor ()
4.5t 87.1 i H4Bto-123 744 mm
12810 542 0.50
wind Noweast Error [5] Error Runway/Towser Con... ggé b 322 ‘”S fo—r 4210 524 17—
108 to 0,32 908 ITto 54 1T 02210 95 i "“‘————__ﬁ__ﬁ 52410 253 13.) —
032 t0 -0.21 10,1 j— Al to-421 351 |m 0510 983 i -25310 0 134 —
031 to 0,131 10,3 j— 43110 262 675 mm 98310 103 i Oto 253 12.0 f—
<0131 to O.... 10.1 j— 2BIt0-1.27 115 103 10 144 i 25310524 1.4 p—m
0623 to 0 10,4 A2t0D 150 f— TEe 51410847 530 -
010 D.0633 10,4 —m 010 1.27 19.9 j— . 84110 122 697
006330 0.... 10,3 1270267 17.5 p— 3 128t0 488 514
013110 0.21 001 262t0 421 117 Tz
02110032 954 421tofial 691
03210 .16 5.00 64110337 351 fm :
Tt T Separation Mode Planner..
49310123 993
128t0 242 10.2 fem—
-8.42t0 5.24 10.2 fum—
5340 253 10 jmm—
283t00 105 j—
Ot 253 104 j—
25310524 10,0 fmm—
53410 £.42 9.2 fem—m
gAZto 122 0.47 jmm
12810 40.9 557

[
Y

Wind Farecast Errer (1)
TAlte 213 040
243t -1.43 270
-1.43 to -0.801 283
-0.891 to 0., 993
0431te0 100
Oto 0431 11
0.421ta 0.801 103
0801ta 143 102
143t0 218 103
212t0 782 101

0D£15

Figure 2.27: Conditional distribution of X, |87.12609 < X,<89.6298,26.4887 < X,
< 28.8965, 89.9074 < X; <91.1794 in Netica.

Now the joint distribution of the input and output of the Aircraft Separation Time model
is shown in Figure 2.30. We can conditionalize this whole joint distribution on low values
of the Aircraft Traffic Controller Take Off Clearance Time (X, ) as presented in Figure
2.31. The visual representation allows us to observe the effect of this conditionalization
on the whole joint distribution.
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Samples selected: 400

Figure 2.30: Cobweb plot of the joint distribution of the Aircraft separation time model

Samples selected: 158

Figure 2.31: Cobweb plot of the Aircraft separation time (X9) conditionalized in low
values of the Aircraft Traffic Controller Take Off Clearance Time (X 7)
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Finally, we should state that conditionalization is a "rough" way of carrying out a
sensitivity analysis. Since, we could evaluate the importance of the variables by just
"guessing" or conditionalizing on different values of the variables, which are relevant in
our criterion or client's criterion. However, the appropriate way of investigating the
importance of some variable(s) for the aircraft separation time is to calculate the
correlation ratio. This is accomplished in the following section.

2.1.7 Sensitivity Analysis

To carry out the sensitivity analysis several statistics and sensitivity measures are
obtained by using the Sensitivity Analysis program [Lewandowski D. 2005] as part of

Unicorn'®, based on 4x10° samples derived from a continuous BBN created in UniNet'.

The “predicted variables” are those whose behaviour we want to explain in terms of other
variables, called the “base variables”. Here we are interested in the variable Aircraft
Separation Time (X, ), and we want to see how this variable depends on the variables

Xy Xy
Table 2-2 shows the sensitivity indices and statistics obtained by relating the Aircraft
Separation Time (X 9) to each variable. These include: The product moment correlation,

the Spearman rank correlation, the regression coefficient, the correlation ratio and the
partial correlation coefficient'’.

' Unicorn (Uncertainty Analysis with Correlations tool) developed at the Department of Mathematics of
Delft University of Technology, The Netherlands.

'® UniNet: BBNs software developed at the Department of Mathematics of Delft University of Technology,
The Netherlands. From the continuous BBN (which is built by using the normal copula and canonical
vines) created in UniNet, samples can be derived to be used immediately in the Sensitivity Analysis. It
should be pointed out that the probabilities and samples derived from this BBN are not so different from
the BBN created with Frank’s copula and D-vines.

7 Refer to [Kurowicka D., Cooke R.M. 2006; Bedford T.J., Cooke R.M. 2003; Lewandowski D. 2005]
which contains mathematical definitions from sensitivity indices and statistics obtained in this Section.
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Product Partial
Predicted Base moment Rank Regression Correlation correlation
Id variable Variable correlation Correlation _Coefficient ratio coefficient
1 X X7 3.078E-01 2.961E-01  9.342E-01 9.380E-02 1.688E-01
2 X X4 3.310E-01 3.186E-01  5.045E-01 6.189E-02 2.825E-01
3 X Xe 2.395E-01 2.300E-01  7.324E-01 5.741E-02 -1.120E-03
4 X Xg 3.012E-01 2.932E-01  4.517E-01 5.222E-02 3.388E-01
5 Xg Xs -1.298E-01 -1.244E-01 -7.854E+00 1.687E-02 4.247E-04
6 X X1 -7.313E-02 -7.075E-02 -6.542E-01 5.380E-03 -2.042E-03
7 X X3 1.964E-01 1.878E-01 3.005E-01 2.822E-04 3.275E-03
8 Xg X, 1.005E-01 9.667E-02 1.514E-01 3.861E-06 -2.726E-03

Table 2-2: Sensitivity indices for the predicted variable X, and a given base variable

Each row in Table 2-2 shows the sensitivity indices for a given base variable, for the
predicted variable X,. Note that the Aircraft Traffic Controller Take Off Clearance

Time (X,) has the highest correlation ratio to the Aircraft Separation Time (X,);

Separation Mode Planner Failure (X, ) has the smallest.

In the BBN for the Aircraft separation time model the variable Aircraft Traffic Controller
Take Off Clearance Time (X, ), which represents the time difference between the leader’s

starting to roll and take off clearance of the ATCo for the follower aircraft is then
considered the most representative variable to explain the time difference between the
leader’s starting to roll and the follower aircraft’s starting to roll (X, ).

The product moment correlation matrix is shown below, the Aircraft Traffic Controller
Take Off Clearance Time (X,), the Prescribed Time Spacing (X,), the Error

Runway/Tower Controller (X, ) and the Pilot Take Off Time (X ) variables have the

highest positive correlations to the Aircraft Separation Time (X 9).

Xo X3 X6 Xs X7 X, X X4 Xg
Xo 1.000E+00  1.964E-01  2.395E-01  -1.298E+00  3.078E-01 -7.313E+00  1.005E-01  3.310E-01  3.012E-01
Xa 1.964E-01  1.000E+00  -1.396E+00  -1.819E+00 -1.798E+00 -1.015E+00  1.606E-03  5.875E-01 -1.559E+00
Xs 2.395E-01  -1.396E+00  1.000E+00  2.898E-03  7.793E-01 -7.325E+00  9.380E-04 -5.688E+00  -3.969E+00
Xs -1.298E+00  -1.819E+00  2.898E-03  1.000E+00 -4.193E+00  2241E-03  5927E-05 -1.915E+00 -6.236E+00
X 3.078E-01 -1.798E+00  7.793E-01  -4.193E+00  1.000E+00 -2.006E+00  1.091E-03 -5.004E+00 -1.442E+00
X, 7.313E400  -1.015E+00  -7.325E+00  2.241E-03  -2.006E+00  1.000E+00  -7.071E+00 -2.183E+00  -1.396E+00
X, 1.005E-01  1.606E-03  9.380E-04  5.927E-05  1.091E-03 -7.071E+00  1.000E+00  3.078E-01  8.129E-04
X4 3.310E-01  5875E-01 -5.688E+00  -1.915E+00 -5.004E+00 -2.183E+00  3.078E-01  1.000E+00 -1.476E+00
Xg 3.012E-01 -1550E+00  -3.969E+00  -6.236E+00  -1.442E+00 -1.396E+00  8.129E-04 -1.476E+00  1.000E+00

Table 2-3: Product moment correlation matrix

Table 2-4 shows the mean and standard deviation for the four detailed variables above.
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Predicted Base

Id variable  Variable  E(Xy) E(X;) Std(Xg)  Std(X;)

1 Xg X7 1.198E-02 9.003E-01 1.517E-01 4.999E+00
2 Xg X4 1.198E-02 8.988E-01 1.517E-01 9.955E+00
3 X Xe 1.198E-02 5.738E-03 1.517E-01 4.961E+00
4 Xg Xg 1.198E-02 3.011E-01 1.517E-01 1.012E-01

Table 2-4: Some other statistics

2.2 ATC-Wake: Detection, Warning and Avoidance Maneuver
Probability

With respect to the Wake Vortex Detection, Warning, and Avoidance Maneuver and
following the recommendations from the interviewees with operational experts, a turn
away from the Wake Vortex of a preceding aircraft has been considered as the only
option to avoid an encounter.

The execution of the ATC-Wake detection, warning, and avoidance maneuver (e.g. turn
away from a wake vortex (during departures)) depends —besides operational feasibility—
on the probability of failure of the ATC-Wake system components. For the ATC-Wake
system failures, a causal model has been constructed using discrete Bayesian Belief Nets
(BBNs) (See figure 2.32).

It is shown that the resulting BBN might be represented by a fault tree [See ATC-Wake
D3 5b].

2.2.1 Application of Fault Trees and Discrete BBNs for the Wake
Detection, Warning and Avoidance Maneuver Probability

We aim to model a system which represents the wake detection, warning and avoidance
maneuver failure. Moreover, we intend to quantify such a model. The problem is stated
as follows:

The wake vortex detection warning and avoidance maneuver is performed by the
aircraft/pilot, as requested by air traffic controllers. The aircraft/pilot can fail to perform
the ATC-Wake DWA maneuver, either because the aircraft/pilot is not able to turn timely
or the ATC-Wake warning fails. ATC-Wake DWA Failure happens if the failure of any
of these components occurs. A failure of the ATC-Wake warning happens caused by
either the controller does not provide a timely warning or because the Monitoring and
Alerting ATC-Wake system component fails. Inaccurate information from the
Monitoring and Alerting ATC-Wake system component is influenced by either the loss of
DWA Tactical Function or an improper model prediction. Alternatively, it can be due to
improper detector performance. An improper model prediction is yield either because of

- 46 -



]
TUDelft
Chapter 2. ATC-Wake Models: Continuous and Discrete Bayesian Belief Nets Thbilers (el cu

inaccurate or wrong WV Model Estimation or due to inaccurate Air Traffic Situation. It
might even be because of faulty or inaccurate Meteo Nowcasting information. Finally,
improper detector performance either derives from the wake vortex outside the detection
range/scanning volume or from an inaccurate or faulty detection of wake vortices.

From the problem statement, we will be able to constrain the variables to take two values
or two states. Different models can be used to represent this problem. We shall compare
two approaches which may be applied to model the failure of the aircraft/pilot when
performing the ATC-Wake DWA maneuver which amounts to discrete BBNs and Fault
Trees. Throughout the Section 2.2, we will give a detailed description of the application
of these methodologies to our particular case. Moreover we will stress the advantages and
disadvantages of these methods.

