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1. INTRODUCTION 
 

1.1 Scope  
 
In Europe, wake vortex prediction and detection systems are being introduced in order to 
increase airport capacity, while maintaining safety. The EC project ATC-Wake aims to 
develop a ground based system for ATC (Air Traffic Control) that would allow variable 
aircraft separation distances, as opposed to the fixed distances presently applied at airports. 
The EC project I-Wake aims to develop an on-board system for pilots in order to minimize 
the probability of a wake encounter. As part of these projects, quantitative safety assessments 
were performed. So far, the focus of these safety studies was the assessment of the risk related 
to the wake encounter itself.  
 
However, for a quantitative safety assessment of the use of wake vortex prediction and 
detection systems, the following issues should also be considered: 
 

- Humans working with these systems have to react on alerts, so as to ensure that a pilot 
will be able to initiate a wake vortex avoidance maneuver in time. 

 
- If one or more of the system components provide a wrong or erroneous advice, there 

will be a higher risk on the presence of (severe) wake vortices. The consequences 
might be catastrophic, in case reduced separation is applied. 

 
Therefore, there is a need to understand more clearly what the impact of hazards, human 
errors, and system failures is on the incident/accident risk related to the use of wake vortex 
prediction and detection systems such as ATC-Wake and also I-Wake. 
 

1.2 Objectives 
 
General Objective:  
 
We aim to analyze the use of two new wake vortex prediction and detection systems. One 
ground based systems (ATC-Wake) and one on-board system (I-Wake), both used 
independently. We intend to apply a rich variety of mathematical models and methodologies 
based on continuous Bayesian Belief Nets (BBNs), discrete BBNs, and Fault Trees. It is our 
objective to provide insight into hazards and system failures related to the use of wake vortex 
prediction and detection systems. In this context, it is foreseen that the models will be used for 
the setting of requirements for these systems.  
 
 
 
 
Particular Objectives: 
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This aim is to provide insights into the hazards and system failures related to the use of wake 
vortex prediction and detection systems. Three models, developed by NLR, will be analyzed 
in detail to support of the setting of requirements. These models are: 
 

- A stochastic model, based on use of continuous Bayesian Belief Nets, for the initial 
aircraft separation time between aircraft taking off at a single runway; 

 
- A Fault Tree model for the assessment of the impact of ground based system failures 

on a wake vortex detection, warning, and avoidance manoeuvre; 
 

- A discrete Bayesian Belief Net for the assessment of the impact of an on-board system 
failure on a wake vortex avoidance manoeuvre. 

 
The main ideas behind the use of Bayesian Belief Nets and the data requirements for the use 
of these three models will be investigated. Several questionnaires to elicit required data for the 
use of these models from operational experts will be proposed. 
 

1.3 Modelling Approach 
 
Bayesian belief nets (BBNs) become recently very popular models to represent high 
dimensional uncertainty distributions. A BBN is an acyclic directed graph in which nodes 
represent random variables and the arcs ‘influences’ between variables. We will use BBNs to 
analyse and evaluate the hazards and system failures related to the use of wake vortex 
prediction and detection systems. The proposed approach includes: 
 
1. A graph and decision theory based model structure representing the stochastic initial 

aircraft separation time at the start of roll during ATC-Wake single runway departures is 
constructed. It enables the analysis of the safety aspects of the ATC-Wake system and 
operational concept in a causal way. The modelling approach will be based on the use of 
Continuous Bayesian Belief Nets. 

 
2. A causal model for the assessment of the ATC Wake Detection, Warning and Avoidance 

Maneuver is introduced. This BBN will be applied to evaluate the risk of system failure 
for the departure operation. We will use two approaches to quantify such a model: 
Discrete Bayesian Belief Nets and Fault Trees. 

 
3. A causal model for the assessment of the I-Wake Detection, Warning and Avoidance 

Maneuver probability is introduced. A Discrete Bayesian Belief Net BBN will be applied 
to evaluate the risk of system failure for the arrival operation. 

 
In the model for the aircraft separation time the random variables are continuous. We will 
follow the copula – vine approach presented in [Kurowicka D., Cooke R.M. 2004]. It allows 
nodes having continuous invertible distribution functions. The influences are specified as 
(conditional) rank correlations, which are realized by copula that represents (conditional) 
independence as a zero (conditional) correlation. Updating such non-parametric BBN requires 
re-sampling the whole structure, which is very time consuming. To overcome this problem 
the structure is sampled once and used as data to quantify discretized (each node 10 states) 
version of continuous structure. This way the reduced assessment burden and modeling 
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flexibility of the continuous BBNs is combined with the fast updating algorithms of discrete 
BBNs. 
 
A different approach will be followed for the second model, representing a ground based 
wake vortex detection, warning and avoidance maneuver. From the problem statement, we 
will initially constrain the variables to take two values or two states. Moreover, we say that 
the failure of one the parent-nodes occurs if any one of its components fails. We shall 
compare two approaches that may be applied to model the hazard and system failures: the use 
of a Fault Tree and a discrete BBN respectively.  
 
A third approach will be followed for the third model, representing an on-board wake vortex 
detection, warning and avoidance maneuver. Because of the statement of the problem, we will 
initially use a discrete BBN, since we will be able to constrain the variables to take two states. 
The use of discrete BBNs as most appropriate approach which may be applied to model the 
failure of aircraft/pilot performing a detection, warning, and avoidance maneuver will be 
motivated on basis of assumptions made. 
 

1.4 Outline of the Thesis 
 
This thesis describes the results of a graduation project, carried out as part of the Master of 
Science Programme in Applied Mathematics at Delft University of Technology. It describes 
and discusses a case study in which Discrete and Continuous BBNs are applied for analysis of 
wake vortex prediction and detection systems. 
 
Chapter Two deals with ground based prediction and detection systems and its use during 
departures from single runways. The application of continuous BBNs, discrete BBNs, and 
fault trees to different parts of the ATC-Wake operation is presented and discussed. Chapter 
Three deals with the use of an on-board wake vortex detection, warning and avoidance 
system. Here, discrete BBN are used to support the setting of requirements for the different 
system components. Readers interested in the mathematical foundation of the applied 
methods may refer to Chapter Four and the references of this document for more information. 
Finally, conclusions and recommendations are given in Chapter Five. The Appendices contain 
the questionnaires for the elicitation of the required data from operational experts. 
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2. ATC-WAKE MODELS: CONTINUOUS AND DISCRETE 
BAYESIAN BELIEF NETS 
 
For a description of the current practice Single Runway Departure (SRD) operation, as 
well as the SRD operation as proposed in the ATC-Wake concept refer to [Speijker et al. 
2005b, 2005c, 2006b].  
 
2.1 ATC-Wake: The Aircraft Separation Time Model 
 
A mathematical model and techniques are introduced to incorporate the role of humans 
working with ATC-Wake. Thus, the so called aircraft separation time model is presented 
in this Section (see Figure 2.1 in Section 2.1.2). We should point out that a previous 
version of this model was developed by NLR, which was slightly adapted [Speijker et al 
2005a]. We propose the use of a continuous Bayesian Belief Net to describe the 
relationships between the model components.  
 
From the qualitative safety analysis of the ATC-Wake operation [Scholte et al. 2004, 
Speijker et al. 2005b], the following two factors were considered there the most relevant 
for the construction of a causal model: 
 
− Aircraft separation time (at take off); 
− Wake detection, warning, and avoidance manoeuvre. 
 
It is assumed that these two stochastic phenomena are independent. Therefore, for each a 
Bayesian Belief Network (BBN) will be constructed. The continuous BBN for the 
Aircraft Separation Time is described in this Section. The discrete BBN for the Wake 
Detection, Warning, and Avoidance Maneuver is presented in Section 2.2. 
 
For a quantitative assessment of the wake vortex induced risk related to the ATC-Wake 
operation with reduced separation, there are three main issues to consider:  
 
− The controller working with the ATC-Wake system has to instruct the pilot to initiate 

a wake vortex avoidance manoeuvre, in case an ATC-Wake warning/alert is raised. 
− If one or more ATC-WAKE system components provide(s) wrong or erroneous 

advice, there will be a higher risk on the presence of (severe) wake vortices. The 
consequences might be CATASTROPHIC, because reduced separation is applied. 

− The separation distance/time will vary along the flight track, and will usually not be 
exactly the same as the separation minima advised by the Separation Mode Planner. 
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2.1.1 Brief Introduction to the Application of continuous BBNs for The 
Aircraft Separation Time Model 
 
Bayesian belief nets (BBNs) become recently very popular models to represent high 
dimensional uncertainty distributions. BBN is an acyclic directed graph in which nodes 
represent random variables and the arcs ‘influences’ between variables1. We have used 
BBNs to build the Aircraft Take Off Separation Time model. Random variables in this 
model are continuous but not necessarily normally distributed. Hence the known normal 
BBNs [Cowell, R.G. et al 1999] cannot be applied here. 
 
We could discretize our continuous variables and transform our problem to a discrete 
BBN. However, if we decide to choose not too crude discretization (more than 2 states) 
the assessment burden that we would have to deal with would be too cumbersome. If only 
two states for variables are used, the results will not be very precise.  
 
The new approach to continuous BBNs using vines [Bedford T.J., Cooke R.M. 2002] and 
copula that represents (conditional) independence as a zero (conditional) correlation was 
introduced in [Kurowicka D., Cooke R.M. 2004]. It allows nodes having continuous 
invertible distribution functions. Hence this approach is not restricted to any parametric 
form (as normal BBNs). The influences are specified as rank correlations and conditional 
rank correlations. This approach allows traceable and defensible quantification methods 
but it comes at a price: these BBNs must be evaluated using Monte Carlo simulation.  
 
We follow the copula – vine approach presented in [Kurowicka D., Cooke R.M. 2004] 
for the Aircraft Take Off Separation Time model. All marginal distributions and 
(conditional) rank correlations are specified. The BBN has to be sampled. We present a 
comprehensive description of the application of this methodology to the Aircraft Take 
Off Separation Time model. 
 
Updating such non-parametric BBN requires re-sampling the whole structure. This is not 
as elegant as updating discrete BBNs and is very time consuming. To overcome this 
problem the structure is sampled once and used as data to quantify discretized (each node 
10 states) version of continuous structure. This way the reduced assessment burden and 
modeling flexibility of the continuous BBNs is combined with the fast updating 
algorithms of discrete BBNs [Hanea A., Kurowicka D., Cooke R.M. 2005].  
 
2.1.2 Description of the Model and Data 
 
The causal model for the aircraft separation time is presented in Figure 2.1. The non-
parametric continuous BBN for such a causal model and the explanation of every node 
are shown. Here, we will follow the ‘copula – vine’ approach to continuous BBNs 
[Kurowicka D., Cooke R.M. 2004] and associate nodes with continuous invertible 
                                                 
1 A wider overview about BBNs and related mathematical definitions is presented in Chapter 4. 



Chapter 2. ATC-Wake Models: Continuous and Discrete Bayesian Belief Nets                      
 
 

- 6 - 

distributions, influences with (conditional) rank correlations. In order to quantify such a 
BBN using the ‘copula – vine’ approach, we need to specify all one-dimensional 
marginal distributions and the (conditional) rank correlations.  
 

ATCo Take Off
Clearance Time

(7)

Separation Mode
Planner Failure

(2)

Wind Forecast Error 
(1)

Prescribed Time 
Spacing

(4)

Wind Nowcast 
Error
 (5) Error ATC 

Supervisor
(3)

Pilot Take Off Time
 (8)

Aircraft Take Off
Separation Time

(9)

Error Runway/Tower 
Controller

(6)

6898.021 −=r

5698.043 =r
3669.0342 =r

7651.076 =r6565.0675 −=r

2958.098 =r3121.0897 =r

35537.08794 =r

 
Figure 2.1: BBN for the aircraft separation time model 

 
The explanation of the nodes in the BBN in Figure 2.1 is as follows:  
 
− Aircraft Take Off Separation Time (9): Time difference between start of roll of the 

leader and the follower aircraft. 
− ATCo Take Off Clearance Time (7): Time difference between start of roll of the 

leader and take off clearance of the ATCo for the follower aircraft. 
− Pilot Take Off Time (8): Time difference between take off clearance of the ATCo 

and the start of roll of the aircraft. 
− Prescribed Time Spacing (4): Separation Time Prescribed by the ATC supervisor for 

a departing leader and follower aircraft combination (in ATC-Wake Mode). 
− Separation Mode Planner Failure (2): Time difference between output of the 

Separation Mode Planner (i.e. Separation Time Advise) and the separation time that 
should be advised. 

− Wind Forecast Error (1): Meteo system wind profile forecast error at reference 
height (10 m altitude). 

− Wind Nowcast Error (5): Meteo system wind profile nowcast error at reference 
height (10 m altitude). 

− Error Runway/Tower controller (6): Time difference between Separation Time 
prescribed by the ATC Supervisor and Take Off Clearance Time. 

− Error ATC Supervisor (3): Time difference between Separation Time prescribed by 



Chapter 2. ATC-Wake Models: Continuous and Discrete Bayesian Belief Nets                      
 
 

- 7 - 

the ATC Supervisor and the separation time that should be advised. 
 
Throughout, when we talk about the univariate continuous random variables we denote 
them by the upper iX ’s. Realizations of these random variables will be denoted by the 
lower cases ix ’s where i  refer to their corresponding number in the BBN. How to get the 
distributions of all nodes is described in Section 2.1.3. Since the influences are associated 
with (conditional) rank correlations (which does not depend on marginal distribution 
functions) then one may separate information about dependence and marginal 
distributions. We can easily transform variables to uniforms on ( )1,0 . This can be done 
as follows:  
 
If iF  denotes the cumulative distribution function of the i-th node hence the variables iX  
then ( )iii XFU =  is a variable uniform on ( )1,0 .  
 
After specification of the dependence structure on transformed to uniforms variables, 
they will be transformed back to their original distributions by applying inverse 
transformation ( )iii UFX 1−= .  
 
The protocol to assign (conditional) rank correlations to the arcs of the BBN; as well as, 
the procedure of sampling the structure for transformed variables are shown in the 
Section 2.1.4.  
 
We point out that the probability distributions for the nodes in the BBN and (conditional) 
rank correlations are elicited using expert opinion [theory and methodology regarding 
structured expert judgment is found in Cooke R.M. 1991, Cooke R.M., Goossens L.H.J. 
1999]. Initial data used to obtain insight were obtained through the application of 
questionnaires (See questionnaires and provided data in Appendix A.1). 
 

2.1.3 Expert Distributions 
 
Some marginal distributions for the Aircraft Take Off Separation Time Model have to be 
obtained from experts. In this context, we briefly present the Expert Judgment 
methodology which can be used to accomplish this task. An important step of the 
classical model [Cooke R.M. 1991] is the combination of all experts’ assessments into 
one combined uncertainty assessment on each query variable. Here, we present the 
combination scheme named Equal weight decision maker, which gives each expert equal 
weights. Another scheme based on performance of experts on questions has successfully 
been applied in several studies [See Cooke, 1991; Cooke R.M., Slijkhuis K.A.; Cooke 
R.M., Goossens L.H.J., 1999; L.H.J. Goossens, R.M. Cooke 1996]. For practical reasons, 
we suggest the use of the equal weight combination scheme. 
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First of all, experts are asked to assess their uncertainty distribution via specification of a 
5%, 25%, 50%, 75%, and 95%-iles for unknown values for each variable of interest. To 
build experts distribution we find minimum information distribution with respect to 
background measure satisfying expert’s quantiles. The following procedure is used. Let 
( )eqi  be the i% quantile of expert e. We assume that this minimum information 

distribution is restricted to a bounded interval. The intrinsic range or bounds for the 
variable distributions is obtained using the 10% overshoot rule: The smallest interval 
containing all assessments for a given item is overshot above and below. The expert’s 
information scores are affected by the choice of the overshot; making this overshoot very 
large tends to suppress differences in the experts’ information scores, however the effect 
is very low. First we find the lowest and the highest values named, 
 

( ) ( ){ }6,,1min 55 qql …= ,  ( ) ( ){ }6,,1max 9595 qqh …=  
 
Then we set 
 

( ) [ ],1.0 lhleql −×−=  
 
and similarly, 
 

( ) [ ],1.0 lhheqh −×−=  
 
The intrinsic range is thus ( ) ( )[ ]eqeq hl , . The distribution of expert e is then approximated 
by linearly interpolating the quantile information ( )( )0,eql , ( )( )05.0,5 eq , ( )( )25.0,25 eq , 

( )( )5.0,50 eq , ( )( )75.0,75 eq , ( )95.0,95q , and ( )( )1,eqh . This is the distribution with 
minimum information (with respect to distribution on the intrinsic range) that satisfies the 
expert’s quantiles [Cooke R.M., 1991]. The above procedure gives us a distribution 

function ijF ,  for expert j on variable i. We specify equal weight ⎟
⎠
⎞

⎜
⎝
⎛

e
1  to each distribution 

and the combined distribution function is now ∑ ⎟
⎠
⎞

⎜
⎝
⎛

ej
ijF

e"
,

1 , see [Cooke R.M., 2001; 

Bedford T.J., Cooke R.M. 2003].  
 