2.2.2 Comparison of Discrete BBNs and Fault trees

We first present the BBN and the Fault trees that can be used to describe the problem
stated in the introduction.

a) BBN

The problem above can be modelled using discrete BBNs as shown in Figure 2.32. This
BBN has 13 nodes and 12 edges. The nodes correspond to binary variables with states 0
(not failure) and 1 (failure) specified in the problem and edges that represent relationships
between variables. Each BBN node is labelled with a lowercase literal and the full name
of the variables of interest. Names or labels are used in the text to refer to the variables.
The BBN in Figure 2.32 shows the graphical representation of dependences and
(conditional) independences in this problem. One reads that d, e, f are independent and
they influence g (g is a child of d, e, f'and d, e, f are called the parents of g; denoted as
pa(g)). A graphical representation of BBN does not, however, give us all the information
we need about joint distribution. To completely describe the joint distribution represented
by BBN, we need to specify conditional probability tables of all variables in the BBN
given their parents. Then the joint distribution can be given as

Pla,b,...,T) = QP(WI pa(w)) (27)
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Figure 2.32: BBN for the WV DWA maneuver probability.
The nodes in this BBN have the following explanation:

—~ ATC-Wake DWA Failure (T): represents the probability of aircraft/pilot not able to
initiate the ATC-Wake DWA maneuver (e.g. a turn away from WV of a preceding
aircraft).

— Aircraft/Pilot not able to turn timely (I): represents the probability of an aircraft/pilot
not able to perform the ATC-Wake DWA maneuver, when requested by the
controllers.

— ATC-Wake Warning Failure (k): represents the probability of not providing a timely
warning to the flight crew when one should be given. As a result, it is possible that a
pilot reacts later to a wake encounter when one should occur.

— Controller does not provide a timely warning (j): represents the probability of the
ATCo not providing an alert, when it is advised by the Monitoring and Alerting
system.

— Monitoring and Alerting Failure (i): represents the probability of not providing a
timely warning to the air traffic controllers when one should be given. As a result, the
ATCo might NOT be able to initiate/instruct the pilot to perform an evasive action.

— Loss of DWA Tactical Function (h): represents the probability of an undetected loss
of the Monitoring and Alerting Function. In case of a Detected Loss, the ATCos are
aware that NO cautions/alerts will be given and a transition will be made to the ICAO
Mode (the separation will increase, and the DWA maneuver will not be necessary).

— Improper Model Prediction (g): represents the probability that the predictions of
Wake Vortex locations and strength are inaccurate/wrong.

— Inaccurate or Faulty WV Model Estimation (d): represents the probability that the
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predictions of wake vortex locations and/or strengths made by the WV Model, on the
basis of aircraft data and meteo data, are inaccurate/wrong. As a result, incorrect
information is passed to ATC-Wake Predictor, causing improper functioning

— Inaccurate or Faulty Air Traffic Situation (e): represents the probability that the air
traffic situation provided by the surveillance systems is inaccurate or wrong. As a
result, incorrect information is passed to the Predictor, causing improper functioning.

— Inaccurate of Faulty Meteo Nowcasting (f): represents the probability that the
meteorological conditions (i.e. nowcasting data) provided by the meteo systems are
inaccurate or wrong. As a result, incorrect information is passed to the ATC-Wake
Predictor, causing improper functioning.

— Improper Detector Performance (c): represents the probability that the ATC-Wake
Detector (e.g. LiDAR) performs significantly less than the air traffic controllers
expect (while they are not aware of the inaccuracies) (i.e. inaccurate/wrong alerts are
given);

- Wake Vortex Outside Detection Range/Scanning Volume (a): represents the
probability that the ATC-Wake Detector does not detect the wake vortices of the
leading aircraft, because these are outside the scanning volume of the ATC-Wake
Detector.

— Inaccurate or Faulty Detection of Wake Vortices (b): represents the probability that
the ATC-Wake Detector does not detect wake vortices of the leading aircraft
accurately, when these are inside the planned scanning volume of the ATC-Wake
Detector(s).

b) Fault Tree

Figure 2.33 shows the fault tree (FT) that corresponds to the representation of the wake
vortex detection warning and avoidance maneuver probability distribution. The nodes of
the Fault tree are binary variables and are affine to the corresponding variables of the
BBN. The structure of the FT is very similar to the BBN presented above. In contrast to
BBN the fault tree relationships are represented by a symbol which appears several times
in Figure 2.33 and is labelled with the uppercases G1, ..., G5. These are the gate symbols
OR. OR-gate means that the output event occurs if any one of the input events occurs. In
Figure 2.33 only OR-gates can be seen. There are, however, other gates that could in
principle be used e.g. the AND-gate (output event occurs if all input events occur) or the
NOT-gate (output event occurs when input event does not occur). In a fault tree one can
recognize two types of nodes: basic events (basic nodes) are shown in Figure 2.33 as
circles and intermediate events (intermediate nodes) are represented as rectangles. The
graphical representation of a Fault tree is not sufficient to construct the joint distribution.
One must also specify distributions of basic nodes. The distribution specified by the Fault
tree can be then calculated using a minimum cut set (MOCUS) algorithm that will be
briefly described later.
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Figure 2.33: Fault tree for the WV DWA maneuver probability
c) Comparison of BBNs and FT

To compare BBNs and FTs we describe in detail the lower left-most part of the fault tree
in Figure 2.33 and corresponding to this part a fragment of the BBN in Figure 2.32.

Figure 2.34 contains the lower right-most part of the FT. The basic events are Wake
Vortex Outside Detection Range/ Scanning Volume (a) and Inaccurate or Faulty
Detection of Wake Vertices (b). The OR-gate (G5) ensures that Improper Detector
Performance (c) can be caused by failure of either a or b.
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Figure 2.34: Improper Detector Performance caused by two basic events.

a and b are binary variables taking values 1 (failure) with probability 0.001 and 0 (not
failure) with probability 0.999. Possible combinations of these variables are shown in
Table 2.5.

O Or R
or or|T

Table 2-5: Information of @ and b represented in a binary table.

Since the failure of ¢ can be caused by failure of either a or » and because a and b are
independent it is very easy to calculate the probability of failure of c.

Plc=1)=1-P(a=0,b=0)=1-P(a=0)P(h=0)=0.0020

For small FTs we can easily enumerate all combinations of basic events leading to failure
of intermediate event. In general, however, this approach would not be appreciated. To
perform fast the calculations in FTs the Boolean algebra with Boolean operators denoted
asaand bas a-b;aorb (at+th;nota asa’) is used. The general algorithm will not be
described here. We will now show how to calculate the probability of Improper Detector
Performance above using Boolean algebra (MOCUS algorithm). We consider event ¢ as
the top event caused by the failure of either event a or 5. Since the top event is related to
the basic events through an OR gate, we will give the Top Down approach to the
MOCUS algorithm as follows:

= G5
a+b (28)
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Clearly, if a and b fail we will get Detector performance failure. So, the set of events (cut
set) leading to the failure of c is:

ta,b

However from the description of the problem (OR gate) we know that the failure of either
a or b is enough for the failure of ¢ hence minimal sets leading to the failure of ¢ are:

{a} {8}

These are called minimal cut sets. The notion of minimal cut sets is crucial when we have
a large tree. After finding a minimum cut set the algorithm builds the minimum cut set
representation of the FT (in general a smaller tree) which allows us to perform all the
necessary calculations more efficiently.

We apply the inclusion-exclusion formula to equation 28 and get
Pc=1)=P((a=1)J=1))=Pla=1)+P(b =1)- P(a =1)P(b =1) = 0.0020 (29)

Consider now the corresponding to FT in the Figure 2.34 fragment of BBN (see Figure
2.35). The probabilities of a, b are specified as in the FT above. From Figure 2.35 one
can see that ¢ is influenced by a and b but the nature of this dependence cannot be
deduced from the graphical representation. How the probability of the state of ¢ is
affected by combinations of states of a, b must be read from conditional probability table
of ¢ given a, b. Such a conditional probability table may be very general and may
describe many different types of dependencies between variables. Different probability
tables will lead to different probability of failure of c. However if we assume that the
failure of either event a or b necessarily leads to the failure of ¢ the conditional
probability table will be as shown in Table 2-6.
p -

Improper
Detector Performance
c

Wake Vortex Outside Inaccurate or Faulty
Detection Range/Scanning Detection of Wake
Volume Vortices
a b

Figure 2.35: Discrete Bayesian belief net for the Improper Detector Performance
Variable
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Conditional Probability Table for P(c | a, b)

a

1

0

1

0

1

0

c=1

1

1

1

0

Table 2-6: Conditional Probability Table for the discrete BBN in Figure 2.35

The marginal distributions of a and b have been specified as:

a

0

1

0.999

0.001

b

0

1

0.999

0.001

Table 2-7: Marginal distributions for nodes @ and b from the discrete BBN shown in
Figure 2.35

Using formula 27 we can calculate the joint distribution of (a, b, ¢) as:

P(a, b, ¢)= P(a) P(b) P(c

a,b)

The probability P(c=1) can be calculated as a sum of the following probabilities:

Pla=1,b=1,c=1)=Pla=1)P(b=1) Plc=1la=1,b=1)=(10")-(107)-(1)=10"

Pla=1,b=0,c=1)=P(a=1)P(b=0) P(c=1la=1,b=0)=(107)-(0.999)-(1)= 099910
Pla=0,b=1,c=1)=P(a=0)P(b=1) P(c=1|a=0,b=1)=(0.999)-(107)-(1)= 0.999x 10" ’
Pla=0,b=0,c=1)=P(a=0)P(b=0) P(c=1|a=0,b=0)=(0.999)(0.999)-(0)=0 ’

Hence

Plc=1)=Pla=1,b=1,c=1)+Pla=1,b=0,c=1)
+Pla=0,b=1,c=1)+P(a=0,b=0,c=1)=0.0020

Notice that if one uses different probability tables then the probability of the failure of ¢
will change (see the Example below).

EXAMPLE:

Consider three models with the same binary variables a, b shown in Figure 2.36. The
variable c is also binary. We want to calculate P(c=1) for these three models.
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Figure 2.36: BBN, Fault Tree with an OR gate and Fault Tree with an AND gate.

To see how the probability of the failure of ¢ changes in different models we first assume
that P(a=1)=(b=1)=0.001. In the first case, a and b influence ¢ and the following
conditional probability table is specified:

Conditional Probability Table for P(c | a, b)
a 1 0
1 0 1 0
c=1 0.2 0.6 0.4 0.3

Table 2-8: Conditional Probability Table for P(c

In the second case, the failure of event ¢ occurs if a or b fail (OR —gate) and in the last
case the failure of event ¢ happens if both failures of events @ and » occur (AND-gate).
The probability of failure of ¢ in OR-gate model was calculated above as 0.0020.
Moreover we can easily see that for the AND-gate model the probability of failure of ¢
will be equal to P(a=1,b=1,¢=1)=(10")-(10)-(1)=10"°. For the BBN model we get

Pla=1,b=1,c=1)=Pa=1)P(b=1) Plc=1la=1,b=1)=(107)-(107)-(0.2) = 2x10”

Pla=1,b=0,c=1)=P(a=1)P(b=0) P(c=1]a=1,b=0)=(107)-(0.999)-(0.6)=5.994x 10"
Pla=0,b=1,c=1)=P(a=0)P(b=1) P(c=1|a=0,b=1)=(0.999)-(107)-(0.4) = 3.996 x 10™*
Pla=0,b=0,c=1)=P(a=0)P(b=0) P(c=1la=0,b=0)=(0.999)-(0.999)-(0.3)=0.2994

Summing these probabilities we get that in this case the probability of failure of ¢ is equal
to 0.3004. Taking different conditional probability tables in the BBN model one can
obtain a whole variety of distributions for c.