The Expert Judgment methodology presented above can be used to fit distributions on 
quantiles given by experts (the questionnaire is formulated in Appendix A1.). Although, 
here initial data used to obtain insight are obtained by following another approach. In 
order to get marginal distributions, we use means and standard deviations of the marginal 
distributions. Hence, probability distributions for the nodes in the BBN have been 
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estimated. Those considered adequate for the marginal distributions required are 
presented in Appendix A12.  
 
In this respect, four variables were assumed to have the following gamma distributions: 

4X ~ ( )1111.1,814xΓ , 7X ~ ( )2778.0,9741.3237xΓ , 8X ~ ( )3333.3,0001.98xΓ , 

9X ~ ( )8750.1,649xΓ . On the other hand, we assume that the variables having normal 
distributions are: 1X ~ ( )89.2,0N , 2X ~ ( )100,0N , 3X ~ ( )100,0N , 5X ~ ( )0625.0,0N , 

6X ~ ( )25,0N  (see Appendix A.1, ATC-Wake D3_5b and D3_6b for the details).  
 
2.1.4 ‘Copula – Vine’ Approach to Continuous BBN for The Aircraft 
Separation Time Model 
 
We use the protocol presented in [Kurowicka D., Cooke R.M. 2004] to specify 
(conditional) correlations to be required from experts in the continuous BBN for the 
aircraft separation time. As we already said these correlations are assigned to the directed 
arcs of the BBN. 
 
First we choose the sampling order 1, 2, 3, 4, 5, 6, 7, 8, 9 for the BBN structure, such that 
the ancestors of a node appear before that node in the ordering. This order is not unique; 
we could have chosen a different sampling order. Observe Figure 2.1, the node 
“Prescribed spacing”, numbered 4 has as ancestors the nodes “Error ATC Supervisor”, 
“Separation Mode Planner Failure”, and “Wind Prediction”; thereby, they were placed in 
the ordering before node 4 as nodes 3, 2 and 1, respectively. 
 
We write the complete factorization and underscore the nodes which do not have a direct 
“influence” with the conditioned variable, i.e., which are not its parents, and hence are 
not necessary in sampling it. This factorization is 
 

( ) ( )19,8,7,6,5,4,3,2,1 PP = ( )12P ( )123P ( )1324P ( )43215P ( )543216P  

( )4321657P ( )76543218P ( )653218749P                  (1) 

If we drop the underscored variables, we obtain the standard factorization for the BBN 
given as follows [Pearl J. 1988, Jensen F.V. 1996]:  

( ) ( )( )∏
=

=
9

1
921 ,,,

i
ii XpaXPXXXP …     (2) 

where ( )iXpa  denotes the parents of variable iX . 

                                                 
2 These probability distributions were fitted by using the disttool of the Statistics Demo in Matlab. 
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To sample a distribution specified by a continuous BBN we use the sampling procedure 
for the D -vine [Kurowicka D., Cooke R.M. 2006]. For each part of the factorization we 
build a D -vine on K  variables denoted by DK = D ( K , CK, IK). The ordering of the 
variables is very important. We start with the variable K ; then the dependent variables, 
CK; and, at the end the independent variables, IK.   
 
a) Let us start with the first term of the factorization, ( )1P . Since variable 1X  neither has 
dependent variables, nor independent ones, C1 = I 1 = φ . Then, the D -vine for 1X  is 
trivial, we denote it by D1= D (1). To sample 1X , we can just sample a uniform random 
variable, 
  

11 ux = .      (3) 
 
b) Second part of the factorization gets a bit more complicated. We take ( )12P .  

12
21r

 
C2 = { }1 ,    I 2 =φ     ⇒    21r  

Figure 2.2: D2 for the BBN for the aircraft separation time with 9 variables 
 
In Figure 2.2, we can see the D -vine D2 and sets of independent and dependent variables 
for 2X . There are no underscored variables, hence I2 =φ . The set of dependent variables 
C2 consists of the variable 1X , so the ordering of D2 is as in Figure 2.2. To specify 
dependence between 1X  and 2X , it is required to assign a rank correlation 12r  to the edge 
between 1X  and 2X  in D2 and equivalently to the corresponding arc in the BBN in 
Figure 2.1. The graphical representation of the sampling procedure is shown in Figure 
2.3: 
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2u

12F1

2x
2X

11 xu =

0

1X

12r

 
Figure 2.3: Graphical representation of sampling value of 2x  in D2 

 
We acquire a value of variable 2X , say 2x  in D2. The horizontal axis represents the 
random variable 2X , and its parent 1X  is placed on the vertical axis. The diagonal band 
copula3 [Cooke R.M., Waij R. 1986] realizes the correlation 12r  between these random 
variables. Value 11 xX =  is known from the first term of the factorization, this allows us 
to calculate the conditional distribution of 2X  given variable 11 xX = , denoted by 12F . If 

we sample value of the independent uniform variable 2U = 2u  and invert it with respect to 

12F  then we get the desired value 2x . So, the sampled value of variable 2X  is obtained 
as 
 

( )2
1
:122 1

uFx x
−= .     (4) 

 
Third part of the factorization can be now considered.  
 
c) ( )123P  
 

                                                 
3 This copula will be used in the text only to visualize the sampling procedure, since it can be easily drawn. 
Although, for applications we will use Frank’s copula [Frank M.J. 1979] as it does not add much 
information to the product of margins, enjoys the zero independence property and has a close form of 
conditional and inverse conditional distributions. For further details and mathematical background see 
Chapter 4.  
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2 13
0

0

 
Figure 2.4: D3 for the BBN for the aircraft separation time with 9 variables 

 
For the third part of the factorization K =3, and variables 1X  and 2X  are underscored, 
that is, 1X  and 2X  are independent of 3X . C 3 = φ  and I 3 = { }1,2 . Hence, the order of 
the variables is D 3 = D(3, 2, 1). Variables 1X  and 2X  were already sampled so we are 
now interested only in information about variable 3X , hence the information in the left-
most part of the vine (stood out area in Figure 2.4). Both 32r  , 231r  are equal to zero 

because 3X  is independent of 1X  and 2X .  
 
Therefore, to sample random variable 3X  we just sample the value of the independent 
uniform variable 3U , say 3u  
 

33 ux = .      (5) 
 
We turn to the fourth part of the factorization. 
 
d) ( )1324P  
 

3 2 14
43r

342r

0

0

 
Figure 2.5: D4  for the BBN for the aircraft separation time with 9 variables 

 
For the fourth term of the factorization K = 4; the set of dependent variables consists of 
variables 2X  and 3X , hence C4 = { }2,3 ; and, variable 1X  is underscored I 4 = { }1 , i.e., 
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variable 1X  is independent of variable 4X  given 2X  and 3X . We have D4 = D (4, 3, 2, 
1). Notice that the order of the variables stays the same as in D3. We are only interested in 
information about variable 4X  as variables 1X , 2X  and 3X  were already sampled. We 
have that 03241 =r , due to independence between variables 1X  and 4X  given 2X  and 

3X . The correlations 43r  and 342r  need to be specified4. 
 
The equality of the top correlation in D4, 3241r  to zero, makes quantile functions 321F  and 

324F  independent , hence we can reduce D4  to a vine on three variables, in this case D (4, 
3, 2) (circled area in Figure 2.5). Every time when some of the highest order (conditional) 
correlations of the left-most part of the vine are equal to zero, the D-vine can be reduced 
in a similar way. This simplifies the sampling of variable 4X  that does not depend on 
value of the variable 1X . From previous factorizations we know that the rank correlation 

32r  is equal to zero. The sampling procedure for the variable 4X , say 4x  is shown in 
Figure 2.6. 
 

34F
234F

4u

1

3X

3x 34r

4x
4X

( )232 xF

32F

324r

34F
( )334 xF0

 
Figure 2.6: Graphical representation of sampling value of 4x  in D4 

                                                 
4 Note that we can change the ordering in D4 to 4, 2, 3, 1, which allows us another possibility to specify 
conditional rank correlations, given as 42r  and 243r . Hence, we have the following two possibilities to 

specify (conditional) rank correlations in D4. 

K =4,  C4 = { }2,3 ,  I4 = { }1  ⇒  
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

342

43

r
r

 or 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

243

42

r
r
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Since 2X  and 3X  were already sampled then values of 33 xX =  and ( )232 xF  are known. 

We conditionalize copulas with correlations 43r  and 342r  on value of 33 xX =  and 

( )232 xF , respectively. We calculate conditional cumulative distribution functions 34F  

and 234F  (see Figure 2.6). We sample the value of the independent uniform variable 4U , 

say 4u  invert it with respect to 234F  and get value of the quantile 34F  which leads to 4x . 

Hence, 4x  is sampled as follows: 
 

( )( )4
1

:234
1

:344 23
uFFx xx

−−= .     (6) 
 
Now, we consider the fifth term of Equation 1. 
 
e) ( )43215P  
 
In this term, we have K = 5, the set of dependent variables is empty (C 5 = φ ) and the 
rest of the variables are underscored I 5 = { }1,2,3,4 , that is, variable 5X  is independent 
of 1X , 2X , 3X , 4X . We can then use the following ordering for D5 = D (5, 4, 3, 2, 1), 
which after incorporating all zero correlations in the left most part of the vine simplifies 
to D (5). We are not required to specify any (conditional) rank correlation. Value 5x  of 

5X  in D5 is found by simply sampling the value of the independent uniform random 
variable 55 uU =  
  

55 ux = .      (7) 
 
Similarly, we can get value 6x  for the sixth term of the factorization. 
 
f) ( )543216P  
 
We have K =6, C6 = φ  and I 6 = { }1,2,3,4,5 , that is variable 6X  is independent of 1X , 

2X , 3X , 4X , 5X . Then, the ordering of D6 is the following D6 = D (6, 5, 4, 3, 2, 1), 
which simplifies to D (6). Hence 
 

66 ux = .      (8) 
 
We present the seventh term of the factorization. 
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g) ( )4321657P  

567
76r

675r

0

 
Figure 2.7: D7 for the BBN for the aircraft separation time with 9 variables 

 
This part of the factorization has K =7, the set of dependent variables consist of two 
variables 5X  and 6X  then C 7 = { }5,6  and there are four underscored variables I 7 = 
{ }1,2,3,4 . Hence, D7 = D (7, 6, 5, 4, 3, 2, 1), the order of the variables stays the same (7, 
6, 5, 4, 3, 2, 1) as for the previous vines. So far, we have sampled variables 1X , 2X , 3X , 

4X , 5X  and 6X , so we only need to incorporate the information about variable 7X  
given in the left-most part of D7. Notice that, we have reduced D7 as we did for D4 to D 
(7, 6, 5). We must assign rank correlation 76r  to the edge that connects variables 7X  and 

6X  in D7 and equivalently to the corresponding arc in the BBN in Figure 2.1. We must 
also incorporate information about the conditional dependence of variables 5X  and 7X  
given variable 6X  in form of conditional correlation 675r 5, hence 675r  is assigned to the 

arc between 7X  and 5X  in the BBN in Figure 2.1. From previous factorizations we find 
that 65r  is equal to zero. 
 
Now the sampling procedure can be represented graphically as 
 

                                                 
5 As we mentioned for D4, variables in D7 can be given in the different order (7, 5, 6), if it is the case 75r  
and 576r  are being needed. Hence, we have the following possibilities to specify (conditional) rank 

correlations in D7: 

C 7 = { }5,6 ,  I 7 = { }1,2,3,4  ⇒  
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

675

76

r
r

 or 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

576

75

r
r
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76r

6X

6x

7X

675r

65F

5x

( )667 xF
7x

0

7u

657F
67F1

 
Figure 2.8: Graphical representation of sampling value of 7x  in D (7,6,5).  

 
Figure 2.8 shows the sampling value of 7x  in D (7, 6, 5). It can be obtained in a way 
analogous to obtaining value 4x  . We get 
 

( )( )7
1

:657
1

:677 56
uFFx xx

−−= .    (9) 
 
Now, we shall explain the case of the eighth part of the factorization. 
 
h) ( )76543218P  
 
In this term, K = 8, the set of dependent variables is empty, C 8 = φ  and I 8 = 
{ }1,2,3,4,5,6,7 , that is variable 8X  is independent of 1X , 2X , 3X , 4X , 5X , 6X  and 

7X . Hence, we use the following ordering for D8 = D (8, 7, 6, 5, 4, 3, 2, 1) which reduces 
to D (8). The sampling value of 8x  is obtained by just sampling the independent uniform 
variable 8U , say 8u  
 

88 ux = .      (10) 
 
Finally, the ninth part of the factorization is shown. 
 
i) ( )653218749P  
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4789
98r

897r

7894r

0

00

 
Figure 2.9: D9 for the BBN for the aircraft separation time with 9 variables 

 
We can see in this term of the factorization that K =9, the set of dependent variables has 
three variables, C9 = { }4,7,8  and the underscored variables are I 9 = { }1,2,3,5,6 . 
Hence, the ordering of the variables is given as D9 = D (9, 8, 7, 4, 6, 5, 3, 2, 1). Finally, 
following the same procedure as above, D9 is reduced to a sub-vine on four variables, 
namely,  D (9, 8, 7, 4). We are only interested in the information about variable 9X . We 
can assign a rank correlation 98r  to the edge of D9 and equivalently to the arc between 
variables 8X  and 9X  in BBN in Figure 2.1. We also need to incorporate the information 
about two conditional dependences 897r  and 8794r  (we know values of variables 7X  and 

8X  from D7 and D8, respectively, see Equations 9 and 10)6.  
 
Figure 2.10 shows the sampling procedure to realize (conditional) correlations in D9. 
 

                                                 
6 As we said before, if we can change the order of the parents; we may have several possibilities to specify 
conditional rank correlations, namely, 

C 9 = { }4,7,8 , I 9 = { }1,2,3,5,6    ⇒  

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

8794

897

98

r

r
r

 , 

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

8497

894

98

r

r
r

 , 

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

7894

798

97

r

r
r

 , 

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

7498

794

97

r

r
r

 , 

                                                        

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

4897

498

94

r

r
r

 or 

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

4798

497

94

r

r
r
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98r

8X

9X 89F

897r

87F

8794r

879F

874F

8x

9x

( )787 xF

( )889 xF

( )4874 xF

( )7879 xF

89F 879F 8749F
9u

1
 

Figure 2.10: Graphical representation of sampling value of 9x  in D9 

Since 74 , XX  and 8X  were already sampled then values of 88 xX = , ( )787 xF  and 

( )4874 xF  are known. We conditionalize copulas with correlations 98r , 897r  and 8794r  on 

the values of 88 xX = , ( )787 xF , and ( )4874 xF , respectively. We calculate conditional 

cumulative distribution functions 89F , 879F  and 8749F  (see Figure 2.10). We sample the 

value of the independent uniform variable 9U , say 9u  invert it with respect to 8749F  and 

get value of the quantile 879F  which is used to get quantile 89F , which leads to 9x .  
 
The sampling procedure of 9x  in D9 yields,  
 

( )( )( )9
1

:8,7,49
1

:8,79
1

:899 478
uFFFx xxx

−−−= .    (11) 
 
We conclude that the following rank correlations must be specified: 
 

{ }879489798675763424321 ,,,,,,, rrrrrrrr     (12) 
 

We have specified eight (conditional) correlations for the BBN structure shown in Figure 
2.1 the same as the number of arcs in this BBN. Conditional independence properties of 
the BBN were used to simplify the sampling procedure in D -vines. 
 
In principle, it is not necessary to draw D -vines to see which (conditional) correlations 
are necessary for calculations. One can follow the algorithm presented below: 
 

• Find sampling ordering. An ordering such that all ancestors of node i appear 
before i in the ordering. A sampling ordering begins with a source node and ends 
with a sink node.  
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• Index the nodes according to the sampling order 1, …, n. 
• Factorize the joint in the standard way (Equation 2) following the sampling order.  
• Underscore those nodes in each condition, which are not parents of the 

conditioned variable and thus are not necessary in sampling it.  
The underscored nodes could be omitted thereby yielding the familiar 
factorization of the BBN as a product of conditional probabilities, with each node 
conditionalized on its parents (for source nodes the set of parents is empty). 