Next we calculate in an analogous way the joint distribution of the lower left-most part of
the fault tree corresponding to event g, Improper Model Prediction. The probabilities of
the failures of d, e, f are all equal to 0.001. Thereby, the Probability of Improper Model
Prediction in FT can be calculated as:
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P(g=1)=1-P(d =0)P(e=0)P(f = 0)=0.002997
In BBN we must specify the following conditional probability table:
Conditional Probability Table for P(g I d, e, f)

d 1

e 1 0 1

f 1 0 1 0 1 0 1 0

g=1 1 1 1 1 1 1 1 0

As in the case above we calculate P(g=1) using formula 27.

Table 2-9: Conditional Probability Table for P(g | d,e, )

The upper parts of the BBN and Fault Tree structures for the wake vortex detection,
warning and avoidance maneuver are shown in Figure 2.37 and 2.38. Probabilities of
failures for nodes and intermediate events ¢ and g from the discrete BBN and the Fault
Tree were already obtained. We start with FT and then show corresponding calculations

in BBN.

AircraftiPilot
1S not able
to turn timeky
i
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does not
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timely
warming
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Tactical
Function

!

h

Figure 2.37

: Upper part of the Fault Tree structure
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Since the ATC-Wake Monitoring and Alerting Failure is caused by the failure of either ¢

or g or else & we can get the probability of Monitoring and Alerting Failure in the fault
tree as:

~P(c=1)P(g =1)-P(c=1)P(h=1)-P(g =1)P(h =1)
+Pc=1)P(g=1)P(h=1
= 0.005985

Having the probability of ATC-Wake Monitoring and Alerting Failure and knowing that
the Controller does not provide a timely warning with probability 0.001, we can calculate

Plk=1)=P(i=1)J(j=1))= P(i =1)+ P(j =1)- P(i =1)P(j =1) = 0.006979
Finally, the desired probability of ATC-Wake DWA Failure is P(7=1)=0.007972.
P(T=1)=P((k =1) (1 =1))= P(k =1)+ P({ =1)- P(k =1)P(l = 1) = 0.007972

Similar calculations can be made using the BBN in Figure 2.38.

>
ATC-Wake
DWA Failure
4 | &
Aircraft/Pilot is not able ATC-Wake
to turn Warning
timely Failure
| k
A
Controller does not provide a Monitoring and Alerting Loss of DWA
timely warning Failure Tactical Function

j i h

Improper Improper
Model Prediction Detector Performance
[°} c

Figure 2.38: Upper part of the BBN structure
To calculate the probability of Monitoring and Alerting Failure given the states of the

variables ¢, g and &, we specify the following conditional probability table and an
additional marginal distribution for 4:
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Conditional Probability Table for P (i I c, g, h)
1 0 h
[¢] 1 0 1 0 0 1
h 1 0 1 0 1 0 1 0 0.999 0.001
i=1 1 1 1 1 1 1 1 0

Table 2-10: Conditional Probability Table for P(i
node A

¢, g, h) and marginal distribution for

Then, to calculate the probability of the failure of i given events ¢, g, and s, we first use
formula 27 to get the joint distribution of (¢, g, 4, i)

P(c, g, h,i)= P(c) P(g) P(h) P(i

c, g, h)

After that we can calculate the probability of the Monitoring and Alerting Failure given
variables ¢, g, and /4 by summing all probabilities in (¢, g, A, i) for which i=1:

P(i=1)= Y Plc, g, h,i =1)=0.005985

c, g h

To calculate the probability of the ATC-Wake Warning Failure we specify the following
conditional probability table and an additional marginal distribution of ;:

Conditional Probability Table for P (k 11, j)
i 1 0 0 1
i 1 0 1 0 0.999 0.001
k=1 1 1 1 0

Table 2-11: Conditional Probability Table for P(k

node j

i, j) and marginal distribution for

The probability of the ATC-Wake Warning Failure is:

P(k=1)=>"P(i, j, k =1)=0.006979
i

And, finally we specify

Conditional Probability Table for P (T 1k, ) I
k 1 0 0 1
| 1 0 1 0 0.999 0.001
T=1 1 1 1 0

Table 2-12: Conditional Probability Table for P(T'

node /

k, ) and marginal distribution for
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The probability of the ATC-Wake DWA Failure is:
P(T=1)=> P(k,1,T =1)=0.007972
k,l

2.2.3 Model Calculations

In this section we combine calculations done in Section 2.2.2 for smaller parts of FT and
BBN.

We will start calculations for the fault tree model of wake vortex detection warning and
avoidance maneuver in Figure 2.33. These calculations are to be done for several risky
specifications. Initial data used to obtain insight is given in Appendix A.3.

We will apply the MOCUS Algorithm for finding Minimal Cut Sets. This algorithm
substitutes each gate formula and applies Boolean Laws. The outcome of this algorithm is
a list of cut sets with the property that every minimal cut set is included as a subset of the
list of cut sets. After the final iteration all duplicated cut sets must be removed and all cut
sets must be checked to insure that they are minimal cut sets.

We are going to apply the MOCUS Top Down algorithm. We will start at the top event T
in Figure 2.33. We substitute the Boolean expression for each gate and calculate as
follows

T=Gl=l+k=1+G2

T=1+(j+G3)=1+j+G3
T=l+j+(h+g+c)=l+j+h+g+c=1+j+h+G4+G5
T=I+j+h+(d+e+f)+(a+h)

T=Il+j+h+d+e+f+a+b (30)

Hence, we get the minimal cut sets as shown in Section 2.2.2. The minimal cut sets are
listed below.

Minimal cut sets: {l}, {j}, {h}, {d}, {e}, {f}, {a}, {b}

With the minimal cut sets we can build a cut set representation for our problem (see
Figure 2.39). We can observe that the Top event can be obtained by the union of eight
basic events joined by an OR gate, which tells us that the ATC-Wake DWA Failure is
caused by failures of any one of eight basic events.
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Figure 2.39: Cut set representation of the fault tree

These events are not mutually exclusive so the probability of the ATC-Wake DWA
Failure with the formula:

PlaJpJdUeJ FURJ U= éP(x)—%P(xﬂ y)+x§;ZP(xﬂ W)=+ (1) Pla()-)) )

where all the summation literals x, y, z, ... belong to {a, b,d,e, f, h,j,1 } 1n our case.
This is known as the inclusion-exclusion formula. If we develop such a formula we will

have 2® —1=255 terms to calculate the probability of the ATC-Wake DWA Failure.
Probabilities of Failures of events in FT are summarized in the following table.

a b c d e f g h i i k / T
0.001  0.001 0.001999 0.001 0.001 0.001 0.002997 0.001  0.005985 0.001  0.006979 0.001  0.007972

Table 2-13: Probabilities of failure for all variables

Main ideas behind BBNs and probability tables necessary to quantify the BBN in Figure
2.32 were presented in Section 2.2.2. Joint distribution represented by this structure can
be calculated with formula 27. There exist many BBN software packages supporting fast
calculations and specification of BBNs. In Figure 2.40, the screen shot of the BBN of the
WV DWA maneuver in Netica is shown. Marginal probabilities of all variables (in
percentages) are given. We can see that the probability of ATC-Wake DWA Failure is
about 0.008.
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In Section 2.2 we have shown relationships between Fault trees and BBNs. Problem that
was used to stress similarities of BBNs and FTs could have been handled by both as all
variables were binary and dependencies between them were of the form easily handled by
OR-gates. Moreover there were no dependencies between basic events. We have shown
that this problem can be modelled by fault tree and the corresponding BBN can be easily
built.

The graphical representation of FTs contains more information about underlying joint
distribution than the directed acyclic graph for BBN. However, it is much more
restrictive in dependence structures that can be described. BBN allows their nodes to
have more than two states. It does not restrict ‘basic’ variables to be independent and
allows much richer set of dependence structures to be used. It comes with the price of
course. Quantification of discrete BBNs is very cumbersome.

Finally, we can point out that the choice of model always depends on the statement of the
problem to solve. If the assumptions of FTs cannot be fulfilled we must turn to richer
model e.g. BBNs. If however the problem can be handled with FTs (as the one presented
in this section) we recommend use of the simplicity of FTs.
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3. -'WAKE MODEL: DISCRETE BAYESIAN BELIEF NET

For a description of the current practice approach operation, as well as the approach operation
as proposed in the I-Wake concept refer to [De Jong et al. 2005, Speijker et al. 2006a].

3.1 I-Wake: On-board Wake Vortex Detection Warning, and Avoidance
Probability

The execution of the I-Wake detection, warning, and avoidance maneuver (e.g. a missed
approach (during arrivals)) depends — besides operational feasibility — on the probability of
failure of the I-Wake system components. For the assessment of the on-board I-Wake failure
probability, a causal model has been constructed using discrete Bayesian Belief Networks
(BBNs) (See figure 3.1).

3.1.1 Application of Discrete BBNs for the On-board Wake Vortex
Detection, Warning and Avoidance Maneuver Probability

In this Section, we aim to model a system which represents the on-board wake vortex
detection, warning and avoidance maneuver failure. Moreover, we intend to quantify such a
model. A discrete BBN will be used since the problem initially for two reasons:

e To obtain insight into the setting of requirements for the [-Wake operation

e To support the [-Wake system design and development

From the problem statement, we will be able to constrain the variables to take two states. The
assumptions taken in to account to represent the BBN of Section 2.2 as a Fault Tree, namely,
a failure of a parent-node occurs if any of its children-nodes fails, does not hold here. Hence,
an appropriate approach which may be applied to model the failure of the aircraft/pilot in
performing the I-Wake WV DWA maneuver amounts to discrete BBNs. Throughout Section
3.1, we will give a detailed description of the application of the methodology to this particular
case.

3.1.2 Discrete BBNs

The problem above can be modelled using discrete BBNs as shown in Figure 3.1. This BBN
has 11 nodes and 10 edges. The nodes correspond to binary variables with states 0 (not
failure) and 1 (failure) specified in the problem and edges that represent relationships between
variables. Each BBN node is labelled with a lowercase literal and the full name of the variable
that is of interest. Names or labels are used in the text to refer to the variables. The BBN in
Figure 3.1 shows the graphical representation of dependences and (conditional)
independences in this problem. One reads that d, e, f are independent and they influence g (g
is a child of d, e, fand d, e, f are called the parents of g; denoted as pa(g)). As we said before,
a graphical representation of BBN does not, however, give us all the information we need
about joint distribution. To completely describe the joint distribution represented by BBN, we
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need to specify conditional probability tables of all variables in the BBN given their parents.
Then the joint distribution can be given by formula 27 in Chapter 2.

Due to the statement of the problem, we will need the specification of the conditional
probability tables of P(T'| /i), P(i|h, g,¢), Plg|f, e d)and Plc|b,a).

Wake
owa
Failure

7

Aircraft Pifot not able -Wake Loss of WV DWA
to initiate missed Monitoring and Alerting Tactical
approach Failure Function
Ui i h
Fauhy/l.'naccumle improper Impraper
Aircraft - Model Detector
Data Prediction e
o g
\ :
Faulty or inaccurate Faulty or Wake Vortex Inaccurate or
WV Model Inaccurate Outside Detection Faulty Detection ol
Estimation Meteo Nowcasting Range/Scanning Wake Vortices

e f & b

Figure 3.1: BBN for the on-board WV DWA maneuver probability.
The nodes in the Bayesian Belief Network have the following explanation:

- 1-Wake DWA Failure (T): represents the probability distribution of aircraft/pilot not able
to perform the I-Wake Detection, Warning and Avoidance Maneuver as required.