• For each term i with parents (non-underscored variables) ( )ipii ...1 , associate the 
arc ( ) ii kip →−  with the conditional rank correlation 
 

( )( ) 0;, =kiir ip  
 

( ) ( ) ( )( ) ( ) 11;...,,, 1 −≤≤+−− ipkiiiir kipipkip     (13) 
 
where the assignment is vacuous if ( ){ } φ=ipii ...1 . Assigning conditional rank 
correlations for i = 1, …, n, every arc in the BBN is assigned a conditional rank 
correlation between parent and child. 

 
In Section 2.1.5, the procedure of how the values of the required conditional and 
unconditional rank correlations are obtained is presented. There, an expert assessed 
excedence probabilities over original variables. We show in details how from these 
elicited excedence probabilities the (conditional) rank correlations become known.  

 
2.1.5 Procedure to obtain the Values of the Required Conditional and 
Unconditional Rank Correlations 
 
Assuming copula a unique joint distribution could be determined and sampled based on 
the previous protocol. The (conditional) rank correlations associated with each edge are 
determined. And these can be realized by the copula. For that, we do not only require 
one-dimensional marginal distributions, but also to quantify the uncertainty of the 
conditional dependencies of the BBN.  
 
Thus far, we have obtained marginal distributions associated with the nodes of the 
continuous BBN for the aircraft separation time and we know which (conditional) rank 
correlations –influences in the BBN– are required. These (conditional) rank correlations 
could be non constant. This would complicate their realization and elicitation. In this 
way, it is convenient to work with constant conditional rank correlations. We consider the 
joint normal copulae where (conditional) rank correlations are constant and an 
appropriate close-functional form of the density function can be implemented in Matlab.  
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It is proven to be difficult for experts to assess (conditional) rank correlations directly 
[Kraan B. 2002]. Thereby, excedence probabilities are to be elicited. From the answers to 
the elicitation format shown in Appendix A.2, we will obtain the (conditional) rank 
correlations as follows. 
 
We will start by describing the procedure to obtain the rank correlation 21r  between 
variables 1X  and 2X . An expert assessed the ( )

5050 1122 xXxXP ≥≥ , i.e. probability that 

2X  is bigger than or equal to its median given that 1X  is bigger than or equal to its 
median. An example of an appropriate question to elicit this probability is as follows [see 
questionnaire about Conditional and Unconditional Rank Correlations in Appendix A.2]: 
 

Consider the relationship between the following two variables: 
 
1. Suppose that the Wind Prediction was observed to be above its median value. What is 

your probability that the Separation Mode Planner Failure would also lie above its 
median value? 

 
 

Probability [0, 1] : 0.25 
 

This can be shortened as 
1X : Wind Prediction [m/sec] 2X : Separation Mode Planner Failure [sec] 

Suppose: 
5011 xX ≥ ; what is ( )

5050 1122 xXxXP ≥≥ ? 

 
Hence, expert has specified ( ) ( )( )2/12/1 12 12

≥≥ xFxFP XX . We can also transform 

( )iX xF
i

 to standard normal variables by applying the following ( )( )iXi xFY
i

1−= φ  i = 1, 2 
and treat this problem as finding correlation 21ρ  of joint normal distribution for which the 
conditional probability is ( )00 12 ≥≥ YYP .  
 
We require the rank correlation 21r . The standard bivariate normal distribution of 
transformed to standard normal random variables Wind Prediction and Separation Mode 
Planner Failure − 1Y , 2Y − has a density function which depends on their product moment 
correlation 21ρ . We first find 21ρ  and then using Pearson transformation [Pearson K. 
1907] we obtain corresponding value of 21r  (see below). Density function for joint 
normal distribution is: 
 

( ) ( ) ( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+−
−

−
== 2

21

2
11221

2
2

2
21

2112 12
2exp

12
1,

ρ
ρ

ρπ
ρ yyyyfyyf                    (14) 
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where 21ρ  is a parameter between -1 and 1, ( )21 , YY ~ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
1

1
,

0
0

21

21

ρ
ρ

N . The 

conditional probability 
 

( ) ( )
( )

( ) ( )∩∩∩ 002
2/1

00
0

00
00 12

12

1

12
12 ≥≥=

≥≥
=

≥
≥≥

=≥≥ YYP
YYP

YP
YYP

YYP  

         ( ) ( )
( )∫ ∫∫ ∫

∞ ∞∞ ∞

⎥
⎦

⎤
⎢
⎣

⎡
−

+−
−

−
==

0 0
122

21

2
11221

2
2

2
210 0

1212 .
12

2exp
1
1,2 dydyyyyydydyyyf

ρ
ρ

ρπ
        (15) 

 
The following figure shows how the above conditional probability changes depending on 
the value of 21ρ . It was obtained by numerical integration in Matlab7.  
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Figure 2.11: Conditional Probability ( )00 12 ≥≥ YYP  versus 21ρ  

 

                                                 
7 Two functions which depend on 1Y , 2Y  and 21ρ  are created. The first function evaluates the integrand for 
the bivariate joint normal distribution, which is expressed by a double integral in Equation (15). This 
integrand accepts a vector 1Y  and a scalar 2Y  and returns a vector of values of the integrand. Then, an 
additional function uses a Matlab function named dblquad which numerically evaluates the double integral 
taking as integrand the previous created function. For that, we also need to specify the limits of integration 
over which the double integration and a tolerance are required. Being a time consuming task to evaluate the 
double integration from 0 to infinity in Matlab, the limits of integration were chosen from 0 to 5. It is 
pointed out that these limits of integration and a tolerance of 6101 −×  give a very good approximation of the 
results.  
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In Figure 2.11, the horizontal and vertical axis represent the product moment correlation 
between 1Y  and 2Y  and the conditional probability calculated with Equation 15, 
respectively. Hence, when we know value of ( )00 12 ≥≥ YYP  the corresponding value of 

21ρ  can be read from this figure. Notice that if ( ) 000 12 =≥≥ YYP  then 121 −=ρ , if 

( ) 100 12 =≥≥ YYP  then 121 =ρ , and, if ( ) 5.000 12 =≥≥ YYP  then 021 =ρ . The 
relationship shown in Figure 2.11 can be used to recover all unconditional rank 
correlations from BBN in Figure 2.1. 
 
An expert stated that the value of ( )

5050 1122 xXxXP ≥≥ =0.25. Then from Figure 2.11 

we read 70672.021 −=ρ . Hence, the required rank correlation with Pearson’s 
transformation [Pearson K. 1907] is as follows: 
 

6898.0
2

arcsin6 21
21 −=⎟

⎠
⎞

⎜
⎝
⎛=
ρ

π
r .                                           (16) 

 
Now, we consider three variables: Separation Mode Planner Failure, Error ATC 
Supervisor, and Prescribed Spacing, 2X , 3X , 4X  respectively. We require the values of 
rank correlations 43r  and 342r . We first find 43r  by considering two variables Error ATC 
Supervisor and Prescribed Spacing. In this case, our expert assessed the 
( )

5050 3344 xXxXP ≥≥ =0.7, then 43ρ =0.58786 (see Figure 2.11) and 5698.043 =r . 
 
To find 342r  we must consider Separation Mode Planner Failure, Error ATC Supervisor, 
and Prescribed Spacing that gives us after transformation to normals three-dimensional 
distribution of random vector ( )432 ,, YYY . Variables 2Y , 3Y  are independent. Using vector 
notation 234y  =  ( )432 ,, yyy 3R∈ , we can write the trivariate joint density function as  
 

( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡−= − '

2
1exp

8
1

234
1

234234

234
3234 yVy
V

yf
π

                                  (17) 

 

where 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
10
01

4342

43

42

234

ρρ
ρ
ρ

V  is a covariance matrix, with determinant 

2
43

2
42234 1 ρρ −−=V .  The value of 43ρ =0.58786 was already assessed. We must now find 

42ρ . Expert is asked the following question ( )
505050 223344 , xXxXxXP ≥≥≥ . After 

transformation to normals we get that the ( )0,00 234 ≥≥≥ YYYP  is provided. 
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Relationship between 42ρ  and probability obtained from experts is 
 

( )0,00 234 ≥≥≥ YYYP ( ) ( ) 432
0 0 0

234
1

234234

234
3

'
2
1exp

8
14 dydydyyVy

V
∫ ∫ ∫
∞ ∞ ∞

−
⎥⎦
⎤

⎢⎣
⎡−=

π
.         (18) 

 
Knowing 42ρ , 43ρ  and 32ρ , now we can calculate partial correlation 3;42ρ  
 

2
32

2
43

433242
3;42

11 ρρ
ρρρρ
−−

⋅−
= .                                                         (19) 

 
For joint normal distribution partial and conditional correlations are equal, hence 

3423;42 ρρ =  and with Pearson transformation we can obtain 342r . Figure 2.12 shows the 

relationship between 3;42ρ  and ( )0,00 234 ≥≥≥ YYYP  for 43ρ =0.58786 corresponding to 

( )
5050 3344 xXxXP ≥≥ =0.7. Notice that possible values of ( )0,00 234 ≥≥≥ YYYP  are in 

the interval [0.40438, 0.99555]. This fact is explained in the following way. The 
information about ( )

5050 3344 xXxXP ≥≥  tells us how much variability of 4X  is 

explained by 3X . The ( )
505050 223344 , xXxXxXP ≥≥≥  gives how much more variability 

of 4X  can be explained by adding information about variable 2X  being bigger than its 
median. If one already explained significant portion of 4X  then it is not much left to 
explain by 2X . Notice that if ( )

5050 3344 xXxXP ≥≥  is equal to 0.5 which gives that 3X  

and 4X  are independent (information about 3X  does not constrain 4X ), then the possible 

values for ( )
505050 223344 , xXxXxXP ≥≥≥  are the whole interval [ ]1,0 . 
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Figure 2.12: Conditional Probability ( )0,00 234 ≥≥≥ YYYP  versus 3;42342 ρρ = , 2Y  and 

3Y  independent 
 
In this case, expert gave ( ) 8.0,

505050 223344 =≥≥≥ xXxXxXP  then 3;42342 ρρ =  would 

be equal to 0.38184. This leads to 3|42r  as follows: 
 

3669.0
2

arcsin6 3|42
3|42 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ρ
π

r                                     (20) 

 
Similarly, we can get 76r  and 675r . Expert assessed the ( )

5050 6677 xXxXP ≥≥ =0.8, then 

76ρ =0.80874 (see Figure 2.11) and hence =76r 0.7951.                                                     
 
When variables Wind Error, Error Runway/Tower Controller and Aircraft Traffic 
Controller Take Off Clearance Time are considered we get the following results. The 
relationship between 6;75ρ  and ( )0,00 567 ≥≥≥ YYYP  for 76ρ =0.80874 corresponding to 

( )
5050 6677 xXxXP ≥≥ =0.8 is shown in Figure 2.13. Observe that possible values of 

( )0,00 567 ≥≥≥ YYYP  are in the interval [ ]99719.0,60159.0 . Here, the expert stated 

( )
505050 556677 , xXxXxXP ≥≥≥ =0.7 then 6;75675 ρρ =  would be equal to -0.67403. 

Thereby, the conditional correlation 675r  equals to -0.6565. 
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Figure 2.13: Conditional Probability ( )0,00 567 ≥≥≥ YYYP  versus 6;75675 ρρ = ,  5Y  

and 6Y  independent 
 
Now, the last correlations to be required are 98r , 897r , 7894r . We start by computing 98r  
corresponding to variables Pilot Take Off Time and Aircraft Take Off Separation Time. 
Since ( )

5050 8899 xXxXP ≥≥ =0.6 then 98ρ =0.30854 and 98r =0.2958. 
 
On the other hand, Aircraft Traffic Controller Take Off Clearance Time, Pilot Take Off 
Time and Aircraft Take Off Separation Time: 7X , 8X  and 9X  are considered to 

calculate 897r . Our expert gave a value of ( )
505050 778899 , xXxXxXP ≥≥≥ =0.7, which is 

between the interval [0.20907, 0.99053]; then we will get the partial correlation 
== 8978;97 ρρ 0.32538. From this partial correlation, we can get 897r =0.3121 (see Figure 

2.14). 
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Figure 2.14: Conditional Probability ( )0,00 789 ≥≥≥ YYYP  versus 8;97897 ρρ = ,  7Y  and 

8Y  independent 
 
Now, to find 7894r  we consider Prescribed Spacing, Aircraft Traffic Controller Take Off 
Clearance Time,  Pilot Take Off Time and Aircraft Take Off Separation Time variables: 

4X , 7X , 8X , 9X  that give us after transformation to normals four-dimensional 
distribution of random vector ( )9874 ,,, YYYY . Variables 4Y , 7Y  are independent, as well as 

7Y , 8Y . Using vector notation ( )98744789 ,,, yyyyy = 4R∈ , we can write the joint density 
function as 
 

( )4789yf ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡−= − '

2
1exp

4
1

4789
1

47894789

4789
4

yVy
Vπ

                        (21) 

 

where the covariance matrix is given as 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
100
010
001

989794

98

97

94

4789

ρρρ
ρ
ρ
ρ

V  with determinant 

2
98

2
97

2
944789 1 ρρρ −−−=V . The values of 97ρ =0.30951 and 98ρ =0.30854 were already 

assessed. We must now find 94ρ . Expert is asked the following question 

( )
50505050 44778899 ,, xXxXxXxXP ≥≥≥≥ . After transformation to normals we get that 

( )0,0,00 4789 ≥≥≥≥ YYYYP  is provided. 
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Relation between 94ρ  and probability obtained from expert is  
 
( )0,0,00 4789 ≥≥≥≥ YYYYP  

( ) ( ) 9874
0 0 0 0

4789
1

47894789

4789
4

'
2
1exp12 dydydydyyVy

V
∫ ∫ ∫ ∫
∞ ∞ ∞ ∞

−
⎥⎦
⎤

⎢⎣
⎡−=

π
     (22) 

 
Knowing 94ρ , 97ρ  98ρ  and =8;97ρ 0.20454, now we can calculate 8;94ρ  and hence 

87;94ρ  and 8794r . 
 
Expert provided a value of ( ) 8.0,,

50505050 44778899 =≥≥≥≥ xXxXxXxXP , which is 
between the interval [0.40068, 0.99145]; then we will get the partial correlation,  
 

2
84

2
98

849894
8;94

11 ρρ
ρρρρ
−⋅−

⋅−
= =0.32447                                             (23) 

 
which we need in order to compute  
 

     
2

8;74
2

8;97

8;748;978;94
87;94

11 ρρ

ρρρ
ρ

−⋅−

⋅−
= =0.37.                                             (24) 

 
For joint normal 879487;94 ρρ = . This value can be obtained from Figure 2.15. Hence, the 

value of 8794r  is calculated as follows 
 

35537.0
2

arcsin6 8794
8794 =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

ρ

π
r                                           (25) 
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Figure 2.15: Conditional Probability ( )0,0,00 4789 ≥≥≥≥ YYYYP  versus 

87;948794 ρρ = ; 4Y , 7Y  and 7Y , 8Y  are independent  
 
Therefore, all the values of the conditional and unconditional rank correlations required 
for calculations of the Aircraft Separation Time model were obtained. In Figure 2.1, 
(conditional) rank correlations obtained with the above procedure are assigned to each arc 
of the BBN. The rank correlation specification on a BBN plus copula determines the 
whole joint distribution [Kurowicka D., Cooke R.M 2004]. The following section 
analyzes updating the conditional probability of the Aircraft separation Time given some 
observations on certain variables. 
 
2.1.6 Updating the BBN with Knowledge 
 
In the previous section the (conditional) rank correlations required to sample the BBN 
structure of the Aircraft Separation Time model shown in Figure 2.1 were obtained. 
Continuous marginal distributions of each variable are derived as described in Section 
2.1.3.  
 
In this section, we aim to update our network given that some values of the variables 
become known.  
 
If for instance, new policies are proposed to be implemented, updating the BBN structure 
allows us to evaluate the impact of such policies on our variable(s) of interest.  
 
Updating can be performed in two different ways: 
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a. Updating with the Density Approach 

 
If some of the variables become known, the results of sampling the aircraft separation 
time model conditional on these known values can be obtained by using the density 
approach [Kurowicka D, Cooke R.M. 2006; Hanea A., Kurowicka D, Cooke R.M. 2005].  
 