- Aircraft/Pilot not able to initiate missed approach (j): represents the probability of an
aircraft/pilot not able to initiate an evasive action (missed approach) as required.

- 1-Wake Monitoring and Alerting Failure (i): represents the probability of not providing a
timely warning to the flight crew when one should be given. As a result, the crew might
NOT be able to initiate/instruct the pilot to perform an evasive action.

- Loss of WV DWA Tactical Function (h): represents the probability of an undetected loss
of the WV DWA function. In case of a Detected Loss, the crew is aware that NO
cautions/warnings will be given and a transition will be made to the ICAO Mode (the
separation will increase, and the DWA maneuver will not be necessary).

- Improper Model Prediction (g): represents the probability that the predictions of Wake
Vortex locations and strength are inaccurate/wrong.

- Faulty/Inaccurate Aircraft Data (d): represents the probability that the predictions of
wake vortex locations and/or strengths made by the WV Model, on the basis of other
aircraft data, are inaccurate/wrong. As a result, incorrect information is passed to the WV
DWA tactical function, causing improper functioning.

- Inaccurate or Faulty WV Model Estimation (e): represents the probability that the
predictions of wake vortex locations and/or strengths made by the WV Model, on the
basis of aircraft data and meteo data, are inaccurate/wrong. As a result, incorrect
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information is passed to the WV DWA tactical function, causing improper functioning.

- Inaccurate or Faulty Meteo Nowcasting (f): represents the probability that the
meteorological conditions (i.e. nowcasting data) provided by the meteo systems are
inaccurate or wrong. As a result, incorrect information is passed to the WV DWA tactical
function, causing improper functioning.

- Improper Detector Performance (c): represents the probability that the tactical WV DWA
(e.g. on-board LiDAR) performs significantly less than the crew expect (while they are
not aware of the inaccuracies) (i.e. inaccurate/wrong alerts are given).

- Wake Vortex Outside Detection Range/Scanning Volume (a): represents the probability
that the on-board LiDAR does not detect the wake vortices of the leading aircraft, because
these are outside the scanning volume of air ahead of the aircraft.

- Inaccurate or Faulty Detection of Wake Vortices (b): represents the probability that the
on-board LiDAR does not detect wake vortices of the leading aircraft accurately, when
these are inside the planned scanning volume of air ahead of the aircraft.

Figure 3.2 contains the lower right-most fragment of the BBN. The nodes are Wake Vortex
Outside Detection Range/ Scanning Volume (a) and Inaccurate or Faulty Detection of Wake
Vortices (b).

Improper
Detector
Performance
©

Wake Vortex Outside Inaccurate or
Detection Faulty Detection of
Range/Scanning Wake Vortices
a b

Figure 3.2: Discrete Bayesian belief net for the Improper Detector Performance Variable

The probabilities of a, b should be specified. We assume that P(a=1)=P(b=1)=0.001. From
Figure 3.2 one knows that c is influenced by a and b but the nature of this dependence cannot
be concluded from the graphical representation. How the state of c¢ is affected by
combinations of states of @ and b must be read from conditional probability table of ¢ given a,
b. Such a conditional probability table may be very general and may describe many different
types of dependencies between variables. Different probability tables will lead to different
probability of failure of c. The conditional probability table will be as shown in Table 3-1.

-63 -



Chapter 3. I-Wake Model: Discrete Bayesian Belief Net

3
TUDelft

Conditional Probability Table for P(c I a, b)
a 1 0
1 0 1 0
c=1 0.9999 0.001 0.001 0.0001
Table 3-1: Conditional Probability Table for P(c
The marginal distributions of @ and b have been specified as:
a 0 1 b 0 1
0.999 0.001 0.999 0.001

Table 3-2: Marginal distributions for nodes a and b from the discrete BBN shown in Figure
3.2

Using formula 27 in Chapter 2 we can calculate the joint distribution of (a, b, ¢).

P(a, b, c) = P(a) P(b) P(c

For the BBN model we get

Pla=1,b=1,c=1)=Pla=1)P(b=1) Plc=Ta=1,b=1)=(107)-(107)-(0.9999) = 9.999x 10~
Pla=1,b=0,c=1)=P(a=1)P(b=0) P(c=1|a=1,b=0)=(10")-(0.999)-(10*)=9.99x10”
Pla=0,b=1,c=1)=P(a=0)P(b=1) P(c=1|a=0,b=1)=(0.999)-(10?)-(10)=9.99x10”
Pla=0,b=0,c=1)=P(a=0)P(b =0) P(c=1ja=0,b=0)=(0.999):(0.999)-(10*)=9.98x10°*

Summing these probabilities we get that in this case the probability of failure of ¢ is equal to

1.02798x10™*. Taking different conditional probability tables in the BBN model one can
obtain a whole variety of distributions for c.

Turn to the left-most part of the BBN in Figure 3.1. The children nodes are Faulty or
Inaccurate Aircraft Data (d), Faulty or Inaccurate WV Model Estimation (e) and Faulty or
Inaccurate Meteo Nowcasting (f). The probabilities of d, e and f are specified, namely,
P(d=1)=P(e=1)=P(f~1)=0.001.

'8 Another possibility to specify the marginal distributions of each node for the discrete BBN for the on-board
WV DWA manoeuvre probability would be the elicitation of quantiles from experts. The questionnaire is shown
in Appendix A.5. This will allows taking into account the information from not only an expert and this
information could be analyzed by the method described in Section 2.1.3.
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Faulty/Inaccurate Improper
Aircraft > Model
Data Prediction
d g

Faulty or Inaccurate
WV Model
Estimation
e

Faulty or
Inaccurate
Meteo Nowcasting

f

Figure 3.3: Discrete Bayesian belief net for an Improper Model Prediction Variable

From Figure 3.3 one knows that g is influenced by d, e and f'but as we said before the nature
of this dependence cannot be deduced from this visual representation. How the state of g is
affected by the combinations of states of d, e and f must be read from the conditional
probability table of g given d, e and f. The conditional probability table will be as shown in
Table 3-3.

Conditional Probability Table for P (g If, e, d)
d 1 0
e 1 0 1 0
f 1 0 1 0 1 0 1 0
g=1 0.999999 0.001 0.001 0.0001 0.001 0.0001 0.0001 0.000001

Table 3-3: Conditional probability table for P(g| f, e, d)

The marginal distributions of d, e and f'have been specified as follows:

d 0 1 e 0 1 f 0 1
0.999 0.001 0.999 0.001 0.999 0.001

Table 3-4: Marginal distributions for nodes d, e and f from the discrete BBN shown in Figure
33

Using formula 27 Chapter 2 we can calculate the joint distribution of (d, e, f, g).

P(d,e, f,g)=P(d) P(e) P(f) P(g

d,e, ).

For the BBN model we get the probability of the failure of g given the variables d, e, and f by
summing all the probabilities in (d, e, f, g) for which g=1:

P(g=1)= Y. P(d,e, f,g=1)=1.3004x10"°

c,g.h
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The upper part of the BBN structure for the on-board wake vortex detection, warning and
avoidance maneuver is shown in Figure 3.4. The probabilities of failures for nodes ¢ and g
from the discrete BBN were already obtained.

Since a failure of the [-Wake Monitoring and Alerting is caused by the failure of ¢, g and /& we

can get the probability of the [-Wake Monitoring and Alerting Failure using BBN in Figure
3.4.

1-Wake

DWA
Failure
T
Aircraft Pilot not able 1-Wake Loss of WV DWA
to initiate missed Monitoring and Alerting Tactical
approach Failure Function
i i h
Improper Improper
Model Detector
Prediction Performance
g C

Figure 3.4: Upper part of the BBN structure

To calculate the probability of the [-Wake Monitoring and Alerting Failure given the states of
the variables ¢, g and A, we specify the following conditional probability table and an
additional marginal distribution for 4:

Conditional Probability Table for P (i | c, g, h)

c 1 0 h

g 1 0 1 0 0 1
h 1 [ o 1 [ o 1 [ o 1] 0 0.999 0.001
i=1 0.999999 [ 0.001 0.001 [ 0.0001 0.001 [ 0.0001 | 0.0001 [ 0.000001

Table 3-5: Conditional Probability Table for P(i
h

¢, g, h) and marginal distribution for node

Then, to calculate the probability of failure of i given events c, g, and A, we first use formula
27 Chapter 2 to get the joint distribution of (¢, g, A, i)

P(c, g, h,i)= P(c) P(g) P(h) P(i

¢, g, h)
After that we can calculate the probability of the I-Wake Monitoring and Alerting Failure

given the variables ¢, g, and 4 by summing all the probabilities in (c, g, A, i) for which i=1:

P(i=1)= Y P(c, g, h,i=1)=1.10939 x10°°

¢, g h
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To calculate the probability of the [-Wake DWA Failure, we take into account that i and j
influence 7" and we specify the following conditional probability table:

Conditional Probability Table for P(T Ii, j)
i 1 0 0 1
i 1 0 1 0 0.999 0.001
T=1 0.9999 0.001 0.001 0.0001

Table 3-6: Conditional Probability Table for P(T

J>9)
And since P(j =1)=0.001, we can calculate:

Pi=1,j=1,T=1)=Pi=1)P(j=1)PT=1li=1,j=1)=
=(1.10939x10°)(0.001)0.9999) = 1.10928 x10"°
P(i=1,j=0,T=1)=Pi=1)P(j=0)P(T =1)i=1, j=0)=
=(1.10939x107)(0.999)(0.001) =1.10828 x 10"
P(i=0,j=1,T=1)=Pi=0)P(j=1)P(T =1ji=0, j=1)=
=(0.999999)0.001)0.001) = 9.99999 x 10~
Pi=0,j=0,T=1)=Pi=0)P(j=0)P(T =1 =0, j=0)=
=(0.999999)0.999)(0.0001) = 9.98999 x 10™°

And, finally the probability of the [-Wake DWA Failure is:

P(T=1)=>P(i, j, T =1)=1.00902x10"*
i

3.1.3 Models Calculations

Main ideas behind BBNs and probability tables necessary to quantify the BBN in Figure 3.1
were presented in Section 3.1.2. The data required to quantify such a model are not real and
are only used to show the use of the methodology (Two questionnaires are proposed to elicit
data for the input of this model in Appendix A.4). The joint distribution represented by this
structure can be calculated with formula 27 Chapter 2. There exist many BBN software
packages supporting fast calculations and specification of BBNs. In Figure 3.5, the BBN of
the on-board WV DWA maneuver in Netica is shown. Marginal probabilities of all variables
(in percentages) are given. We can see that the probability of the [-Wake DWA Failure is
about 0.0100902 in the BBN (probabilities are given in percentages).

-67 -



3
TUDelft

Chapter 3. I-Wake Model: Discrete Bayesian Belief Net

1-Wake DWA Failure (T)
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Figure 3.5: BBN for the on-board WV DWA maneuver probability.

We have shown that this problem can be modelled by discrete BBNs. The graphical
representation of the directed acyclic graph for BBN does not contain much information about
the underlying joint distribution. However, it is much rich in dependence structures that can
be described. BBN allows their nodes to have more than two states. It does not restrict ‘basic’
variables to be independent and allows much richer set of dependence structures to be used. It
comes with the price of course. The quantification of discrete BBNSs is very cumbersome.