The joint density for the aircraft separation time model is as follows [Kurowicka D, 
Cooke R.M. 2006; Hanea A., Kurowicka D, Cooke R.M. 2005]: 
 
( ) ( ) ( ) ( ) =⋅⋅⋅= 92191 ,, xfxfxfxxf …… ( ) ( )( ) ( ) ( )( )43342112 4321

,, xFxFcxFxFc XXXX            
( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )( )767567576674342342 757642

,,, xFFxFcxFxFcxFFxFc XXXXXX⋅                                

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )49879879479898979898 497998
,,, xFxFFcxFxFFcxFxFc XXXXXX⋅    (26)                     

 
The bivariate copula used in Equation 26 is the Frank’s copula8. The conditionalization 
can be accomplished by considering 608 =x . Having the density we can carry out 
updating.  
 
In order to update the BBN structure we have to re-sample it. Each time, new evidence is 
obtained. We avoid re-sampling the whole structure several times in the Frank’s copula – 
vine updating by doing so once with the copula – vine approach and then using Netica, 
which performs fast updating. This method called “Hybrid method for Continuous 
Bayesian Belief Nets” was introduced in [Hanea A., Kurowicka D, Cooke R.M. 2005]. 
 

b. Vines-Netica Updating 
 
In the vines-Netica updating, the BBN structure can be sampled once with the ‘copula – 
vine’ approach described in Section 2.1.4. Then, conditional probability tables are created 
by incorporating this sample into a discrete BBN in Netica with ten states 9 . There 
updating can be performed. When the discrete BBN is already constructed, we might 
observe some events, then for certain variable(s) we know the value of, we enter that 
value as a finding (also known as "evidence"). Then Netica does probabilistic inference 
to find beliefs for all the other variables –indicating the subjective probabilities–. The 
final beliefs are sometimes called posterior probabilities (with prior probabilities being 
the probabilities before any findings were entered). This probabilistic inference done 
using Bayes' theorem and an improvement of the algorithm found in [Lauritzen S.L., 
Spiegelhalter D.J. 1998] is called belief updating. 
 

                                                 
8 For a mathematical description of this copula see Chapter 4 or refer to [Frank M.J. 1979]. 
9 The theoretical quantiles for each variable used to build the discrete BBN in Netica are found in Appendix 
A.1. 
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Now, some comparisons and results of these different ways of updating are presented. 
Figure 2.16 shows the BBN from model given in Figure 2.1 modelled in Netica. The 
variables are discretized in ten states having taken into account the 10, 20, … percentiles 
of their probability distributions (theoretical quantiles)10.  
 
Equal sized intervals from the samples over original variables −which bounds are the 
minimum and maximum of each sample− are used to create the BBN in the Figure 2.17. 
Although a discretization with equal intervals allows us to appreciate the continuous 
distributions of each variable, it is not convenient to capture changes in the model when 
updating is done. Therefore, the BBN in the Figure 2.16 is used in forthcoming 
calculations.  
 

 
Figure 2.16: Aircraft Separation Time model in Netica using 5104×  samples11. Nodes 
were discretized with the values of the theoretical quantiles on the BBN. This BBN will 
be used in order to appreciate changes produced by conditionalizing the aircraft 
separation time with regard to a/some known values of the variables. 
 

                                                 
10 See [Appendix A.1]. 
11 For illustrative purposes, the case file incorporated in Netica to create those BBNs in Figures 2.15 and 
2.16 has 5104×  samples which were obtained using the sampling procedure described in Section 2.1.4. 
Conditional probability tables are created instantaneously. 
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Figure 2.17: Aircraft Separation Time model in Netica using 5104×  samples. Equal 
intervals are taken into account to build the BBN in order to appreciate the continuous 
gamma and normal distributions of the variables. 
 
Direct quantification of the discretized to 10 states for each variable BBN would require 
the specification of 12,150 probabilities in the conditional probability tables, whereas the 
quantification with continuous nodes requires nine algebraically independent 
(conditional) rank correlations and the specification of the nine marginal distributions. 
This demonstrates the reduction of assessment burden once we have quantified influences 
as (conditional) rank correlations. The probability tables of the discrete BBN are filled 
using the samples which are obtained for its continuous version. 
 
In order to create the BBN for the Aircraft Separation Time model, we need to know 
which number of samples is appropriate to get a precise estimation of the conditional 
probability tables for the Aircraft Separation Time. If conditional probability tables are 
estimated with sufficient number of samples, then estimating them with slightly increased 
number of samples will not change this estimate much. Hence we take two sample files, 
say with N and M samples, respectively. We estimate both conditional probability tables 
and calculate the Maximum norm and Euclidean norm of both estimates12. By increasing 
the number of samples in both files we can observe that the Maximum norm and 
                                                 
12  The maximum norm and Euclidean norm are calculated by using the following formulas: 
MN= jijiji ba ,,,max −  and EN= ( )2

,
,,∑ −

ji
jiji ba , respectively. 
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Euclidean norm stabilizes at a level, the number of samples corresponding to it will be 
used to build probability tables. These results are shown in Table 2-1.  

0.44 6.46
0.23 5.57
0.22 4.65
0.19 4.01
0.19 3.38
0.14 2.61
0.10 2.21
0.10 1.95
0.08 1.77
0.07 1.62
0.07 1.52
0.08 1.43
0.06 1.33900-1000

500-600
600-700
700-800
800-900

100-200
200-300
300-400
400-500

10-25
25-50
50-75
75-100

Maximum 
norm

Euclidean 
Norm

Interval            
(Number of samples 

in thousands)

 
Table 2-1: The maximum norm and Euclidean norm of the difference between 

probability tables of the Aircraft Separation Time ( )9X  created using different sample 
sizes are calculated. 

 
The results of the maximum norm in Table 2-1 show that the biggest change in the 
maximum norm is from 0.44 to 0.23. After that, the maximum norm will vary slowly 
until the difference between probability tables for 9X  created using 5101×  and 5102×  
samples is considered.  
 
A good estimation of the conditional distribution of the aircraft separation time 
conditioned to certain values of 8X  is then obtained by considering a file of 5101×  
samples. The next notorious change in the maximum norm is found when the difference 
between probability tables for 9X  created using 5104×  and 5105×  samples is 
considered. The maximum norm stabilizes in a value equal to 0.10.  
 
On the other hand, the Euclidean norm stays constant until the difference between 
probability tables for 9X  created using 5103×  and 5104×  is considered. After that, the 
changes in the Euclidean norm are rough (see Table 2-1 and Figure 2.18). We conclude 
that 5104×  samples are enough for our calculations. 
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Figure 2.18: Euclidean norm of the difference between two probability tables of the 

Aircraft Separation Time ( )9X  created using samples of different sizes. 
 
Another way to find the precise number of samples to obtain a good estimation of the 
conditional probability tables is that proposed in [Hanea A., Kurowicka D, Cooke R.M. 
2005], which is also implemented in our case. Thus, the conditional distribution of the 
Aircraft Separation Time ( )9X  given some values of the Pilot Take Off Time ( )8X  where 
only 4101×  samples were used is presented in Figure 2.19.  
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Figure 2.19: Comparison between the results of updating using Frank’s copula and vines 
(solid blue lines) and Netica (dotted red lines). Sample files using 4101×  samples are 
created. The conditional distribution of 946.883157.43 89 ≤≤ XX  is obtained.  
 
There is a big difference between conditional distribution obtained using vine–copula 
method and Netica. This proves that 4101×  samples are not enough to build conditional 
probability tables. 
 
If we now consider a sample file of 5104×  samples, as before a very good estimation of 
the conditional distribution of the aircraft separation time is obtained. These results are 
shown in Figure 2.20. Here, the agreement between the two methods is precise.  
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Figure 2.20: Comparison between the results of updating using Frank’s copula and vines 
(solid blue lines) and Netica (dotted red lines). Sample files using 5104×  samples are 
created. The conditional distribution of 4.983157.43 89 ≤≤ XX  is obtained13.  
 
From Figure 2.20, we can observe a discrepancy in the first and the last intervals of the 
discretization. There the results given by Netica-vine updating differ from those given by 
the Copula-vine updating. The discretization of the nodes was made according to their 
quantiles, thereby the first and the last intervals of the discretization for each variable are 
wider than the rest of the intervals (which are very narrow). For the variable Aircraft 

                                                 
13 The maximum and minimum values of the samples differ when the number of samples differs. Because 
of this, the intervals for which 8X  belong to are not equal in Figures 2.19 and 2.20. 
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Separation time ( )9X , the first and the last discretization intervals together amount 74% 
of the sample width. In order to plot the conditional distribution of the Aircraft 
Separation time ( )9X  from Netica, uniform samples from each discretization interval are 
drawn. This is visible in Figure 2.20 as straight lines at the beginning and at the end of 
the conditional distribution of the Aircraft Separation time appeared. 
 
After the sample file is imported in Netica, we conditionalize on high values of the Pilot 
Take Off Time ( )8X . That is, those between its 0.9 and 1.0 quantiles equal to 43.3157 
and 98.4, respectively (see Figure 2.21). Samples of the conditional distribution of the 
Aircraft Separation Time are created from Netica.  
 

 
Figure 2.21: Conditional distribution of 4.983157.43 89 ≤≤ XX  in Netica. 

 
It is assumed that Take Off Clearance is provided by the tower (or runway) controller. 
The take off then may start, provided that the pilot has completed his/her checklists (i.e. 
is ready), at the Take Off Position at a certain distance from the runway threshold. The 
pilot selects the take off thrust at the starting time of his/her take off. The aircraft 
accelerates during the take off roll. It is up to the pilot to initiate the take off at a suitable 
moment after the take off clearance is given by the controller. If the pilot initiate the take 
of just after the Take Off Clearance is provided by the tower (or runway) controller the 
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Pilot Take Off Time ( )8X  will have small values, if the decision of the pilot is to delay 
the aircraft to start to roll then the Pilot Take Off Time ( )8X  will have big values. 
 
As has been mentioned, the Pilot Take Off Time ( )8X  influences directly the Aircraft 
Separation Time ( )9X . The time difference between the moment when the leader and the 
follower aircraft start to roll is more probable to take high values than low values when 
the time difference between take off clearance given by the ATCo and the start of roll of 
the aircraft is big.  
 
If the values of the Pilot Take Off Time ( )8X  are in the interval [43.3157, 98.4], it is 
more probable that the values of the Aircraft Separation time ( )9X  belong to the interval 
[140, 209]. Notice that values between its 70th to 100th percentiles are now very probable. 
Conversely, results could be obtained if we conditioned the Aircraft Separation time 
distribution on low values of 8X .  
 
We present now the conditional distribution of the Aircraft Separation time ( )9X  given 
the different values of the Prescribed Time Spacing ( )4X . The probability of the time 
difference between the leader’s starting to roll and the follower aircraft’s starting to roll 
being high is high because of the big separation time prescribed by the ATC supervisor 
(in ATC-Wake mode). If the values of separation time prescribed by the ATC supervisor 
( )4X  are located between the 50th to 60th percentiles, the probability of high values of the 
Aircraft Separation time ( )9X  meaningfully decreases. 
 
There is much difference in the conditional probability of the Aircraft Separation time 
( )9X  while conditionalized on different values of 4X . In Figure 2.1, a rather low positive 
conditional rank correlation 30864.08794 =r  is observed (the unconditional rank 

correlation does not change much, 3186.094 =r ). The probability of the Aircraft 
Separation Time taking small values is high because of the low values of separation time 
prescribed by the ATC supervisor.  
 
The conditional distribution of the Aircraft Separation time ( )9X  is shown in Figure 2.22. 
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Figure 2.22: Comparison between the results of updating using Netica and 5104×  
samples. Conditional distributions of 4458.7736.52 49 ≤≤ XX  (green solid line), 

181.926298.89 49 ≤≤ XX  (red solid line) and 02.14403.103 49 ≥≥ XX  (blue solid 
line)14.  

 

                                                 
14 As we said before the maximum and minimum values of the samples differ when the number of samples 
differs.  
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Figure 2.23: Conditional distributions of  02.14403.103 49 ≥≥ XX . 

 
The results shown so far are based on the conditional distribution of the Aircraft 
Separation time ( )9X  on certain known values of one variable. We now conditionalize on 
the values of the Wind nowcast error ( )5X  which belongs to the interval [-1.08, -0.3204] 
−between its 0.0 and 0.1 quantiles− and the values of the Prescribed Time Spacing ( )4X  
which belongs to the interval [77.4458, 81.494] −between its 0.1 and 0.2 quantiles. The 
conditional distribution of the Aircraft Separation time ( )9X  is obtained by using the two 
previous methods compared to that using the normal copula instead of Frank’s copula 
(updating using Netica). Notice that the agreement between the three methods is very 
accurate. This is shown in Figure 2.24. 
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Figure 2.24: Conditional distribution of 459 4458.77,3204.008.1 XXX ≤−≤≤−  

494.81≤ . Comparison between the results using Frank’s copula and using vines updating 
with the copula − vine approach (green solid line), Netica updating (blue dotted line) and 
Joint normal copula and vines updating with Netica (red dotted line). 
 
Wind nowcast error ( )5X  represents the difference between actual wind (measured by the 
Detector) and predicted wind (as determined by the Meteo/weather systems). If the actual 
wind is stronger than the predicted wind, positive values of 5X  take place. In this case, 
the probability of the time difference between the leader’s starting to roll and the follower 
aircraft’s starting to roll being small is high. Conversely, the probability of the time 
difference between the moment when the leader and follower aircraft start to roll being in 
high quantiles is high because of the negative values of the difference between the actual 
wind and the wind predicted. 
 
From the model, we can observe that the Predicted Time Spacing ( )4X  greatly influence 
our variable of interest. If the separation time prescribed by the ATC supervisor is small, 
say, between its 0.1 and 0.2 quantiles, the effects of negative values of the wind nowcast 
error could be inverted as shown in Figure 2.25. 
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Figure 2.25: Conditional distribution of 459 4458.77,3204.008.1 XXX ≤−≤≤−  

494.81≤  in Netica.  
 
In Figure 2.26, the conditioning is performing on the values of the Prescribed Time 
Spacing ( )4X  and the Pilot Take Off Time ( )8X  which belong to their 0.4 and 0.5 
quantiles and the values of the Aircraft Traffic Controller ( )7X  which belong to its 0.5 
and 0.6 quantiles.  
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Figure 2.26: Conditional distribution of 749 4887.26,6298.8912609.87 XXX ≤≤≤  

,8965.28≤ 1794.919074.89 8 ≤≤ X . Comparison between the results using Frank’s 
copula and using vines updating using the copula − vine approach (green solid line), 
Netica updating (blue dotted line) and Joint normal copula and vines updating with 
Netica (red dotted line).  
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Figure 2.27: Conditional distribution of 749 4887.26,6298.8912609.87 XXX ≤≤≤  

,8965.28≤ 1794.919074.89 8 ≤≤ X  in Netica.  
 
Now the joint distribution of the input and output of the Aircraft Separation Time model 
is shown in Figure 2.30. We can conditionalize this whole joint distribution on low values 
of the Aircraft Traffic Controller Take Off Clearance Time ( )7X  as presented in Figure 
2.31. The visual representation allows us to observe the effect of this conditionalization 
on the whole joint distribution.  
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Figure 2.30: Cobweb plot of the joint distribution of the Aircraft separation time model  
 

 
Figure 2.31: Cobweb plot of the Aircraft separation time ( )9X  conditionalized in low 
values of the Aircraft Traffic Controller Take Off Clearance Time ( )7X  
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Finally, we should state that conditionalization is a "rough" way of carrying out a 
sensitivity analysis. Since, we could evaluate the importance of the variables by just 
"guessing" or conditionalizing on different values of the variables, which are relevant in 
our criterion or client's criterion. However, the appropriate way of investigating the 
importance of some variable(s) for the aircraft separation time is to calculate the 
correlation ratio. This is accomplished in the following section. 
 
2.1.7 Sensitivity Analysis 
 
To carry out the sensitivity analysis several statistics and sensitivity measures are 
obtained by using the Sensitivity Analysis program [Lewandowski D. 2005] as part of 
Unicorn15, based on 5104×  samples derived from a continuous BBN created in UniNet16. 
 
The “predicted variables” are those whose behaviour we want to explain in terms of other 
variables, called the “base variables”. Here we are interested in the variable Aircraft 
Separation Time ( )9X , and we want to see how this variable depends on the variables 

81 ,, XX … . 
 
Table 2-2 shows the sensitivity indices and statistics obtained by relating the Aircraft 
Separation Time ( )9X  to each variable. These include: The product moment correlation, 
the Spearman rank correlation, the regression coefficient, the correlation ratio and the 
partial correlation coefficient17. 
 

                                                 
15 Unicorn (Uncertainty Analysis with Correlations tool) developed at the Department of Mathematics of 
Delft University of Technology, The Netherlands. 
16 UniNet: BBNs software developed at the Department of Mathematics of Delft University of Technology, 
The Netherlands. From the continuous BBN (which is built by using the normal copula and canonical 
vines) created in UniNet, samples can be derived to be used immediately in the Sensitivity Analysis. It 
should be pointed out that the probabilities and samples derived from this BBN are not so different from 
the BBN created with Frank’s copula and D-vines. 
17 Refer to [Kurowicka D., Cooke R.M. 2006; Bedford T.J., Cooke R.M. 2003; Lewandowski D. 2005] 
which contains mathematical definitions from sensitivity indices and statistics obtained in this Section. 
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(1) (2) (3) (4) (5) (6) (7) (9)

1 X 9 X 7 3.078E-01 2.961E-01 9.342E-01 9.380E-02 1.688E-01
2 X 9 X 4 3.310E-01 3.186E-01 5.045E-01 6.189E-02 2.825E-01
3 X 9 X 6 2.395E-01 2.300E-01 7.324E-01 5.741E-02 -1.120E-03
4 X 9 X 8 3.012E-01 2.932E-01 4.517E-01 5.222E-02 3.388E-01
5 X 9 X 5 -1.298E-01 -1.244E-01 -7.854E+00 1.687E-02 4.247E-04
6 X 9 X 1 -7.313E-02 -7.075E-02 -6.542E-01 5.380E-03 -2.042E-03
7 X 9 X 3 1.964E-01 1.878E-01 3.005E-01 2.822E-04 3.275E-03
8 X 9 X 2 1.005E-01 9.667E-02 1.514E-01 3.861E-06 -2.726E-03

Partial 
correlation 
coefficient

Rank 
Correlation

Regression 
Coefficient

Correlation 
ratioId

Predicted 
variable

Base 
Variable

Product 
moment 

correlation

 
Table 2-2: Sensitivity indices for the predicted variable 9X  and a given base variable 

 
Each row in Table 2-2 shows the sensitivity indices for a given base variable, for the 
predicted variable 9X . Note that the Aircraft Traffic Controller Take Off Clearance 
Time ( )7X  has the highest correlation ratio to the Aircraft Separation Time ( )9X ; 
Separation Mode Planner Failure ( )2X  has the smallest.  
 
In the BBN for the Aircraft separation time model the variable Aircraft Traffic Controller 
Take Off Clearance Time ( )7X , which represents the time difference between the leader’s 
starting to roll and take off clearance of the ATCo for the follower aircraft is then 
considered the most representative variable to explain the time difference between the 
leader’s starting to roll and the follower aircraft’s starting to roll ( )9X . 
 
The product moment correlation matrix is shown below, the Aircraft Traffic Controller 
Take Off Clearance Time ( )7X , the Prescribed Time Spacing ( )4X , the Error 
Runway/Tower Controller ( )6X  and the Pilot Take Off Time ( )8X  variables have the 
highest positive correlations to the Aircraft Separation Time ( )9X .  
 

X 9 X 3 X 6 X 5 X 7 X 1 X 2 X 4 X 8

X 9 1.000E+00 1.964E-01 2.395E-01 -1.298E+00 3.078E-01 -7.313E+00 1.005E-01 3.310E-01 3.012E-01
X 3 1.964E-01 1.000E+00 -1.396E+00 -1.819E+00 -1.798E+00 -1.015E+00 1.606E-03 5.875E-01 -1.559E+00
X 6 2.395E-01 -1.396E+00 1.000E+00 2.898E-03 7.793E-01 -7.325E+00 9.380E-04 -5.688E+00 -3.969E+00
X 5 -1.298E+00 -1.819E+00 2.898E-03 1.000E+00 -4.193E+00 2.241E-03 5.927E-05 -1.915E+00 -6.236E+00
X 7 3.078E-01 -1.798E+00 7.793E-01 -4.193E+00 1.000E+00 -2.006E+00 1.091E-03 -5.004E+00 -1.442E+00
X 1 -7.313E+00 -1.015E+00 -7.325E+00 2.241E-03 -2.006E+00 1.000E+00 -7.071E+00 -2.183E+00 -1.396E+00
X 2 1.005E-01 1.606E-03 9.380E-04 5.927E-05 1.091E-03 -7.071E+00 1.000E+00 3.078E-01 8.129E-04
X 4 3.310E-01 5.875E-01 -5.688E+00 -1.915E+00 -5.004E+00 -2.183E+00 3.078E-01 1.000E+00 -1.476E+00
X 8 3.012E-01 -1.559E+00 -3.969E+00 -6.236E+00 -1.442E+00 -1.396E+00 8.129E-04 -1.476E+00 1.000E+00

 
Table 2-3: Product moment correlation matrix 

 
Table 2-4 shows the mean and standard deviation for the four detailed variables above.  
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1 X 9 X 7 1.198E-02 9.003E-01 1.517E-01 4.999E+00
2 X 9 X 4 1.198E-02 8.988E-01 1.517E-01 9.955E+00
3 X 9 X 6 1.198E-02 5.738E-03 1.517E-01 4.961E+00
4 X 9 X 8 1.198E-02 3.011E-01 1.517E-01 1.012E-01

Id
Predicted 
variable

Base 
Variable E(X 9 ) E(X i ) Std(X 9 ) Std(X i )

 
Table 2-4: Some other statistics 

 
2.2 ATC-Wake: Detection, Warning and Avoidance Maneuver 
Probability 
 
With respect to the Wake Vortex Detection, Warning, and Avoidance Maneuver and 
following the recommendations from the interviewees with operational experts, a turn 
away from the Wake Vortex of a preceding aircraft has been considered as the only 
option to avoid an encounter.  
 
The execution of the ATC-Wake detection, warning, and avoidance maneuver (e.g. turn 
away from a wake vortex (during departures)) depends –besides operational feasibility– 
on the probability of failure of the ATC-Wake system components. For the ATC-Wake 
system failures, a causal model has been constructed using discrete Bayesian Belief Nets 
(BBNs) (See figure 2.32). 
 
It is shown that the resulting BBN might be represented by a fault tree [See ATC-Wake 
D3_5b]. 
 
2.2.1 Application of Fault Trees and Discrete BBNs for the Wake 
Detection, Warning and Avoidance Maneuver Probability 
 
We aim to model a system which represents the wake detection, warning and avoidance 
maneuver failure. Moreover, we intend to quantify such a model. The problem is stated 
as follows: 
 
The wake vortex detection warning and avoidance maneuver is performed by the 
aircraft/pilot, as requested by air traffic controllers. The aircraft/pilot can fail to perform 
the ATC-Wake DWA maneuver, either because the aircraft/pilot is not able to turn timely 
or the ATC-Wake warning fails. ATC-Wake DWA Failure happens if the failure of any 
of these components occurs. A failure of the ATC-Wake warning happens caused by 
either the controller does not provide a timely warning or because the Monitoring and 
Alerting ATC-Wake system component fails. Inaccurate information from the 
Monitoring and Alerting ATC-Wake system component is influenced by either the loss of 
DWA Tactical Function or an improper model prediction. Alternatively, it can be due to 
improper detector performance. An improper model prediction is yield either because of 
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inaccurate or wrong WV Model Estimation or due to inaccurate Air Traffic Situation. It 
might even be because of faulty or inaccurate Meteo Nowcasting information. Finally, 
improper detector performance either derives from the wake vortex outside the detection 
range/scanning volume or from an inaccurate or faulty detection of wake vortices. 
 
From the problem statement, we will be able to constrain the variables to take two values 
or two states. Different models can be used to represent this problem. We shall compare 
two approaches which may be applied to model the failure of the aircraft/pilot when 
performing the ATC-Wake DWA maneuver which amounts to discrete BBNs and Fault 
Trees. Throughout the Section 2.2, we will give a detailed description of the application 
of these methodologies to our particular case. Moreover we will stress the advantages and 
disadvantages of these methods.  
 
2.2.2 Comparison of Discrete BBNs and Fault trees  
 
We first present the BBN and the Fault trees that can be used to describe the problem 
stated in the introduction. 
 
a) BBN  
 
The problem above can be modelled using discrete BBNs as shown in Figure 2.32. This 
BBN has 13 nodes and 12 edges. The nodes correspond to binary variables with states 0 
(not failure) and 1 (failure) specified in the problem and edges that represent relationships 
between variables. Each BBN node is labelled with a lowercase literal and the full name 
of the variables of interest. Names or labels are used in the text to refer to the variables. 
The BBN in Figure 2.32 shows the graphical representation of dependences and 
(conditional) independences in this problem. One reads that d, e, f are independent and 
they influence g (g is a child of d, e, f and d, e, f are called the parents of g; denoted as 
pa(g)). A graphical representation of BBN does not, however, give us all the information 
we need about joint distribution. To completely describe the joint distribution represented 
by BBN, we need to specify conditional probability tables of all variables in the BBN 
given their parents. Then the joint distribution can be given as 
 

( ) ( )( )∏
=

=
T

aw
wpawPTbaP ,,, …                                           (27) 

 



Chapter 2. ATC-Wake Models: Continuous and Discrete Bayesian Belief Nets                      
 
 

- 48 - 

 
Figure 2.32: BBN for the WV DWA maneuver probability. 

 
The nodes in this BBN have the following explanation: 
 
− ATC-Wake DWA Failure (T): represents the probability of aircraft/pilot not able to 

initiate the ATC-Wake DWA maneuver (e.g. a turn away from WV of a preceding 
aircraft). 

− Aircraft/Pilot not able to turn timely (l): represents the probability of an aircraft/pilot 
not able to perform the ATC-Wake DWA maneuver, when requested by the 
controllers. 

− ATC-Wake Warning Failure (k): represents the probability of not providing a timely 
warning to the flight crew when one should be given. As a result, it is possible that a 
pilot reacts later to a wake encounter when one should occur. 

− Controller does not provide a timely warning (j): represents the probability of the 
ATCo not providing an alert, when it is advised by the Monitoring and Alerting 
system. 

− Monitoring and Alerting Failure (i): represents the probability of not providing a 
timely warning to the air traffic controllers when one should be given. As a result, the 
ATCo might NOT be able to initiate/instruct the pilot to perform an evasive action. 

− Loss of DWA Tactical Function (h): represents the probability of an undetected loss 
of the Monitoring and Alerting Function. In case of a Detected Loss, the ATCos are 
aware that NO cautions/alerts will be given and a transition will be made to the ICAO 
Mode (the separation will increase, and the DWA maneuver will not be necessary). 

− Improper Model Prediction (g): represents the probability that the predictions of 
Wake Vortex locations and strength are inaccurate/wrong. 

− Inaccurate or Faulty WV Model Estimation (d): represents the probability that the 
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predictions of wake vortex locations and/or strengths made by the WV Model, on the 
basis of aircraft data and meteo data, are inaccurate/wrong. As a result, incorrect 
information is passed to ATC-Wake Predictor, causing improper functioning 

− Inaccurate or Faulty Air Traffic Situation (e): represents the probability that the air 
traffic situation provided by the surveillance systems is inaccurate or wrong. As a 
result, incorrect information is passed to the Predictor, causing improper functioning. 

− Inaccurate of Faulty Meteo Nowcasting (f): represents the probability that the 
meteorological conditions (i.e. nowcasting data) provided by the meteo systems are 
inaccurate or wrong. As a result, incorrect information is passed to the ATC-Wake 
Predictor, causing improper functioning. 

− Improper Detector Performance (c): represents the probability that the ATC-Wake 
Detector (e.g. LiDAR) performs significantly less than the air traffic controllers 
expect (while they are not aware of the inaccuracies) (i.e. inaccurate/wrong alerts are 
given); 

− Wake Vortex Outside Detection Range/Scanning Volume (a): represents the 
probability that the ATC-Wake Detector does not detect the wake vortices of the 
leading aircraft, because these are outside the scanning volume of the ATC-Wake 
Detector. 

− Inaccurate or Faulty Detection of Wake Vortices (b): represents the probability that 
the ATC-Wake Detector does not detect wake vortices of the leading aircraft 
accurately, when these are inside the planned scanning volume of the ATC-Wake 
Detector(s). 

 
b) Fault Tree 
 
Figure 2.33 shows the fault tree (FT) that corresponds to the representation of the wake 
vortex detection warning and avoidance maneuver probability distribution.  The nodes of 
the Fault tree are binary variables and are affine to the corresponding variables of the 
BBN. The structure of the FT is very similar to the BBN presented above. In contrast to 
BBN the fault tree relationships are represented by a symbol which appears several times 
in Figure 2.33 and is labelled with the uppercases G1, …, G5. These are the gate symbols 
OR. OR-gate means that the output event occurs if any one of the input events occurs. In 
Figure 2.33 only OR-gates can be seen. There are, however, other gates that could in 
principle be used e.g. the AND-gate (output event occurs if all input events occur) or the 
NOT-gate (output event occurs when input event does not occur). In a fault tree one can 
recognize two types of nodes: basic events (basic nodes) are shown in Figure 2.33 as 
circles and intermediate events (intermediate nodes) are represented as rectangles. The 
graphical representation of a Fault tree is not sufficient to construct the joint distribution. 
One must also specify distributions of basic nodes. The distribution specified by the Fault 
tree can be then calculated using a minimum cut set (MOCUS) algorithm that will be 
briefly described later. 
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Figure 2.33: Fault tree for the WV DWA maneuver probability 

 
c) Comparison of BBNs and FT 
 
To compare BBNs and FTs we describe in detail the lower left-most part of the fault tree 
in Figure 2.33 and corresponding to this part a fragment of the BBN in Figure 2.32. 
 
Figure 2.34 contains the lower right-most part of the FT. The basic events are Wake 
Vortex Outside Detection Range/ Scanning Volume (a) and Inaccurate or Faulty 
Detection of Wake Vertices (b). The OR-gate (G5) ensures that Improper Detector 
Performance (c) can be caused by failure of either a or b.  
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Wake Vortex 
Outside 

Detection 
Range/

Scanning 
Volume

a

Inaccurate or 
Faulty 

Detection of 
Wake Vortices

b

Improper Detector 
Performance

c

 
Figure 2.34: Improper Detector Performance caused by two basic events. 

 
a and b are binary variables taking values 1 (failure) with probability 0.001 and 0 (not 
failure) with probability 0.999. Possible combinations of these variables are shown in 
Table 2.5. 

a b
1 1
1 0
0 1
0 0

 
Table 2-5: Information of a and b represented in a binary table. 

 
Since the failure of c can be caused by failure of either a or b and because a and b are 
independent it is very easy to calculate the probability of failure of c. 
 

( ) ( ) ( ) ( ) 0020.00010,011 ===−===−== bPaPbaPcP  
 
For small FTs we can easily enumerate all combinations of basic events leading to failure 
of intermediate event. In general, however, this approach would not be appreciated.  To 
perform fast the calculations in FTs the Boolean algebra with Boolean operators denoted 
as a and b as ba ⋅ ; a or b  (a+b; not a as a’)  is used. The general algorithm will not be 
described here. We will now show how to calculate the probability of Improper Detector 
Performance above using Boolean algebra (MOCUS algorithm). We consider event c as 
the top event caused by the failure of either event a or b. Since the top event is related to 
the basic events through an OR gate, we will give the Top Down approach to the 
MOCUS algorithm as follows: 
 

5Gc =  
bac +=                             (28)  
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Clearly, if a and b fail we will get Detector performance failure. So, the set of events (cut 
set) leading to the failure of c is: 
 

{ }ba,  
 
However from the description of the problem (OR gate) we know that the failure of either 
a or b is enough for the failure of c hence minimal sets leading to the failure of c are: 
  

{ }a , { }b  
 
These are called minimal cut sets. The notion of minimal cut sets is crucial when we have 
a large tree. After finding a minimum cut set the algorithm builds the minimum cut set 
representation of the FT (in general a smaller tree) which allows us to perform all the 
necessary calculations more efficiently. 
 
We apply the inclusion-exclusion formula to equation 28 and get 
 
     ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 0020.01111111 ===−=+====== bPaPbPaPbaPcP ∪       (29) 
 
Consider now the corresponding to FT in the Figure 2.34 fragment of BBN (see Figure 
2.35). The probabilities of a, b are specified as in the FT above. From Figure 2.35 one 
can see that c is influenced by a and b but the nature of this dependence cannot be 
deduced from the graphical representation. How the probability of the state of c is 
affected by combinations of states of a, b must be read from conditional probability table 
of c given a, b. Such a conditional probability table may be very general and may 
describe many different types of dependencies between variables. Different probability 
tables will lead to different probability of failure of c. However if we assume that the 
failure of either event a or b necessarily leads to the failure of c the conditional 
probability table will be as shown in Table 2-6.  