Finally, we can point out that the choice of model always depends on the statement of the
problem to solve. In this case the appropriate model was: Discrete BBNs.
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4. BAYESIAN BELIEF NETS

This Chapter is just an overview of the main definitions about BBNs and related concepts. It
is based on [Kurowicka D., Cooke R.M., Charitos T., Speijker L.J.P. 2001; Kurowicka D.,
Cooke R.M. 2006].

4.1 Definitions

A Bayesian Belief Network is a probabilistic model based on the notion of conditional
independencies and dependencies (CIDs).

Definition 4.1.1. Conditionally Independent Variables. Two variables X,, X, are

independent conditional on some other variables contained in the set S, if the conditional
probability factors like p(Xl,X 2|S)= p(X 1|S) p(X 2|S) given p(S)>0. This is equivalent to

p(X1|X2,S)= p(X1|S) or p(X2|X1,S)=p(X2|S) provided that p(Xl,S), p(Xz,S), p(S)>0 .

This means that X, is irrelevant to X, if the joint state of the variables in the set S is known.

Definition 4.1.2. Independent Events. The events A and B are independent if and only if
p(4n B)= p(4)p(B).

Definition 4.1.3. Conditionally Independent Events
Weak definition: The events A and B are conditionally independent given the event C if and

only if p(AmB|C)=p(A|C)p(B|C). This is written as AJ_B| C . It is assumed that
p(C)>0.

If C has probability one, then the weak definition is just a restatement of the definition of
independence. It is a symmetric relation between 4 and B because AJ_B| C implies

Bl A| C. It also implies that 4 | B*
ALl B| C‘. To assume that 4 | B| C means that 4 and B are independent if C occurs and

does not say anything about the relation of between 4 and B if C does not occur.

C . However it neither implies nor is implied by

Strong definition: The events A and B are independent given any event in the partition of the
sample space generated by the events C and D: C D, C*"D,CND,C° "D°. That is

ALB|[C,D]< ALB|CAD,ALB|C°N\D,ALBICAD*, AL B|C* D"

Note that 4 LB|[C,D] does not imply that ALB|C or that ALB|CUD.
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4.2 Discrete Bayesian Belief Nets

A finite valued BBN is a directed acyclic graph, together with an associated set of probability
tables. The graph consists of nodes and arcs. The nodes represent variables, which can be
discrete or continuous. The arcs represent causal/influential or functional relationships
between variables.

Throughout this Section, let the set of all variables in a domain be denoted as V', and the
variables as X,, X,,..€V . The conditional independencies and dependencies (CIDs)

underlying a multivariate probability distribution for the variables in ' are reflected by the
graphical structure of a Bayesian Belief Network, the so-called directed acyclic graph (DAG).

A Bayesian Belief Network (BBN) consists of a set of nodes and a set of directed edges
between nodes. The nodes represent variables, which can be discrete or continuous. The edges
or arcs represent causal/ influential relationships between variables.

The parents pa(X,) of a variable X, in the DAG, is the set of variables U €7, such that
there exists a directed edge U — X, . The variable X, is called a child of U . To each variable
W with parents X, ,..., X, there is attached a conditional probability table P(W |X . ¢ n). In

case W has no parents, the associated probability table reduces to unconditional probabilities
P(W).

A definition for Bayesian Belief Networks can be the following.

Definition 4.2.1: 4 Bayesian Belief Network for a set of variables V ={X,, ..., X, } consists of

(1) a network structure S that encodes a set of conditional independence assertions about
variables in V , and (2) a set P of local probability distributions associated with each
variable. Together, these components define the joint probability distribution for V . The
network structure S is a directed acyclic graph. The nodes in S are in one-to-one
correspondence with the variables in V .

We use X, to denote both the variable and its corresponding node, and pa(X,) to denote the
parents of node X, in S as well as the variables corresponding to those parents. The absence
of possible arcs in S implicitly means conditional independence.

Theorem 4-2-1: (The Chain Rule). Given the structure S, the joint probability distribution
for V = {Xl, ey Xn} is given by

n

P()=T] plx|pa(x,) (1)

i=1

The aforementioned theorem illustrates the importance of exploiting conditional
independence in order to calculate the joint probability table P(V). The set of parameters €
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of a Bayesian network model is the set of conditional probabilities p(X l.| pa(X,.)), where

pa(X,) denotes the parents of a variable X, in the DAG. This sort of factorization has two

consequences regarding learning Bayesian Belief Networks. Firstly, since each of the
conditional probabilities typically involves only a small number of variables, i.e.

| pa(X iﬂ << |V| for all i eV, the parameters of a Bayesian Belief Network can be estimated

from finite data. Secondly, the parameters of a Bayesian Belief Network, since they are
conditional probabilities, can be calculated from the probability distribution implied by the
data.

The structure S of a Bayesian Belief Network has two components: the global structure G
and a set of local structures M . G is, as we mention previously, a directed acyclic graph,
while the set of local structures M = {Ml, ...,Mn} is a set of n mappings, one for each

variable X,, such that M, maps each value of {X,, pa(X,)} to a parameter in 6.

Evidence: There are two kinds of evidence that can be entered in a Bayesian Belief Network
and change the probability distributions of variables, hard and soft evidence. If the evidence
on a variable or otherwise a statement of the certainties of its states gives the exact state of
the variable, we call this hard evidence or instantiation; otherwise we call it soft evidence.

4.3 Continuous Bayesian Belief Nets

The Vine-copula method presented in this section is another tool that enables the user to
construct a multivariate distribution. In this method we need one dimensional marginal
distributions and information about the dependence structure. Marginal distributions and
dependence can be obtained using expert opinion. In this section we present general
description of this method. We introduce only basic definitions and procedures, which will be
used during this project. For more information about vines and copulas we refer to [Bedford
T.J., Cooke R.M. 2002; Kurowicka D., Cooke R.M. 2004; Hanea A., Kurowicka D., Cooke
R.M. 2005; Kurowicka D., Cooke R.M. 2006].

4.3.1 Vines

A graphical model called vines was introduced in [Cooke R.M. 1997]. A vine on n variables
is a nested set of trees, where the edges of tree j are the nodes of tree j+1, and each tree has

the maximum number of edges. A regular vine on n variables is a vine in which two edges in
tree j are joined by an edge in tree j+1 only if these edges share a common node. A regular

vine is called a canonical vine if each tree 7, has a unique node of degree n—i, hence has
maximum degree. A regular vine is called a D -vine if all nodes in 7, have degree not higher
than 2 (see Figure 4.1). There are n (n - 1)/ 2 edges in a regular vine on n variables. Each edge
in a regular vine may be associated with a constant conditional rank correlation (for j=1 the

conditions are vacuous) and, using a copula (bivariate distribution on a unite square with
uniform margins), a joint distribution satisfying the vine-copula specification can be
constructed and sampled on the fly [Cooke R.M. 1997]. The conditional rank correlations
associated with each edge are determined as follows: the variables reachable from a given
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edge are called the constraint set of that edge. When two edges are joined by an edge of the
next tree, the intersection of the respective constraint sets are the conditioning variables, and
the symmetric differences of the constraint sets are the conditioned variables. The regularity
condition insures that the symmetric difference of the constraint sets always contains two
variables. Each pair of variables occurs once as conditioned variables. For the precise
definitions and all properties of a regular vine we refer to [Bedford T.J., Cooke R.M. 2002].

E 12 E [P E la, E

r

14|23

Figure 4.1: D -vine on four variables with (conditional) rank correlations assigned to the
edges.

The rank correlation specification on regular vine plus copula determines the whole joint
distribution. To sample a distribution specified by the D -vine in Figure 4.1, D(l, 2,3,4) the
following algorithm can be used: Sample four independent variables distributed uniformly on
interval [0,1], U,,U,,U,, U, and calculate values of correlated variables X,, X,, X,, X, as
follows

X o= ug;

X, = Fﬁl(”z|x1;”12l

X3 = F_I(F_l(”3 |F(x1 |x2;’”12);”13\2)| x2;723)>

Xy = F_I(F_I(F_l(“4 |F(F(x1 |x2;r121F(x3 |x2;7'23 ”’132)>”1423]F(x2 |x3;723)’r24\3)| x3;r34)
2)

where F (X ; ‘X j;rl.jk,) denotes the cumulative distribution function for X, given X, under

the conditional copula with correlation 7y, .

To shorten the notation that will be used in describing the general sampling procedure for D -
vine the above algorithm can be stated as:

X, = U
— -1 .
X, = By (”2 ):
_ a1 1
X3 = F'3‘2;x2 F;‘lz;lﬂ‘z(xl)(uS ))
_ 1 1 1
Y = F4\3;X3 F423;F23(Xz)(F4123;F1z3(xl)(u4 )))
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Figure 4.2 shows the procedure of sampling value of X, graphically. Notice that for the D -

vine values of F), and Fpy that are used to conditionalize copulae with correlations 7

243
Napps to obtain F, ), and F, ., respectively have to be calculated. In Figure 4.2 the diagonal
band copula [Cooke R.M., Waij R. 1986] is used.

3 and

/r14 23

Figure 4.2: Procedure of sampling value of X, in D -vine.

In general we can sample an n-dimensional distribution represented graphically by the D -
vine on n variables with (conditional) rank correlations

Na» ’”13\2 ”14\23 n,n—l\n—z,...,z n,n\z,,..,n—l
T3 r24\3 rz,n—l\n—z,.“g rz,n\3,...,n—1
rn—Z,n—l rn—Z,n‘n—l

assigned to the edges of the vine as follows

X, = ug;
— -1 .
X, = Fz\l;x1 (”2 )9
_ -
Xy = Fs\z;xz F;IZ;EZ(xl)(u3))
3)
_ -1 -1 -1
Xy = F4\3;x3 F423;F“(x2)(F4123;523();])(”4 )))
_ -1 1 -1
Xn = Fn |n-1;x,_, (Fn |n-2,n-L;F,_, nl(xnz)(' ' 'Fn [123,...n-1;F, ‘23“__’”71():1)(”}1 ) : ))
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The rank correlation is actually a measure of the dependence between two random variables
joint by the copula. The rank correlation specification on regular vine plus copula determines
the whole joint distribution. The procedure of sampling such a distribution can be written for
any regular vine.

4.3.2 Copula
Definition (Copula) 4 copula C is a distribution on the unit square with uniform margins.

Copulas are then functions that join or "couple" bivariate distribution functions to their
marginal distribution functions.

Definition Random variables X and Y with distributions F,, F, respectively are joined by
copula C if their joint distribution can be written

FXY(xa y): C(Fx(x)’ Fy(y))'

For rich exposition of copulae we refer to [Joe H. 1997; Doruet Mari D. and Kotz S. 2001;
Nelsen R. 1999; Bedford T.J., Cooke R.M. 2002]. In this document we mainly use Frank’s
copula [Frank M.J. 1979].

4.3.2.1 Diagonal Band Copula

The diagonal band copula is a simple bivariate distribution on the unit square with uniform
margins. For positive correlations its mass is concentrated on the diagonal band with vertical
bandwidth (denoted ). Mass is distributed uniformly on the rectangle and is uniform but
twice as thick in the triangular corners. For negative correlation the band is drawn between
the other corners. The correlation value depends on the bandwidth. For positive correlations
the density of the diagonal band distribution is given by

1
C2(l-a)

fo(u,v)

(1 a—1<u—v<l-a + 1 l-u—vza + 1 l—u—v<-a ) (4)

where 0 <a <1,0<u,v<1 and 1, denotes indicator function of A.