Improper
Detector Performance

c

Inaccurate or Faulty 
Detection of Wake 

Vortices
b

Wake Vortex Outside 
Detection Range/Scanning 

Volume
a

 
Figure 2.35: Discrete Bayesian belief net for the Improper Detector Performance 

Variable 
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a
b 1 0 1 0

c=1 1 1 1 0

Conditional Probability Table for P (c  l a , b )
1 0

 
Table 2-6: Conditional Probability Table for the discrete BBN in Figure 2.35 

 
The marginal distributions of a and b have been specified as: 

a 0 1 b 0 1
0.999 0.001 0.999 0.001

 
Table 2-7: Marginal distributions for nodes a and b from the discrete BBN shown in 

Figure 2.35 
 
Using formula 27 we can calculate the joint distribution of (a, b, c) as: 
 

( ) ),()()(,, bacPbPaPcbaP = . 
 
The probability P(c=1) can be calculated as a sum of the following probabilities: 
 
( ) ( ) ( ) ( ) 633 1011010)1,11()1()1(1,1,1 −−− =⋅⋅========== bacPbPaPcbaP , 
( ) ( ) ( ) ( ) 33 10999.01999.010)0,11()0()1(1,0,1 −− ×=⋅⋅========== bacPbPaPcbaP , 
( ) ( ) ( ) ( ) 33 10999.0110999.0)1,01()1()0(1,1,0 −− ×=⋅⋅========== bacPbPaPcbaP , 
( ) ( ) ( ) ( ) 00999.0999.0)0,01()0()0(1,0,0 =⋅⋅========== bacPbPaPcbaP . 

 
Hence  
 

( ) ( ) ( )
( ) ( ) 0020.01,0,01,1,0

1,0,11,1,11
====+===+

===+=====
cbaPcbaP

cbaPcbaPcP  

 
Notice that if one uses different probability tables then the probability of the failure of c 
will change (see the Example below). 
 
EXAMPLE: 
 
Consider three models with the same binary variables a, b shown in Figure 2.36. The 
variable c is also binary. We want to calculate P(c=1) for these three models. 
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c

a b

aa b b

cc

 
Figure 2.36: BBN, Fault Tree with an OR gate and Fault Tree with an AND gate. 

 
To see how the probability of the failure of c changes in different models we first assume 
that P(a=1)=(b=1)=0.001. In the first case, a and b influence c and the following 
conditional probability table is specified: 

a
b 1 0 1 0

c=1 0.2 0.6 0.4 0.3

1 0
Conditional Probability Table for P (c  l a , b )

 
Table 2-8: Conditional Probability Table for ),( bacP  

 
In the second case, the failure of event c occurs if a or b fail (OR –gate) and in the last 
case the failure of event c happens if both failures of events a and b occur (AND-gate). 
The probability of failure of c in OR-gate model was calculated above as 0.0020. 
Moreover we can easily see that for the AND-gate model the probability of failure of c 
will be equal to ( ) ( ) ( ) ( ) 633 10110101,1,1 −−− =⋅⋅==== cbaP . For the BBN model we get 
 
( ) ( ) ( ) ( ) 733 1022.01010)1,11()1()1(1,1,1 −−− ×=⋅⋅========== bacPbPaPcbaP  
( ) ( ) ( ) ( ) 43 10994.56.0999.010)0,11()0()1(1,0,1 −− ×=⋅⋅========== bacPbPaPcbaP

( ) ( ) ( ) ( ) 43 10996.34.010999.0)1,01()1()0(1,1,0 −− ×=⋅⋅========== bacPbPaPcbaP

( ) ( ) ( ) ( ) 2994.03.0999.0999.0)0,01()0()0(1,0,0 =⋅⋅========== bacPbPaPcbaP  
 
Summing these probabilities we get that in this case the probability of failure of c is equal 
to 0.3004. Taking different conditional probability tables in the BBN model one can 
obtain a whole variety of distributions for c.  
 
Next we calculate in an analogous way the joint distribution of the lower left-most part of 
the fault tree corresponding to event g, Improper Model Prediction. The probabilities of 
the failures of d, e, f are all equal to 0.001. Thereby, the Probability of Improper Model 
Prediction in FT can be calculated as: 
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( ) ( ) ( ) ( ) 002997.000011 ====−== fPePdPgP . 
 
In BBN we must specify the following conditional probability table:  

d
e
f 1 0 1 0 1 0 1 0

g=1 1 1 1 1 1 1 1 0

Conditional Probability Table for P(g l d, e, f)
1 0

1 0 1 0

 
Table 2-9: Conditional Probability Table for ),,( fedgP  

 
As in the case above we calculate P(g=1) using formula 27. 
  
The upper parts of the BBN and Fault Tree structures for the wake vortex detection, 
warning and avoidance maneuver are shown in Figure 2.37 and 2.38. Probabilities of 
failures for nodes and intermediate events c and g from the discrete BBN and the Fault 
Tree were already obtained. We start with FT and then show corresponding calculations 
in BBN. 

 
Figure 2.37: Upper part of the Fault Tree structure 
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Since the ATC-Wake Monitoring and Alerting Failure is caused by the failure of either c 
or g or else h we can get the probability of Monitoring and Alerting Failure in the fault 
tree as: 
 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
005985.0

111
111111

1111111

=
===+

==−==−==−

=+=+=======

hPgPcP
hPgPhPcPgPcP

hPgPcPhgcPiP ∪∪

 
Having the probability of ATC-Wake Monitoring and Alerting Failure and knowing that 
the Controller does not provide a timely warning with probability 0.001, we can calculate 
 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 006979.01111111 ===−=+====== jPiPjPiPjiPkP ∪  
 
Finally, the desired probability of ATC-Wake DWA Failure is P(T=1)=0.007972.  
 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 007972.01111111 ===−=+====== lPkPlPkPlkPTP ∪  
 
Similar calculations can be made using the BBN in Figure 2.38. 
 

ATC-Wake
DWA Failure

T

Aircraft/Pilot is not able 
to turn 
timely

l

ATC-Wake 
Warning 
Failure

k

Improper
Model Prediction

g

Improper
Detector Performance

c

Controller does not provide a 
timely warning

j

Monitoring and Alerting 
Failure

ij

Loss of DWA 
Tactical Function

h

 
Figure 2.38: Upper part of the BBN structure 

 
To calculate the probability of Monitoring and Alerting Failure given the states of the 
variables c, g and h, we specify the following conditional probability table and an 
additional marginal distribution for h: 
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c 
g 0 1
h 1 0 1 0 1 0 1 0 0.999 0.001
i=1 1 1 1 1 1 1 1 0

1 0 1 0

Conditional Probability Table for P (i l c, g, h)
1 0 h

 
Table 2-10: Conditional Probability Table for ),,( hgciP  and marginal distribution for 

node h 
 
Then, to calculate the probability of the failure of i given events c, g, and h, we first use 
formula 27 to get the joint distribution of (c, g, h, i)  
 

( ) ),,()()()(,,, hgciPhPgPcPihgcP =  
 
After that we can calculate the probability of the Monitoring and Alerting Failure given 
variables c, g, and h by summing all probabilities in (c, g, h, i) for which i=1: 
 

 
 

 
To calculate the probability of the ATC-Wake Warning Failure we specify the following 
conditional probability table and an additional marginal distribution of j: 

i 0 1
j 1 0 1 0 0.999 0.001

k=1 1 1 1 0

Conditional Probability Table for P (k  l i , j ) j
1 0

 
Table 2-11: Conditional Probability Table for ),( jikP  and marginal distribution for 

node j 
 
The probability of the ATC-Wake Warning Failure is: 
 

( ) ( ) 006979.01,,1
,
∑ ====

ji
kjiPkP

 
 
And, finally we specify 

k 0 1
l 1 0 1 0 0.999 0.001

T=1 1 1 1 0

Conditional Probability Table for P (T  l k, l) l
1 0

 
Table 2-12: Conditional Probability Table for ),( lkTP  and marginal distribution for 

node l 

( ) ( ) 005985.01,,,1
,,
∑ ====

hgc
ihgcPiP
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The probability of the ATC-Wake DWA Failure is: 
 

 

 
2.2.3 Model Calculations 
 
In this section we combine calculations done in Section 2.2.2 for smaller parts of FT and 
BBN. 
 
We will start calculations for the fault tree model of wake vortex detection warning and 
avoidance maneuver in Figure 2.33. These calculations are to be done for several risky 
specifications. Initial data used to obtain insight is given in Appendix A.3. 
 
We will apply the MOCUS Algorithm for finding Minimal Cut Sets. This algorithm 
substitutes each gate formula and applies Boolean Laws. The outcome of this algorithm is 
a list of cut sets with the property that every minimal cut set is included as a subset of the 
list of cut sets. After the final iteration all duplicated cut sets must be removed and all cut 
sets must be checked to insure that they are minimal cut sets. 
 
We are going to apply the MOCUS Top Down algorithm. We will start at the top event T 
in Figure 2.33. We substitute the Boolean expression for each gate and calculate as 
follows 
 

21 GlklGT +=+==  
( ) 33 GjlGjlT ++=++=  

( ) 54 GGhjlcghjlcghjlT ++++=++++=++++=  
( ) ( )bafedhjlT +++++++=  

bafedhjlT +++++++=                                             (30) 
 
Hence, we get the minimal cut sets as shown in Section 2.2.2. The minimal cut sets are 
listed below. 
 
Minimal cut sets: { }l , { }j , { }h , { }d , { }e , { }f , { }a , { }b . 
 
With the minimal cut sets we can build a cut set representation for our problem (see 
Figure 2.39). We can observe that the Top event can be obtained by the union of eight 
basic events joined by an OR gate, which tells us that the ATC-Wake DWA Failure is 
caused by failures of any one of eight basic events. 
 

( ) ( ) 007972.01,,1
,
∑ ====

lk
TlkPTP
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Figure 2.39: Cut set representation of the fault tree 

 
These events are not mutually exclusive so the probability of the ATC-Wake DWA 
Failure with the formula: 
 

( ) ( ) ( ) ( ) ( ) ( )∩∩∩∩∩∪∪∪∪∪∪∪ "" laPzyxPyxPxPljhfedbaP
zyxyx

l

ax

71−+−+−= ∑∑∑
≠≠≠=    (31) 

 
where all the summation literals x, y, z, … belong to { }ljhfedba ,,,,,,,  in our case. 
 
This is known as the inclusion-exclusion formula. If we develop such a formula we will 
have 128 − =255 terms to calculate the probability of the ATC-Wake DWA Failure. 
Probabilities of Failures of events in FT are summarized in the following table. 
 

a b c d e f g h i j k l T 
0.001 0.001 0.001999 0.001 0.001 0.001 0.002997 0.001 0.005985 0.001 0.006979 0.001 0.007972 

Table 2-13: Probabilities of failure for all variables 
 
Main ideas behind BBNs and probability tables necessary to quantify the BBN in Figure 
2.32 were presented in Section 2.2.2. Joint distribution represented by this structure can 
be calculated with formula 27. There exist many BBN software packages supporting fast 
calculations and specification of BBNs. In Figure 2.40, the screen shot of the BBN of the 
WV DWA maneuver in Netica is shown. Marginal probabilities of all variables (in 
percentages) are given. We can see that the probability of ATC-Wake DWA Failure is 
about 0.008.  
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Figure 2.40: BBN for the WV DWA maneuver probability. 

 
In Section 2.2 we have shown relationships between Fault trees and BBNs. Problem that 
was used to stress similarities of BBNs and FTs could have been handled by both as all 
variables were binary and dependencies between them were of the form easily handled by 
OR-gates. Moreover there were no dependencies between basic events. We have shown 
that this problem can be modelled by fault tree and the corresponding BBN can be easily 
built.  
 
The graphical representation of FTs contains more information about underlying joint 
distribution than the directed acyclic graph for BBN. However, it is much more 
restrictive in dependence structures that can be described. BBN allows their nodes to 
have more than two states. It does not restrict ‘basic’ variables to be independent and 
allows much richer set of dependence structures to be used. It comes with the price of 
course. Quantification of discrete BBNs is very cumbersome. 
 
Finally, we can point out that the choice of model always depends on the statement of the 
problem to solve. If the assumptions of FTs cannot be fulfilled we must turn to richer 
model e.g. BBNs. If however the problem can be handled with FTs (as the one presented 
in this section) we recommend use of the simplicity of FTs. 
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3. I-WAKE MODEL: DISCRETE BAYESIAN BELIEF NET  
 
For a description of the current practice approach operation, as well as the approach operation 
as proposed in the I-Wake concept refer to [De Jong et al. 2005, Speijker et al. 2006a]. 
 
3.1 I-Wake: On-board Wake Vortex Detection Warning, and Avoidance 
Probability 
 
The execution of the I-Wake detection, warning, and avoidance maneuver (e.g. a missed 
approach (during arrivals)) depends – besides operational feasibility – on the probability of 
failure of the I-Wake system components. For the assessment of the on-board I-Wake failure 
probability, a causal model has been constructed using discrete Bayesian Belief Networks 
(BBNs) (See figure 3.1).  
 
3.1.1 Application of Discrete BBNs for the On-board Wake Vortex 
Detection, Warning and Avoidance Maneuver Probability 
 
In this Section, we aim to model a system which represents the on-board wake vortex 
detection, warning and avoidance maneuver failure. Moreover, we intend to quantify such a 
model. A discrete BBN will be used since the problem initially for two reasons: 

• To obtain insight into the setting of requirements for the I-Wake operation 
• To support the I-Wake system design and development 

 
From the problem statement, we will be able to constrain the variables to take two states. The 
assumptions taken in to account to represent the BBN of Section 2.2 as a Fault Tree, namely, 
a failure of a parent-node occurs if any of its children-nodes fails, does not hold here. Hence, 
an appropriate approach which may be applied to model the failure of the aircraft/pilot in 
performing the I-Wake WV DWA maneuver amounts to discrete BBNs. Throughout Section 
3.1, we will give a detailed description of the application of the methodology to this particular 
case.  
 
 
3.1.2 Discrete BBNs  
 
The problem above can be modelled using discrete BBNs as shown in Figure 3.1. This BBN 
has 11 nodes and 10 edges. The nodes correspond to binary variables with states 0 (not 
failure) and 1 (failure) specified in the problem and edges that represent relationships between 
variables. Each BBN node is labelled with a lowercase literal and the full name of the variable 
that is of interest. Names or labels are used in the text to refer to the variables. The BBN in 
Figure 3.1 shows the graphical representation of dependences and (conditional) 
independences in this problem. One reads that d, e, f are independent and they influence g (g 
is a child of d, e, f and d, e, f are called the parents of g; denoted as pa(g)). As we said before, 
a graphical representation of BBN does not, however, give us all the information we need 
about joint distribution. To completely describe the joint distribution represented by BBN, we 



Chapter 3. I-Wake Model: Discrete Bayesian Belief Net                                                           

 - 62 -  

need to specify conditional probability tables of all variables in the BBN given their parents. 
Then the joint distribution can be given by formula 27 in Chapter 2. 
 
Due to the statement of the problem, we will need the specification of the conditional 
probability tables of ( )ijTP , , ( )cghiP ,, , ( )defgP ,,  and ( )abcP , .  

 
Figure 3.1: BBN for the on-board WV DWA maneuver probability. 

 
The nodes in the Bayesian Belief Network have the following explanation: 
 
− I-Wake DWA Failure (T): represents the probability distribution of aircraft/pilot not able 

to perform the I-Wake Detection, Warning and Avoidance Maneuver as required. 
− Aircraft/Pilot not able to initiate missed approach (j): represents the probability of an 

aircraft/pilot not able to initiate an evasive action (missed approach) as required. 
− I-Wake Monitoring and Alerting Failure (i): represents the probability of not providing a 

timely warning to the flight crew when one should be given. As a result, the crew might 
NOT be able to initiate/instruct the pilot to perform an evasive action. 

− Loss of WV DWA Tactical Function (h): represents the probability of an undetected loss 
of the WV DWA function. In case of a Detected Loss, the crew is aware that NO 
cautions/warnings will be given and a transition will be made to the ICAO Mode (the 
separation will increase, and the DWA maneuver will not be necessary). 

− Improper Model Prediction (g): represents the probability that the predictions of Wake 
Vortex locations and strength are inaccurate/wrong. 

− Faulty/Inaccurate Aircraft Data (d): represents the probability that the predictions of 
wake vortex locations and/or strengths made by the WV Model, on the basis of other 
aircraft data, are inaccurate/wrong. As a result, incorrect information is passed to the WV 
DWA tactical function, causing improper functioning. 

− Inaccurate or Faulty WV Model Estimation (e): represents the probability that the 
predictions of wake vortex locations and/or strengths made by the WV Model, on the 
basis of aircraft data and meteo data, are inaccurate/wrong. As a result, incorrect 
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information is passed to the WV DWA tactical function, causing improper functioning. 
− Inaccurate or Faulty Meteo Nowcasting (f): represents the probability that the 

meteorological conditions (i.e. nowcasting data) provided by the meteo systems are 
inaccurate or wrong. As a result, incorrect information is passed to the WV DWA tactical 
function, causing improper functioning. 

− Improper Detector Performance (c): represents the probability that the tactical WV DWA 
(e.g. on-board LiDAR) performs significantly less than the crew expect (while they are 
not aware of the inaccuracies) (i.e. inaccurate/wrong alerts are given). 

− Wake Vortex Outside Detection Range/Scanning Volume (a): represents the probability 
that the on-board LiDAR does not detect the wake vortices of the leading aircraft, because 
these are outside the scanning volume of air ahead of the aircraft. 

− Inaccurate or Faulty Detection of Wake Vortices (b): represents the probability that the 
on-board LiDAR does not detect wake vortices of the leading aircraft accurately, when 
these are inside the planned scanning volume of air ahead of the aircraft. 

 
Figure 3.2 contains the lower right-most fragment of the BBN. The nodes are Wake Vortex 
Outside Detection Range/ Scanning Volume (a) and Inaccurate or Faulty Detection of Wake 
Vortices (b). 
 
 
 

 Inaccurate or
 Faulty Detection of

Wake Vortices

 Wake Vortex Outside
 Detection

Range/Scanning

 Improper
 Detector

Performance

a b

c

 
Figure 3.2: Discrete Bayesian belief net for the Improper Detector Performance Variable 

 
 
The probabilities of a, b should be specified. We assume that P(a=1)=P(b=1)=0.001. From 
Figure 3.2 one knows that c is influenced by a and b but the nature of this dependence cannot 
be concluded from the graphical representation. How the state of c is affected by 
combinations of states of a and b must be read from conditional probability table of c given a, 
b. Such a conditional probability table may be very general and may describe many different 
types of dependencies between variables. Different probability tables will lead to different 
probability of failure of c. The conditional probability table will be as shown in Table 3-1. 
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a
b 1 0 1 0

c=1 0.9999 0.001 0.001 0.0001

Conditional Probability Table for P (c  l a , b )
1 0

 
Table 3-1: Conditional Probability Table for ),( bacP  in the discrete BBN in Figure 3.2 

 
The marginal distributions of a and b have been specified as: 
 

a 0 1 b 0 1
0.999 0.001 0.999 0.001

 
Table 3-2: Marginal distributions for nodes a and b from the discrete BBN shown in Figure 

3.218 
 

Using formula 27 in Chapter 2 we can calculate the joint distribution of (a, b, c). 
 

( ) ),()()(,, bacPbPaPcbaP = . 
 

For the BBN model we get 
 
( ) ( ) ( ) ( ) 733 10999.99999.01010)1,11()1()1(1,1,1 −−− ×=⋅⋅========== bacPbPaPcbaP

( ) ( ) ( ) ( ) 733 1099.910999.010)0,11()0()1(1,0,1 −−− ×=⋅⋅========== bacPbPaPcbaP

( ) ( ) ( ) ( ) 733 1099.91010999.0)1,01()1()0(1,1,0 −−− ×=⋅⋅========== bacPbPaPcbaP  
( ) ( ) ( ) ( ) 54 1098.910999.0999.0)0,01()0()0(1,0,0 −− ×=⋅⋅========== bacPbPaPcbaP  

 
Summing these probabilities we get that in this case the probability of failure of c is equal to 

41002798.1 −× . Taking different conditional probability tables in the BBN model one can 
obtain a whole variety of distributions for c.  
 
Turn to the left-most part of the BBN in Figure 3.1. The children nodes are Faulty or 
Inaccurate Aircraft Data (d), Faulty or Inaccurate WV Model Estimation (e) and Faulty or 
Inaccurate Meteo Nowcasting (f). The probabilities of d, e and f are specified, namely, 
P(d=1)=P(e=1)=P(f=1)=0.001. 
 

                                                 
18 Another possibility to specify the marginal distributions of each node for the discrete BBN for the on-board 
WV DWA manoeuvre probability would be the elicitation of quantiles from experts. The questionnaire is shown 
in Appendix A.5. This will allows taking into account the information from not only an expert and this 
information could be analyzed by the method described in Section 2.1.3. 
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Figure 3.3: Discrete Bayesian belief net for an Improper Model Prediction Variable 

 
From Figure 3.3 one knows that g is influenced by d, e and f but as we said before the nature 
of this dependence cannot be deduced from this visual representation. How the state of g is 
affected by the combinations of states of d, e and f must be read from the conditional 
probability table of g given d, e and f. The conditional probability table will be as shown in 
Table 3-3. 
 
 

d
e
f 1 0 1 0 1 0 1 0

g=1 0.999999 0.001 0.001 0.0001 0.001 0.0001 0.0001 0.000001

1 0
1 0 1 0

Conditional Probability Table for P (g l f, e, d)

 
Table 3-3: Conditional probability table for ( )defgP ,,  

 
The marginal distributions of d, e and f have been specified as follows: 
 

d 0 1 e 0 1 f 0 1
0.999 0.001 0.999 0.001 0.999 0.001

 
Table 3-4: Marginal distributions for nodes d, e and f from the discrete BBN shown in Figure 

3.3 
 
Using formula 27 Chapter 2 we can calculate the joint distribution of (d, e, f, g). 
 

( ) ),,()()()(,,, fedgPfPePdPgfedP = . 
 

For the BBN model we get the probability of the failure of g given the variables d, e, and f by 
summing all the probabilities in (d, e, f, g) for which g=1: 

 
 
 

( ) ( ) 6

,,
103004.11,,,1 −×==== ∑

hgc
gfedPgP
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The upper part of the BBN structure for the on-board wake vortex detection, warning and 
avoidance maneuver is shown in Figure 3.4. The probabilities of failures for nodes c and g 
from the discrete BBN were already obtained.  
 
Since a failure of the I-Wake Monitoring and Alerting is caused by the failure of c, g and h we 
can get the probability of the I-Wake Monitoring and Alerting Failure using BBN in Figure 
3.4. 
 

 
Figure 3.4: Upper part of the BBN structure 

 
To calculate the probability of the I-Wake Monitoring and Alerting Failure given the states of 
the variables c, g and h, we specify the following conditional probability table and an 
additional marginal distribution for h:  
 

c 
g 0 1
h 1 0 1 0 1 0 1 0 0.999 0.001
i=1 0.999999 0.001 0.001 0.0001 0.001 0.0001 0.0001 0.000001

1 0 1 0

Conditional Probability Table for P (i l c, g, h)
1 0 h

 
Table 3-5: Conditional Probability Table for ),,( hgciP  and marginal distribution for node 

h 
 
Then, to calculate the probability of failure of i given events c, g, and h, we first use formula 
27 Chapter 2 to get the joint distribution of (c, g, h, i) 
 

( ) ),,()()()(,,, hgciPhPgPcPihgcP =  
 
After that we can calculate the probability of the I-Wake Monitoring and Alerting Failure 
given the variables c, g, and h by summing all the probabilities in (c, g, h, i) for which i=1: 

 
 

 
 ( ) ( ) 6

,,
1010939.11,,,1 −×==== ∑

hgc
ihgcPiP
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To calculate the probability of the I-Wake DWA Failure, we take into account that i and j 
influence T and we specify the following conditional probability table: 
 

i 0 1
j 1 0 1 0 0.999 0.001

T=1 0.9999 0.001 0.001 0.0001

Conditional Probability Table for P (T  l i , j ) j
1 0

 
Table 3-6: Conditional Probability Table for ),( ijTP   

 
And since ( ) 001.01 ==jP , we can calculate: 
 
( ) ( ) ( ) ( )

( )( )( ) 96 1010928.19999.0001.01010939.1

1,11111,1,1
−− ×=×=

========== jiTPjPiPTjiP
 

( ) ( ) ( ) ( )
( )( )( ) 96 1010828.1001.0999.01010939.1

0,11011,0,1
−− ×=×=

========== jiTPjPiPTjiP
 

( ) ( ) ( ) ( )
( )( )( ) 71099999.9001.0001.0999999.0

1,01101,1,0
−×==

========== jiTPjPiPTjiP
 

( ) ( ) ( ) ( )
( )( )( ) 51098999.90001.0999.0999999.0

0,01001,0,0
−×==

========== jiTPjPiPTjiP
 

 
And, finally the probability of the I-Wake DWA Failure is: 
 

( ) ( ) 4

,
1000902.11,,1 −×==== ∑

ji
TjiPTP  

 
3.1.3 Models Calculations 
 
Main ideas behind BBNs and probability tables necessary to quantify the BBN in Figure 3.1 
were presented in Section 3.1.2. The data required to quantify such a model are not real and 
are only used to show the use of the methodology (Two questionnaires are proposed to elicit 
data for the input of this model in Appendix A.4). The joint distribution represented by this 
structure can be calculated with formula 27 Chapter 2. There exist many BBN software 
packages supporting fast calculations and specification of BBNs. In Figure 3.5, the BBN of 
the on-board WV DWA maneuver in Netica is shown. Marginal probabilities of all variables 
(in percentages) are given. We can see that the probability of the I-Wake DWA Failure is 
about 0.0100902 in the BBN (probabilities are given in percentages). 
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Figure 3.5: BBN for the on-board WV DWA maneuver probability.  

 
We have shown that this problem can be modelled by discrete BBNs. The graphical 
representation of the directed acyclic graph for BBN does not contain much information about 
the underlying joint distribution. However, it is much rich in dependence structures that can 
be described. BBN allows their nodes to have more than two states. It does not restrict ‘basic’ 
variables to be independent and allows much richer set of dependence structures to be used.  It 
comes with the price of course. The quantification of discrete BBNs is very cumbersome. 
 
Finally, we can point out that the choice of model always depends on the statement of the 
problem to solve. In this case the appropriate model was: Discrete BBNs. 
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4. BAYESIAN BELIEF NETS 
 
 
This Chapter is just an overview of the main definitions about BBNs and related concepts. It 
is based on [Kurowicka D., Cooke R.M., Charitos T., Speijker L.J.P. 2001; Kurowicka D., 
Cooke R.M. 2006]. 
 

4.1 Definitions 
 
A Bayesian Belief Network is a probabilistic model based on the notion of conditional 
independencies and dependencies (CIDs).  
 
Definition 4.1.1. Conditionally Independent Variables. Two variables 21, XX  are 
independent conditional on some other variables contained in the set S, if the conditional 
probability factors like ( ) ( ) ( )SXpSXpSXXp 2121, =  given ( ) 0>Sp . This is equivalent to 

( ) =SXXp ,21  ( )SXp 1 or ( ) ( )SXpSXXp 212 , =  provided that ( ) ( ) ( ) 0,,,, 21 >SpSXpSXp . 
This means that 2X  is irrelevant to 1X  if the joint state of the variables in the set S  is known. 
 
Definition 4.1.2. Independent Events. The events A  and B  are independent if and only if 
( ) ( ) ( )BpApBAp =∩ . 

 
Definition 4.1.3. Conditionally Independent Events 
Weak definition: The events A  and B  are conditionally independent given the event C  if and 
only if ( ) ( ) ( )CBpCApCBAp =∩ . This is written as CBA ⊥ . It is assumed that 
( ) 0>Cp . 

 
If C  has probability one, then the weak definition is just a restatement of the definition of 
independence. It is a symmetric relation between A  and B  because CBA ⊥  implies 

CAB ⊥ . It also implies that CBA c⊥ . However it neither implies nor is implied by 
cCBA ⊥ . To assume that CBA ⊥  means that A  and B  are independent if C  occurs and 

does not say anything about the relation of between A  and B  if C  does not occur. 
 
Strong definition: The events A and B are independent given any event in the partition of the 
sample space generated by the events C and D: cccc DCDCDCDC ∩∩∩∩ ,,, . That is  
 

[ ] cccc DCBADCBADCBADCBADCBA ∩⊥∩⊥∩⊥∩⊥⇔⊥ ,,,, . 
 
Note that [ ]DCBA ,⊥  does not imply that CBA ⊥  or that DCBA ∪⊥ .   
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4.2 Discrete Bayesian Belief Nets  
 
A finite valued BBN is a directed acyclic graph, together with an associated set of probability 
tables. The graph consists of nodes and arcs. The nodes represent variables, which can be 
discrete or continuous. The arcs represent causal/influential or functional relationships 
between variables. 
 
Throughout this Section, let the set of all variables in a domain be denoted as V , and the 
variables as VXX ∈...,, 21 . The conditional independencies and dependencies (CIDs) 
underlying a multivariate probability distribution for the variables in V  are reflected by the 
graphical structure of a Bayesian Belief Network, the so-called directed acyclic graph (DAG).  
 
A Bayesian Belief Network (BBN) consists of a set of nodes and a set of directed edges 
between nodes. The nodes represent variables, which can be discrete or continuous. The edges 
or arcs represent causal/ influential relationships between variables.  
 
The parents ( )1Xpa  of a variable 1X  in the DAG, is the set of variables VU ∈ , such that 
there exists a directed edge 1XU → . The variable 1X  is called a child of U . To each variable 
W with parents nXX ,...,1  there is attached a conditional probability table ( )nXXWP ,...,1 . In 
case W  has no parents, the associated probability table reduces to unconditional probabilities 
( )WP . 

 
A definition for Bayesian Belief Networks can be the following.  
 
Definition 4.2.1: A Bayesian Belief Network for a set of variables { }nXXV ,,1 …=  consists of 
(1) a network structure S  that encodes a set of conditional independence assertions about 
variables in V , and (2) a set P  of local probability distributions associated with each 
variable. Together, these components define the joint probability distribution for V . The 
network structure S  is a directed acyclic graph. The nodes in S  are in one-to-one 
correspondence with the variables in V .   
 
We use iX  to denote both the variable and its corresponding node, and ( )iXpa  to denote the 
parents of node iX  in S  as well as the variables corresponding to those parents. The absence 
of possible arcs in S  implicitly means conditional independence. 
 
Theorem 4-2-1: (The Chain Rule). Given the structure S , the joint probability distribution 
for { }nXXV ,,1 …=  is given by 
 

( ) ( )( )∏
=

=
n

i
ii XpaXpVP

1
     (1) 

 
The aforementioned theorem illustrates the importance of exploiting conditional 
independence in order to calculate the joint probability table ( )VP . The set of parameters θ  
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of a Bayesian network model is the set of conditional probabilities ( )( )ii XpaXp , where 
( )iXpa  denotes the parents of a variable iX  in the DAG. This sort of factorization has two 

consequences regarding learning Bayesian Belief Networks. Firstly, since each of the 
conditional probabilities typically involves only a small number of variables, i.e. 

( ) VXpa i <<  for all Vi∈ , the parameters of a Bayesian Belief Network can be estimated 
from finite data. Secondly, the parameters of a Bayesian Belief Network, since they are 
conditional probabilities, can be calculated from the probability distribution implied by the 
data.  
 
The structure S  of a Bayesian Belief Network has two components: the global structure G  
and a set of local structures M . G  is, as we mention previously, a directed acyclic graph, 
while the set of local structures { }nMMM ...,,1=  is a set of n  mappings, one for each 
variable iX , such that iM  maps each value of ( ){ }ii XpaX ,  to a parameter in θ.  
 
Evidence: There are two kinds of evidence that can be entered in a Bayesian Belief Network 
and change the probability distributions of variables, hard and soft evidence. If the evidence 
on a variable or otherwise a statement of the certainties of its states gives the exact state of 
the variable, we call this hard evidence or instantiation; otherwise we call it soft evidence. 
 