The density of the diagonal band copula with correlation 0.8 is shown in Figure 4.3.
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Figure 4.3: A density function of the diagonal band copula with correlation 0.8.

4.3.2.2 Frank's Copula

Frank’s family [Frank M.J., 1979] has a property of reflection symmetry, that is,
c(u, v)=c(1—u, l—v). This property is very important from an application point of view.
Frank’s copula has one parameter &

Clu, v; 0)= —élog(l + (e ; (e - 1))

With generating function

When 6 — o0 (@ ——o) then Frank’s copula corresponds to C, (C,) . 8 —0 gives

independent copula. The density of the Frank's copula with parameter 8 =7.9026 and
correlation 0.8 is shown in Figure 4.4.
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Figure 4.4: Density function of the Frank's copula with parameter 8 =7.9026 and rank
correlation 0.8.

4.3.2.3 Normal Copula

If @, is the bivariate normal CDF with correlation p and @' the inverse of the standard

univariate normal distribution function then
C, 1, v)=® (@7 (), @' (v))
u, v e|0,1] is called the normal copula.

The density of the normal copula with correlation 0.8 is shown in Figure 4.5.

Figure 4.5: A density function of normal copula with correlation 0.8.
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5. CONCLUSIONS AND RECOMMENDATIONS

In Europe, wake vortex prediction and detection systems are being introduced in order to
increase airport capacity, while maintaining safety. The EC project ATC-Wake aims to
develop a ground based system for ATC (Air Traffic Control) that would allow variable
aircraft separation distances, as opposed to the fixed distances presently applied at airports.
The EC project I-Wake aims to develop an on-board system for pilots in order to minimize
the probability of a wake encounter. As part of these projects, quantitative safety assessments
were performed. So far, the focus of these safety studies was the assessment of the risk related
to the wake encounter itself.

However, for a quantitative safety assessment of the use of wake vortex prediction and
detection systems, the following issues should also be considered:

- Humans working with these systems have to react on alerts, so as to ensure that a pilot
will be able to initiate a wake vortex avoidance maneuver in time.

- If one or more of the system components provide a wrong or erroneous advice, there
will be a higher risk on the presence of (severe) wake vortices. The consequences
might be catastrophic, in case reduced separation is applied.

This study therefore has provided insights into the hazards and system failures related to the
use of wake vortex prediction and detection systems. Three models, developed by NLR, have
been analyzed in detail to support of the setting of requirements for the use of these systems.
These models are:

- A stochastic model, based on use of continuous Bayesian Belief Nets, for the initial
aircraft separation time between aircraft taking off at a single runway;

- A Fault Tree model for the assessment of the impact of ground based system failures
on a wake vortex detection, warning, and avoidance manoeuvre;

- A discrete Bayesian Belief Net for the assessment of the impact of an on-board system
failure on a wake vortex avoidance manoeuvre.

Main ideas behind Bayesian Belief Nets and the data requirements for the use of these three
models have been presented. The mathematical modeling techniques have been described and
discussed in detail. The data required to quantify the models has to be provided by operational
experts, and might need to be further validated through expert elicitation sessions and a
comparison with wake vortex incident/accident data. Several questionnaires to elicit required
data for the use of these models have been proposed.

We should point out that the methodology to use depends on the characteristics of the
problem to solve and the assumptions to be taken. If our variables are restricted to take two
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values or states the modeling approach to follow is discrete BBNs. This approach has been
followed for the causal models representing the ground based and on-board detection,
warning, and avoidance maneouvre. It has been shown that these discrete BBNs can also be
represented as a fault tree (and vice versa). Although, the simplicity of the Fault Trees is
appropriate in some cases and its graphical representation contains more information about
underlying joint distribution than the directed acyclic graph for BBN; it is much more
restrictive in dependence structures that can be described. BBNs allow their nodes to have
more than two states. It does not restrict the ‘basic’ variables to be independent and allows a
much richer set of dependence structures to be used. It should be noted that quantification of
discrete BBNs can be very cumbersome. If the variables in a mathematical model are
continuous, we recommend the use of continuous BBNs. An elicitation procedure, based on
(conditional) rank correlations, has been constructed in order to cope with the specification of
the joint probability distribution for the continuous BBN for the initial aircraft separation
time. Direct quantification of a BBN that is discretised to 10 states for each variable would
require the specification of 12,150 probabilities in the conditional probability tables. The
quantification with continuous nodes requires only nine algebraically independent
(conditional) rank correlations and the specification of the nine marginal distributions for the
nodes in the BBN. This demonstrates clearly the reduction of assessment burden once we
have quantified influences as (conditional) rank correlations. It is recommended to investigate
the quantification of the combination of discrete and continuous nodes in a Bayesian Belief
Network.

In the future, when the implementation of the ATC-Wake and the I-Wake system is
accomplished, more data will become available to validate the models and to verify the
correctness of the setting of requirements for the use of wake vortex prediction and detection
systems. In order to assess the risk related to the use of these systems in terms of
incident/accident probabilities, a dynamic coupling of the developed fault trees and BBNs
with the NLR WAVIR methodology and tool-set is recommended.
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APPENDIX A -QUESTIONNAIRES

A.1 - Expert Distributions for the Nodes of The Aircraft Separation Time
Model

The Questionnaire

Please fill in your 5%, 25%, 50%, 75% and 95% quantiles for the following uncertain
quantities.

1. What is the wind in meters per second [m/s] predicted by the Meteo/weather

forecast system?

5% 25% 50% 75% 95%

2. What is the difference in seconds [s] between the separation time advised by the

Separation Mode Planner and the separation time that should be advised?

5% 25% 50% 75% 95%

3. What is the difference in seconds [s] between the separation time advised by the

supervisor and the separation time that should be advised?

5% 25% 50% 75% 95%

4. What is the separation time in seconds [s] prescribed by the Air Traffic Control

Supervisor for a departing leader and follower aircraft combination?

5% 25% 50% 75% 95%
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5%

5%

5%

5%

5%

5. What is the difference between actual wind in meters per second [m/s] (measured

by the Detector) and predicted wind in meters per second [m/s] (as determined by
the Meteo/weather systems)?

25% 50% 75% 95%

. What is the difference in seconds [s] between the actual take off clearance time

advised and the time that should be advised?

25% 50% 75% 95%

. What is the time in seconds [s] between start of roll of the leader aircraft and the

take off clearance of the controller for the follower aircraft?

25% 50% 75% 95%

. What is the time difference in seconds [s] between the take off clearance and start of

roll of the follower aircraft?

25% 50% 75% 95%

. What is the time in seconds [s] between start of take off (roll) of leader and follower

aircraft (measured from the start of roll of the leader at its Take Off Position)?

25% 50% 75% 95%
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Distributions and Theoretical States for Each Variable

Initial data used to obtain insight are presented. Therefore, probability distributions for the
nodes in the BBN were estimated for given means and standard deviations of the marginal
distributions. Those considered adequate for the marginal distributions required are shown
below.

Gamma Distribution for the Aircraft Take Off Separation Time, X,: a =64, b =1.8750

By taking the inverse of this distribution we found values corresponding to given probability

Aircraft Take Off Separation Time, X4

0.1 101.2228
0.2 107.2282
0.3 111.7043
0.4 115.6269
0.5 119.3756
0.6 123.2044
0.7 127.3904
0.8 132.4079
0.9 139.5799

Gamma Distribution for the ATCo Take Off Clearance Time, X,: a=323.9741,56=0.2778
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By taking the inverse of this distribution we found values corresponding to given probability

ATCo Take Off Clearance Time, X

0.1 83.6544
0.2 85.7670
0.3 87.3123
0.4 88.6473
0.5 89.9074
0.6 91.1794
0.7 92.5535
0.8 94.1790
0.9 96.4646

Gamma Distribution for the Pilot Take Off Time, X,: a=9.0001, b =3.3333

1

08

06

0z

By taking the inverse of this distribution we found values corresponding to given probability

Gamma Distribution for the Prescribed Spacing, X,: a=81,b=1.1111

1

08F

06

041

02F

0

Pilot Take Off Time, Xg

0.1 18.1083
0.2 21.4283
0.3 24.0665
0.4 26.4887
0.5 28.8965
0.6 31.4465
0.7 34.3356
0.8 37.9326
0.9 43.3157

i

20

40

B0
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By taking the inverse of this distribution we found values corresponding to given probability

Normal Distribution for Wind Forecast Error, X,: ¢ =0,0=1.7

0B

06

naf

02

Prescribed Time Spacing, X,

0.1 77.4458
0.2 81.4940
0.3 84.4997
0.4 87.1261
0.5 89.6298
0.6 92.1810
0.7 94.9635
0.8 98.2901
0.9 103.0297

By taking the inverse of this distribution we found values corresponding to given probability

Wind Forecast Error, X,

0.1 -2.1786
0.2 -1.4308
0.3 -0.8915
0.4 -0.4307
0.5 0.0000
0.6 0.4307
0.7 0.8915
0.8 1.4308
0.9 2.1786

Normal Distribution for Separation Mode Planner Failure, X,: #=0,0=10

1

aaF
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By taking the inverse of this distribution we found values corresponding to given probability

Separation Mode Planner Failure, X,

0.1 -12.8155
0.2 -8.4162
0.3 -5.2440
0.4 -2.5335
0.5 0.0000
0.6 2.5335
0.7 5.2440
0.8 8.4162
0.9 12.8155

Normal Distribution for Wind Nowecast Error, X, : x=0,0=0.25

L L I L I
496 D4 42 a 0z 04 L1

By taking the inverse of this distribution we found values corresponding to given probability

Wind Nowcast Error, X5

0.1 -0.3204
0.2 -0.2104
0.3 -0.1311
0.4 -0.0633
0.5 0.0000
0.6 0.0633
0.7 0.1311
0.8 0.2104
0.9 0.3204

Normal Distribution for Error Runway / Tower Controller, X,: #=0,0=5
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By taking the inverse of this distribution we found values corresponding to given probability

Error Runway Tower Controller, Xg

0.1 -6.4078
0.2 -4.2081
0.3 -2.6220
0.4 -1.2667
0.5 0.0000
0.6 1.2667
0.7 2.6220
0.8 4.2081
0.9 6.4078

Normal Distribution for Error ATC Supervisor, X,: x4 =0,0=10

aaF

By taking the inverse of this distribution we found values corresponding to given probability

Error ATC Supervisor, X3

0.1 -12.8155
0.2 -8.4162
0.3 -5.2440
0.4 -2.5335
0.5 0.0000
0.6 2.5335
0.7 5.2440
0.8 8.4162
0.9 12.8155
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A.2 — Conditional and Unconditional Rank Correlations

Conditional and Unconditional Rank Correlations Required to quantify the BBN for
The Aircraft Separation Time Model
Expert Opinion

In the next 8 questions we intend to assess rank correlations between variables of interest. Rank
correlation measures monotonic relationship between random variables and can be understood roughly
as a degree to which two random variables take high or low values together. In this document,

9

variables are denoted by X ’s and their median values are denoted by X, °s.

It is obvious that if two variables are independent, then knowing that one of them takes high values,
does not give any extra information about the other variable. If variables are completely positively
rank correlated then if one is equal e.g. to its 90™ percentile the other one is also equal to its 90™
percentile. Hence for positively correlated random variables, information that one of them takes high
values increases our confidence that the other one will be high as well.

We will ask experts about conditional probability that one variable is above its median given that other
variable is above its median. If the variables are independent this probability is equal to % if they are
positively correlated then this probability is higher than 2 and lower if they are negatively rank
correlated.

We also ask experts about the conditional probability that one variable is above its median given that
two/three variables are above their medians. The provided number will be between a subinterval of

[0, 1] , which depends on previously assessed questions.

Consider the relationship between the following two variables:

2. Suppose that the Wind Prediction was observed to be above its median value. What is your
probability that the Separation Mode Planner Failure would also lie above its median value?

Probability [0, 1] : 0.25

This can be shortened as

X, : Wind Prediction [m/sec] X, : Separation Mode Planner Failure [sec]

Suppose: X, 2 x,_; whatis P(X2 2 Xy, ‘Xl 2 xlso)?

Now, consider the relationship between the following three variables:

X, : Separation Mode Planner X, : Error ATC Supervisor X, : Prescribed Spacing
Failure [sec] [sec] [sec]

First, we consider the relationship between X, and X,, we say

3. Suppose that the Error ATC Supervisor was observed to be above its median value. What is
your probability that the Prescribed Spacing would also lie above its median value?
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Probability [0, 1] : 0.7

Shortened as:
Suppose: X; 2 x;_; what is P(X4 2 X, ‘X3 2 X5, )?

Then, by adding information about X, to the same situation, we ask

4. Consider the same situation as in question 2, now with the further information that the
Separation Mode Planner Failure is also observed to be above its median value. How does
this additional information change your previous estimate of 0.7? According to your
previous answer your current estimate should lie in the indicated interval below.

Probability [0.40438, 0.99555] : 0.8

In short form:
Suppose: X; 2 x; and X, 2x, ;whatis P(X4 2 Xy, ‘X3 2 X, X, 2 XZSO)?

Similarly, consider the relationship between the following three variables:

X Wind Error Xt Error Runway/Tower Control X, : ATCo Take Off Clearance
[sec] [sec] Time
[sec]

This situation first involves X, and X, we ask

5. Suppose that Error Runway/Tower Controller was observed to be above its median value.
What is your probability that ATCo Take Off Clearance Time would also lie above its
median value?

Probability [0, 1] : 0.8

This can be shortened as:

Suppose: X = x,_; what is P(X7 2 X ‘Xs 2 xéso)?

By adding information about X to the same situation, we ask

6. Consider the same situation as in question 4, now with the further information that the Wind
Error is also observed to be above its median value. How does this additional information
change your previous estimate of 0.8? According to your previous answer your current
estimate should lie in the indicated interval below.

Probability [0.60159, 0.99719] : 0.7

Shortened as:

Suppose: X > x¢ and X 2>x; ;whatis P(X7 > X, ‘X() 2 Xg, 0 X5 2 X5 )?

50
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Consider the relationship between the following four variables:
X, : Prescribed Spacing [sec] X, : ATCo Take Off Clearance Time [sec]

X, : Pilot Take Off Time [sec] X, : Aircraft Take Off Separation Time [sec]

This situation first involves information of X and X, we ask

7. Suppose that Pilot Take Off Time was observed to be above the median value. What is your

probability that the Aircraft Take Off Separation Time would also lie above its median
value?

Probability [0, 1] : 0.6

Suppose: Xy > x, ; what is P(X9 2 Xy ‘Xg Z X, )?

By adding information about X, to the same situation, we ask

Consider the same situation as in question 6, now with the further information that the
ATCo Take Off Clearance Time is also observed to be above its median value. How does
this additional information change your previous estimate of 0.6? According to your
previous answer your current estimate should lie in the indicated interval below.

Probability [0.20907, 0.99053] : 0.7

Suppose: X 2 x; and X, 2x, ;whatis P(X9 2 Xy ‘XS 2 x5, X, 2 x750)?

If we now add information about X, to the same situation, we ask

Consider the same situation as in question 7, now with the further information that the
Prescribed Spacing is also observed to be above its median value. How does this additional
information change your previous estimate of 0.7? According to your previous answer your
current estimate should lie in the indicated interval below.

Probability [0.40068, 0.99145] : 0.8

Suppose: X 2 x; and X, 2x, and X, 2x, ;whatis

Plx, > x,, Xy 2x . X, 2x, X, 2x, )2
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A.3 — Parameter Values for the ATC-WAKE Maneouvre

Table 1 with parameter values for the DWA maneuver (focus on pilot performance/ability)

Casel | Case2 | Case3 | Case4 | Case5 | Case6
a - Horizontal Scanning Failure 10 -3 10-3 10-3 10 -2 10 -2 10 -2
b - Vertical Scanning Failure 10-3 10-3 10-3 10 -2 10 -2 10 -2
¢ - Detection Range Error 10-3 10-3 10-3 10 -2 10 -2 10 -2
e - Faulty WV Model Estimation 10-3 10-3 10-3 10 -2 10 -2 10 -2
f - Faulty/inaccurate Traffic Situation 10-3 10-3 10-3 10 -2 10 -2 10 -2
g - Faulty/inaccurate Meteo Nowcasting 10-3 10 -3 10-3 10 -2 10 -2 10 -2
j - Loss of DWA tactical function 10-3 10-3 10-3 10 -2 10 -2 10 -2
k - Controller does not initiate warning 10-3 10-3 10-3 10 -2 10 -2 10 -2
m - Pilot not able to perform maneuver 10 -1 10 -2 10 -3 10 -1 10 -2 10-3

Table 2 with parameter values for the DWA maneuver (focus on ATC performance/ability)

Case 1 Case2 | Case3 Case4 | Case5 Case 6

a - Horizontal Scanning Failure 10 -3 10-3 10-3 10-2 10-2 10 -2
b - Vertical Scanning Failure 10 -3 10-3 10 -3 10-2 10 -2 10 -2
¢ - Detection Range Error 10-3 10-3 10-3 10 -2 10 -2 10 -2
e - Faulty WV Model Estimation 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2
f - Faulty/inaccurate Traffic Situation 10-3 10 -3 10 -3 10 -2 10-2 10-2
g - Faulty/inaccurate Meteo Nowcasting 10 -3 10 -3 10 -3 10 -2 10 -2 10-2
j - Loss of DWA tactical function 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2
k - Controller does not initiate warning 10 -1 10 -2 10 -3 10 -1 10 -2 10-3
m - Pilot not able to perform maneuver 10-3 10 -3 10 -3 10 -2 10-2 10-2

Table 3 with parameter values for the DWA maneuver (focus on Detector performance)

Casel | Case2 |Case3 | Case4 | Case5 | Caseb
a - Horizontal Scanning Failure 10 -6 10-3 10 -1 10 -6 10-3 10 -1
b - Vertical Scanning Failure 10 -6 10 -3 10 -1 10 -6 10 -3 10 -1
¢ - Detection Range Error 10 -6 10-3 10 -1 10 -6 10-3 10 -1
e - Faulty WV Model Estimation 10-3 10-3 10 -1 10 -2 10 -2 10 -2
f - Faulty/inaccurate Traffic Situation 10-3 10-3 10-3 10 -2 10 -2 10 -2
g - Faulty/inaccurate Meteo Nowcasting 10-3 10-3 10-3 10 -2 10 -2 10 -2
j - Loss of DWA tactical function 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2
k - Controller does not initiate warning 10-3 10-3 10-3 10-2 10 -2 10-2
m - Pilot not able to perform maneuver 10-3 10-3 10-3 10 -2 10 -2 10 -2

Table 4 with parameter values for the DWA maneuver (focus on Predictor performance)

Casel | Case2 | Case3 | Case4 | Case5 | Case6
a - Horizontal Scanning Failure 10 -3 10-3 10-3 10-2 10-2 10-2
b - Vertical Scanning Failure 10 -3 10-3 10 -3 10-2 10 -2 10-2
¢ - Detection Range Error 10-3 10-3 10-3 10 -2 10 -2 10 -2
e - Faulty WV Model Estimation 10 -6 10 -3 10 -1 10 -6 10 -3 10 -1
f - Faulty/inaccurate Traffic Situation 10 -6 10 -3 10 -1 10 -6 10 -3 10 -1
g - Faulty/inaccurate Meteo Nowcasting 10 -6 10 -3 10 -1 10 -6 10-3 10 -1
j - Loss of DWA tactical function 10 -3 10-3 10 -3 10-2 10 -2 10 -2
k - Controller does not initiate warning 10-3 10 -3 10 -3 10 -2 10-2 10-2
m - Pilot not able to perform maneuver 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2
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Table 1 with parameter values for the DWA maneuver (focus on pilot performance/ability)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

d — Improper Detector 0.002997 | 0.002997 | 0.002997 | 0.029701 | 0.029701 | 0.029701
Performance
h — Improper Model 0.002997 | 0.002997 | 0.002997 | 0.029701 | 0.029701 | 0.029701
Prediction

j - Monitoring and Alerting | 0.006979 | 0.006979 | 0.006979 | 0.067935 | 0.067935 | 0.067935
Failure

1 - Warning Systems 0.007972 | 0.007972 | 0.007972 | 0.077255 | 0.077255 | 0.077255
Failure
T — ATC-Wake DWA 0.107175 | 0.017892 | 0.008964 | 0.16953 0.086483 | 0.078178
Failure

Table 2 with parameter values for the DWA maneuver (focus on ATC performance/ability)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

d — Improper Detector 0.002997 | 0.002997 | 0.002997 | 0.029701 | 0.029701 | 0.029701
Performance
h — Improper Model 0.002997 | 0.002997 | 0.002997 | 0.029701 | 0.029701 | 0.029701
Prediction

j - Monitoring and Alerting 0.006979 | 0.006979 | 0.006979 | 0.067935 | 0.067935 | 0.067935
Failure

1 - Warning Systems Failure | 0.106281 | 0.016909 | 0.007972 | 0.161141 | 0.077255 | 0.068867

T — ATC-Wake DWA 0.107175 | 0.017892 | 0.008964 | 0.16953 0.086483 | 0.078178
Failure

Table 3 with parameter values for the DWA maneuver (focus on Detector performance)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

d — Improper Detector 0.000003 | 0.002997 | 0.271000 | 0.000003 | 0.002997 | 0.271000
Performance

h — Improper Model Prediction | 0.002997 | 0.002997 | 0.101799 | 0.029701 | 0.029701 | 0.029701

j - Monitoring and Alerting 0.003997 | 0.006979 | 0.345866 | 0.039407 | 0.042283 | 0.299726
Failure
1 - Warning Systems Failure 0.004993 | 0.007972 | 0.34652 | 0.049013 | 0.05186 | 0.306728

T — ATC-Wake DWA Failure 0.005988 | 0.008964 | 0.347174 | 0.058523 | 0.061341 | 0.313661

Table 4 with parameter values for the DWA maneuver (focus on Predictor performance)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

d — Improper Detector 0.002997 | 0.002997 | 0.002997 | 0.029701 | 0.029701 | 0.029701
Performance

h — Improper Model Prediction | 0.000003 | 0.002997 | 0.271000 | 0.000003 | 0.002997 | 0.271000

j - Monitoring and Alerting 0.003997 | 0.006979 | 0.273912 | 0.039407 | 0.042283 | 0.299726
Failure
1 - Warning Systems Failure 0.004993 | 0.007972 | 0.274638 | 0.049013 | 0.05186 | 0.306728

T — ATC-Wake DWA Failure 0.005988 | 0.008964 | 0.275363 | 0.058523 | 0.061341 | 0.313661
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A.4 — Parameter Values for the I-WAKE Maneouvre

Information required for the quantification of the on-board Wake Vortex Detection, Warning and Avoidance
Maneuver Probability, and example sub-system requirements are listed in the following Table.

a— Wake Vortex Outside Detection Range/Scanning 0.001
b — Inaccurate or Faulty Detection of Wake Vortices 0.001
d — Faulty or Inaccurate Aircraft Data 0.001
e — Faulty or Inaccurate WV Model Estimation 0.001
f — Faulty or Inaccurate Meteo Nowcasting 0.001
h — Loss of WV DWA Tactical Function 0.001
j — Aircraft Pilot not able to initiate missed approach 0.001

Conditional Probability Table for P(c | a, b)

Wake Vortex Detection Non Outside (0) Outside (1)
Range Scanning (a)
Detection of Wake Non Failure (0) Failure (1) Non Failure (0) Failure (1)
Vortices (b)

IMPROPER
DETECTOR 0.0001 0.001 0.001 0.9999
PERFORMANCE (c=1)

P(c=1 | a=0, b=0)

Given 1000000 single runway arrivals from the X airport flights and given Wake Vortex not Outside Detection
Range Scanning and Non Failure of the Detection of Wake Vortices; in how many of the arrivals will the
Detector Performance still be improper?

P(c=0| a=0, b=1)=

Given 1000000 single runway arrivals from the X airport flights and given Wake Vortex not Outside Detection
Range Scanning, while the Detection of the Wake Vortices fails; in how many of the arrivals will the Detector
Performance still be proper?

P(c=0| a=1, b=0)=

Given 1000000 single runway arrivals from the X airport flights, where even though Wake Vortex Outside
Detection Range Scanning, the Detection of the Wake Vortices does not fail; in how many of the arrivals will the
Detector Performance still be proper?

P(c=0| a=1, b=1)=

Given 1000000 single runway arrivals from the X airport flights and given Wake Vortex not Outside Detection
Range Scanning and also the Detection of the Wake Vortices fails; in how many of the arrivals the Detector
Performance still be proper?

Conditional Probability Table for P(g | f, e, d)

Aircraft Data Non Inaccurate (0) Inaccurate (1)

WYV Model Estimation Non Failure (0) Failure (1) Non Failure (0) Failure (1)

Meteo Nowcasting Non Failure | Failure | Non Failure | Failure | Non Failure | Failure | Non Failure Failure
© @ © @ © (@) © @

IMPROPER MODEL

PREDICTION (g=1) 0.000001 0.0001 0.0001 0.001 0.0001 0.001 0.001 0.999999

P(g=1 | d=0, e=0, f=0)

Given 1000000 single runway arrivals from the X airport flights and given Non Inaccurate Aircraft Data, WV
Model Estimation and Meteo Nowecasting; in how many of the arrivals will the Model Prediction still be
improper?

P(g=0 | d=0, e=0, /~1)

Given 1000000 single runway arrivals from the X airport flights and given Non Inaccurate Aircraft Data and
WYV Model Estimation but Faulty of the Meteo Nowcasting; in how many of the arrivals will the Detector
Performance still be proper?

P(g=0 | d=0, e=1, f=0)

Given 1000000 single runway arrivals from the X airport flights, where although WV Model Estimation fails,
the Aircraft Data and Meteo Nowcasting do not fail; in how many of the arrivals will the Detector Performance
still be proper?
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P(g=0 | d=0, e=1, f~1)

Given 1000000 single runway arrivals from the X airport flights and given Faulty of the WV Model Estimation
and Meteo Nowcasting but Non Inaccurate Aircraft Data; in how many of the arrivals will the Detector
Performance still be proper?

P(g=0 | d=1, e=0, /=0)

Given 1000000 single runway arrivals from the X airport flights, where though the Aircraft Data fails, WV
Model Estimation and Meteo Nowcasting do not fail; in how many of the arrivals will the Detector Performance
still be proper?

P(g=0 | d=1, e=0, f=1)

Given 1000000 single runway arrivals from the X airport flights and given Inaccurate Aircraft Data and WV
Model Estimation but Non Failure of the Meteo Nowcasting; in how many of the arrivals will the Detector
Performance still be proper?

P(g=0 | d=1, e=1, /<0)

Given 1000000 single runway arrivals from the X airport flights and given Faulty of the WV Model Estimation
and Meteo Nowcasting but Non Failure of the Aircraft Data; in how many of the arrivals will the Detector
Performance still be proper?

P(g=0|d=1, e=1, f<1)

Given 1000000 single runway arrivals from the X airport flights and given that the Aircraft Data, WV Model
Estimation and Meteo Nowcasting fail;in how many of the arrivals will the Detector Performance still be proper?

Conditional Probability Table for P(i | h, g, )

Detector Non Improper (0) Improper (1)
Performance

Model Prediction Non Improper (0) Improper (1) Non Improper (0) Improper (1)

WV DWA Tactical Non Loss Loss (1) Non Loss (0) Loss (1) Non Loss Loss (1) Non Loss Loss (1)
Function (0) 0) 0)

I-WAKE
MONITORING
AND ALERTING
FAILURE (i=1)

0.000001 0.0001 0.0001 0.001 0.0001 0.001 0.001 0.999999

P(=1 | ¢=0, g=0, h=0)

Given 1000000 single runway arrivals from the X airport flights and given Non Improper Detector Performance
and Model Prediction and Non Loss of the WV DWA Tactical Function; in how many of the arrivals will the I-
Wake Monitoring and Alerting still fail?

P(i=0 | ¢=0, g=0, h=1)

Given 1000000 single runway arrivals from the X airport flights and given Non Improper Detector Performance
and Model Prediction but Loss of the WV DWA Tactical Function, in how many of the arrivals will the I-Wake
Monitoring and Alerting still not fail?

P(@=0 | c=0, g=1, h=0)

Given 1000000 single runway arrivals from the X airport flights, where although Improper Model Prediction, the
Detector Performance is not Improper and there is not Loss of the WV DWA Tactical Function; in how many of
the arrivals will the [-Wake Monitoring and Alerting still not fail?

P(i=0| =0, g=1, h=1)

Given 1000000 single runway arrivals from the X airport flights and given Improper Model Prediction and Loss
of the WV DWA Tactical Function but Non Improper Detector Performance; in how many of the arrivals will
the I-Wake Monitoring and Alerting still not fail?

P(i=0| c=1, g=0, h=0)

Given 1000000 single runway arrivals from the X airport flights, where though Improper Detector Performance,
there is Non Improper Model Prediction and Non Loss of the WV DWA Tactical Function; in how many of the
arrivals will the I-Wake Monitoring and Alerting still not fail?

P(i=0 | c=1, g=0, h=1)

Given 1000000 single runway arrivals from the X airport flights and given Improper Detector Performance and
Loss of the WV DWA Tactical Function but Non Improper Model Prediction; in how many of the arrivals will
the I-Wake Monitoring and Alerting still not fail?

P@i=0| c=1, g=1, h=0)

Given 1000000 single runway arrivals from the X airport flights and given Improper Detector Performance and
Model Prediction but Non Loss of the WV DWA Tactical Function; in how many of the arrivals will the I-Wake
Monitoring and Alerting still not fail?
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P@i=0| c=1, g=1, h=1)

Given 1000000 single runway arrivals from the X airport flights and given Improper Detector Performance and
Model Prediction and Loss of the WV DWA Tactical Function; in how many of the arrivals will the I-Wake
Monitoring and Alerting still not fail?

Conditional Probability Table for P(T |j, i)

I-Wake Monitoring and Non Failure (0) Failure (1)

Alerting (i)

Aircraft/pilot (j) Able to initiate missed Not able to initiate Able to initiate missed Not able to initiate
P approach (0) missed approach (1) approach (0) missed approach (1)

I-WAKE DWA

FAILURE (T=1) 0.0001 0.001 0.001 0.9999

P(T=1 | i=0, j=0)

Given 1000000 single runway arrivals from the X airport flights and given that the I-Wake Monitoring and
Alerting systems component does not fail and the aircraft pilot is able to initiate an evasive action (missed
approach); in how many of the arrivals will the aircraft/pilot will still fail to avoid a wake encounter?

P(7=0| =0, j=1)=

Given 1000000 single runway arrivals from the X airport flights and given that the I-Wake Monitoring and
Alerting systems component does not fail however the aircraft pilot is not able to initiate an evasive action
(missed approach) because he makes a mistake; in how many of the arrivals will the aircraft/pilot still be able to
avoid a wake encounter?

P(T=0 | i=1, j=0)=

Given 1000000 single runway arrivals from the X airport flights, where even though the I-Wake Monitoring and
Alerting systems component failed, the aircraft pilot is able to initiate an evasive action (missed approach); in
how many of the arrivals will the aircraft/pilot still be able to avoid a wake encounter?

P(7=0| =1, /=1)=

Given 1000000 single runway arrivals from the X airport flights and given that the I-Wake Monitoring and
Alerting systems component failed and also the aircraft pilot is not able to initiate an evasive action (missed
approach); in how many of the arrivals will the aircraft/pilot still be able to avoid a wake encounter?

A.5 — Expert Distributions for the Nodes of the On-board Wake Vortex
Detection, Warning and Avoidance Manoeuvre Probability Model

The Questionnaire

In this questionnaire, it is assumed that an on-board WV detection system is installed in all
aircraft arriving at the destination airport. We would like to obtain your view on the I-Wake
operation, in order to obtain insight into the impact of individual subsystem failures on the
overall risk of a wake vortex induced incident/accident. This information will be used for the
setting of requirements for the individual I-Wake sub-system components and related hazards.
Please fill in your 5%, 50% and 95% quantiles for the following uncertain quantities.

Given 100 single runway arrivals from the X airport flights:
1. What is the percentage of flights that the on-board WV detection system (e.g.

LiDAR) does not detect wake vortices of the leading aircraft, when these are
inside the planned scanning volume of air ahead of the aircraft?

5% 50% 95%
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2. What is the percentage of flights that the on-board WV detection system (e.g. LIDAR)
does not detect wake vortices of the leading aircraft, because these are outside the
scanning volume of air ahead of the aircraft?

5% 50% 95%

3. What is the percentage of flights which would register an improper detector
performance?

5% 50% 95%

4. What is the percentage of flights where the aircraft data, as used in the [-Wake system,

is inaccurate/wrong?

5% 50% 95%

5. What is the percentage of flights where the WV model locations and/or strengths

predictions, are inaccurate/wrong?

5% 50% 95%

6. What is the percentage of flights when the meteorological nowcasting data, as

used in the I-Wake system, is inaccurate or wrong?

5% 50% 95%
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7. What is the percentage of flights which would register an improper model
prediction?

5% 50% 95%

8. What is the percentage of flights which would register a l0oss of the WV DWA tactical

function?

5% 50% 95%

9. What is the percentage of flights where a timely warning is not provided to the flight

crew when one should be given?

5% 50% 95%

10. What is the percentage of flights when an aircraft pilot is not able to initiate evasive

action (missed approach) when needed?

5% 50% 95%

11. What is the percentage of flights when an aircraft pilot is not able to perform the I-

Wake Detection, Warning and Avoidance Maneuver when required?

5% 50% 95%
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