4.3 Continuous Bayesian Belief Nets  
 
The Vine-copula method presented in this section is another tool that enables the user to 
construct a multivariate distribution. In this method we need one dimensional marginal 
distributions and information about the dependence structure. Marginal distributions and 
dependence can be obtained using expert opinion. In this section we present general 
description of this method. We introduce only basic definitions and procedures, which will be 
used during this project. For more information about vines and copulas we refer to [Bedford 
T.J., Cooke R.M. 2002; Kurowicka D., Cooke R.M. 2004; Hanea A., Kurowicka D., Cooke 
R.M. 2005; Kurowicka D., Cooke R.M. 2006].  

 
4.3.1 Vines 

 
A graphical model called vines was introduced in [Cooke R.M. 1997]. A vine on n variables 
is a nested set of trees, where the edges of tree j  are the nodes of tree 1+j , and each tree has 
the maximum number of edges. A regular vine on n variables is a vine in which two edges in 
tree j  are joined by an edge in tree 1+j  only if these edges share a common node. A regular 
vine is called a canonical vine if each tree iT  has a unique node of degree in − , hence has 
maximum degree. A regular vine is called a D -vine if all nodes in 1T  have degree not higher 
than 2 (see Figure 4.1). There are ( ) 2/1−nn  edges in a regular vine on n variables. Each edge 
in a regular vine may be associated with a constant conditional rank correlation (for 1=j  the 
conditions are vacuous) and, using a copula (bivariate distribution on a unite square with 
uniform margins), a joint distribution satisfying the vine-copula specification can be 
constructed and sampled on the fly [Cooke R.M. 1997]. The conditional rank correlations 
associated with each edge are determined as follows: the variables reachable from a given 
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edge are called the constraint set of that edge. When two edges are joined by an edge of the 
next tree, the intersection of the respective constraint sets are the conditioning variables, and 
the symmetric differences of the constraint sets are the conditioned variables. The regularity 
condition insures that the symmetric difference of the constraint sets always contains two 
variables. Each pair of variables occurs once as conditioned variables. For the precise 
definitions and all properties of a regular vine we refer to [Bedford T.J., Cooke R.M. 2002].  
 

4321
12r

23r 34r

213r 324r

2314r

  
Figure 4.1: D -vine on four variables with (conditional) rank correlations assigned to the 

edges. 
 
The rank correlation specification on regular vine plus copula determines the whole joint 
distribution. To sample a distribution specified by the D -vine in Figure 4.1, ( )4,3,2,1D  the 
following algorithm can be used: Sample four independent variables distributed uniformly on 
interval [ ]1,0 , 4321 ,,, UUUU  and calculate values of correlated variables 4321 ,,, XXXX  as 
follows 
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where ( )ijkljj rXXF ;  denotes the cumulative distribution function for jX  given iX  under 

the conditional copula with correlation ijklr . 
 
To shorten the notation that will be used in describing the general sampling procedure for D -
vine the above algorithm can be stated as: 
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Figure 4.2 shows the procedure of sampling value of 4X  graphically. Notice that for the D -
vine values of 32F  and 231F  that are used to conditionalize copulae with correlations 324r  and 

2314r  to obtain 234F  and 1234F , respectively have to be calculated. In Figure 4.2 the diagonal 
band copula [Cooke R.M., Waij R. 1986] is used. 
 

•
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Figure 4.2: Procedure of sampling value of 4X  in D -vine. 
 
In general we can sample an n -dimensional distribution represented graphically by the D -
vine on n  variables with (conditional) rank correlations 
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assigned to the edges of the vine as follows 
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The rank correlation is actually a measure of the dependence between two random variables 
joint by the copula. The rank correlation specification on regular vine plus copula determines 
the whole joint distribution. The procedure of sampling such a distribution can be written for 
any regular vine.  
 
4.3.2 Copula 
 
Definition (Copula) A copula C  is a distribution on the unit square with uniform margins. 
 
Copulas are then functions that join or "couple" bivariate distribution functions to their 
marginal distribution functions.  

 
 
Definition Random variables X  and Y  with distributions XF , YF  respectively are joined by 
copula C  if their joint distribution can be written 
 

( ) ( ) ( )( )yFxFCyxF YXXY ,, = . 
 
For rich exposition of copulae we refer to [Joe H. 1997; Doruet Mari D. and Kotz S. 2001; 
Nelsen R. 1999; Bedford T.J., Cooke R.M. 2002]. In this document we mainly use Frank’s 
copula [Frank M.J. 1979].      
 
4.3.2.1 Diagonal Band Copula 
 
The diagonal band copula is a simple bivariate distribution on the unit square with uniform 
margins. For positive correlations its mass is concentrated on the diagonal band with vertical 
bandwidth (denoted β ). Mass is distributed uniformly on the rectangle and is uniform but 
twice as thick in the triangular corners. For negative correlation the band is drawn between 
the other corners. The correlation value depends on the bandwidth. For positive correlations 
the density of the diagonal band distribution is given by 
 

)1(2
1),(
αα −

=vuf (1 αα −≤−≤− 11 vu + 1 α≥−− vu1 + 1 α−≤−− vu1 )                (4) 

 
where 1,0,10 ≤≤≤≤ vuα  and 1Α denotes indicator function of Α.  

 
The density of the diagonal band copula with correlation 0.8 is shown in Figure 4.3. 
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Figure 4.3: A density function of the diagonal band copula with correlation 0.8. 

 
4.3.2.2 Frank's Copula 

 
Frank’s family [Frank M.J., 1979] has a property of reflection symmetry, that is, 
( ) ( )vucvuc −−= 1,1, . This property is very important from an application point of view. 

Frank’s copula has one parameter θ : 
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With generating function 
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−
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When ( )∞−→∞→ θθ  then Frank’s copula corresponds to ( )LU CC . 0→θ  gives 
independent copula. The density of the Frank's copula with parameter 9026.7=θ  and 
correlation 0.8 is shown in Figure 4.4. 
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Figure 4.4: Density function of the Frank's copula with parameter 9026.7=θ  and rank 
correlation 0.8. 
 

4.3.2.3 Normal Copula 
 
If ρΦ  is the bivariate normal CDF with correlation ρ  and 1−Φ  the inverse of the standard 
univariate normal distribution function then  
 

( ) ( ) ( )( )vuvuC 11 ,, −− ΦΦΦ= ρρ  
 

[ ]1,0, ∈vu  is called the normal copula. 
 
The density of the normal copula with correlation 0.8 is shown in Figure 4.5. 
 

 
Figure 4.5: A density function of normal copula with correlation 0.8. 
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5. CONCLUSIONS  AND RECOMMENDATIONS 
 
In Europe, wake vortex prediction and detection systems are being introduced in order to 
increase airport capacity, while maintaining safety. The EC project ATC-Wake aims to 
develop a ground based system for ATC (Air Traffic Control) that would allow variable 
aircraft separation distances, as opposed to the fixed distances presently applied at airports. 
The EC project I-Wake aims to develop an on-board system for pilots in order to minimize 
the probability of a wake encounter. As part of these projects, quantitative safety assessments 
were performed. So far, the focus of these safety studies was the assessment of the risk related 
to the wake encounter itself.  
 
However, for a quantitative safety assessment of the use of wake vortex prediction and 
detection systems, the following issues should also be considered: 
 

- Humans working with these systems have to react on alerts, so as to ensure that a pilot 
will be able to initiate a wake vortex avoidance maneuver in time. 

 
- If one or more of the system components provide a wrong or erroneous advice, there 

will be a higher risk on the presence of (severe) wake vortices. The consequences 
might be catastrophic, in case reduced separation is applied. 

 
This study therefore has provided insights into the hazards and system failures related to the 
use of wake vortex prediction and detection systems. Three models, developed by NLR, have 
been analyzed in detail to support of the setting of requirements for the use of these systems. 
These models are: 
 

- A stochastic model, based on use of continuous Bayesian Belief Nets, for the initial 
aircraft separation time between aircraft taking off at a single runway; 

 
- A Fault Tree model for the assessment of the impact of ground based system failures 

on a wake vortex detection, warning, and avoidance manoeuvre; 
 

- A discrete Bayesian Belief Net for the assessment of the impact of an on-board system 
failure on a wake vortex avoidance manoeuvre. 

 
Main ideas behind Bayesian Belief Nets and the data requirements for the use of these three 
models have been presented. The mathematical modeling techniques have been described and 
discussed in detail. The data required to quantify the models has to be provided by operational 
experts, and might need to be further validated through expert elicitation sessions and a 
comparison with wake vortex incident/accident data. Several questionnaires to elicit required 
data for the use of these models have been proposed.  
 
We should point out that the methodology to use depends on the characteristics of the 
problem to solve and the assumptions to be taken. If our variables are restricted to take two 
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values or states the modeling approach to follow is discrete BBNs. This approach has been 
followed for the causal models representing the ground based and on-board detection, 
warning, and avoidance maneouvre. It has been shown that these discrete BBNs can also be 
represented as a fault tree (and vice versa). Although, the simplicity of the Fault Trees is 
appropriate in some cases and its graphical representation contains more information about 
underlying joint distribution than the directed acyclic graph for BBN; it is much more 
restrictive in dependence structures that can be described. BBNs allow their nodes to have 
more than two states. It does not restrict the ‘basic’ variables to be independent and allows a 
much richer set of dependence structures to be used. It should be noted that quantification of 
discrete BBNs can be very cumbersome. If the variables in a mathematical model are 
continuous, we recommend the use of continuous BBNs. An elicitation procedure, based on 
(conditional) rank correlations, has been constructed in order to cope with the specification of 
the joint probability distribution for the continuous BBN for the initial aircraft separation 
time. Direct quantification of a BBN that is discretised to 10 states for each variable would 
require the specification of 12,150 probabilities in the conditional probability tables. The 
quantification with continuous nodes requires only nine algebraically independent 
(conditional) rank correlations and the specification of the nine marginal distributions for the 
nodes in the BBN. This demonstrates clearly the reduction of assessment burden once we 
have quantified influences as (conditional) rank correlations. It is recommended to investigate 
the quantification of the combination of discrete and continuous nodes in a Bayesian Belief 
Network. 
 
In the future, when the implementation of the ATC-Wake and the I-Wake system is 
accomplished, more data will become available to validate the models and to verify the 
correctness of the setting of requirements for the use of wake vortex prediction and detection 
systems. In order to assess the risk related to the use of these systems in terms of 
incident/accident probabilities, a dynamic coupling of the developed fault trees and BBNs 
with the NLR WAVIR methodology and tool-set is recommended. 
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APPENDIX A –QUESTIONNAIRES  
 
 

A.1 – Expert Distributions for the Nodes of The Aircraft Separation Time 
Model 

 
The Questionnaire 

 
Please fill in your 5%, 25%, 50%, 75% and 95% quantiles for the following uncertain 
quantities. 

 
1. What is the wind in meters per second [m/s] predicted by the Meteo/weather 

forecast system? 
 
 
5%_______ 
 

 
25%_______ 

 
50%_______ 

 
75%_______ 

 
95%_______ 

 
 

 
2. What is the difference in seconds [s] between the separation time advised by the 

Separation Mode Planner and the separation time that should be advised? 
 
 
5%_______ 
 

 
25%_______ 

 
50%_______ 

 
75%_______ 

 
95%_______ 

 
 

 
3. What is the difference in seconds [s] between the separation time advised by the 

supervisor and the separation time that should be advised? 
 
 
5%_______ 
 

 
25%_______ 

 
50%_______ 

 
75%_______ 

 
95%_______ 

 
 

 
4. What is the separation time in seconds [s] prescribed by the Air Traffic Control 

Supervisor for a departing leader and follower aircraft combination? 
 
 
5%_______ 
 

 
25%_______ 

 
50%_______ 

 
75%_______ 

 
95%_______ 
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5. What is the difference between actual wind in meters per second [m/s] (measured 

by the Detector) and predicted wind in meters per second [m/s] (as determined by 
the Meteo/weather systems)? 

 
 
5%_______ 
 

 
25%_______ 

 
50%_______ 

 
75%_______ 

 
95%_______ 

 
 

 
6. What is the difference in seconds [s] between the actual take off clearance time 

advised and the time that should be advised? 
 
 
5%_______ 
 

 
25%_______ 

 
50%_______ 

 
75%_______ 

 
95%_______ 

 
 

 
7. What is the time in seconds [s] between start of roll of the leader aircraft and the 

take off clearance of the controller for the follower aircraft? 
 
 
5%_______ 
 

 
25%_______ 

 
50%_______ 

 
75%_______ 

 
95%_______ 

 
 

 
8. What is the time difference in seconds [s] between the take off clearance and start of 

roll of the follower aircraft? 
 
 
5%_______ 
 

 
25%_______ 

 
50%_______ 

 
75%_______ 

 
95%_______ 

 
 

 
9. What is the time in seconds [s] between start of take off (roll) of leader and follower 

aircraft (measured from the start of roll of the leader at its Take Off Position)? 
 
 
5%_______ 
 

 
25%_______ 

 
50%_______ 

 
75%_______ 

 
95%_______ 
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Distributions and Theoretical States for Each Variable 

 
Initial data used to obtain insight are presented. Therefore, probability distributions for the 
nodes in the BBN were estimated for given means and standard deviations of the marginal 
distributions. Those considered adequate for the marginal distributions required are shown 
below.  
 

Gamma Distribution for the Aircraft Take Off Separation Time, 9X : 8750.1,64 == ba  

 
By taking the inverse of this distribution we found values corresponding to given probability 

 

0.9 139.5799

0.7 127.3904
0.8 132.4079

0.5 119.3756
0.6 123.2044

0.3 111.7043
0.4 115.6269

Aircraft Take Off Separation Time, X 9

0.1 101.2228
0.2 107.2282

 
 

Gamma Distribution for the ATCo Take Off Clearance Time, 7X : 2778.0,9741.323 == ba  
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By taking the inverse of this distribution we found values corresponding to given probability 

 

0.9 96.4646

0.7 92.5535
0.8 94.1790

0.5 89.9074
0.6 91.1794

0.3 87.3123
0.4 88.6473

0.1 83.6544
0.2 85.7670

ATCo Take Off Clearance Time, X 7

 
 

Gamma Distribution for the Pilot Take Off Time, 8X : 3333.3,0001.9 == ba  

 
 

By taking the inverse of this distribution we found values corresponding to given probability 
 

0.9 43.3157

0.7 34.3356
0.8 37.9326

0.5 28.8965
0.6 31.4465

0.3 24.0665
0.4 26.4887

0.1 18.1083
0.2 21.4283

Pilot Take Off Time, X 8

 
 

Gamma Distribution for the Prescribed Spacing, 4X : 1111.1,81 == ba  
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By taking the inverse of this distribution we found values corresponding to given probability 

 
Prescribed Time Spacing, X 4

0.1 77.4458
0.2 81.4940
0.3 84.4997
0.4 87.1261
0.5 89.6298
0.6 92.1810

0.9 103.0297

0.7 94.9635
0.8 98.2901

 
 

Normal Distribution for Wind Forecast Error, 1X : 7.1,0 == σμ  

 
 

By taking the inverse of this distribution we found values corresponding to given probability 
 

Wind Forecast Error, X 1

0.1 -2.1786
0.2 -1.4308
0.3 -0.8915
0.4 -0.4307
0.5 0.0000
0.6 0.4307
0.7 0.8915
0.8 1.4308
0.9 2.1786

 
 

Normal Distribution for Separation Mode Planner Failure, 2X : 10,0 == σμ  
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By taking the inverse of this distribution we found values corresponding to given probability 

 
Separation Mode Planner Failure, X 2

0.1
0.2

-12.8155
-8.4162

0.3
0.4
0.5
0.6

-5.2440
-2.5335
0.0000
2.5335
5.2440
8.4162
12.8155

0.7
0.8
0.9

 
 

Normal Distribution for Wind Nowcast Error, 5X : 25.0,0 == σμ  

 
 

By taking the inverse of this distribution we found values corresponding to given probability 
 

0.2 -0.2104

Wind Nowcast Error, X 5

0.1 -0.3204

-0.1311
0.4 -0.0633
0.5 0.0000

0.3

0.6 0.0633
0.7 0.1311
0.8 0.2104
0.9 0.3204

 
 

Normal Distribution for Error Runway / Tower Controller, 6X : 5,0 == σμ  
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By taking the inverse of this distribution we found values corresponding to given probability 

 
Error Runway Tower Controller, X 6

0.1 -6.4078
0.2 -4.2081
0.3 -2.6220
0.4 -1.2667
0.5 0.0000
0.6 1.2667
0.7 2.6220
0.8 4.2081
0.9 6.4078

 
 

Normal Distribution for Error ATC Supervisor, 3X : 10,0 == σμ  

 
 

By taking the inverse of this distribution we found values corresponding to given probability 
 

Error ATC Supervisor, X 3

0.1 -12.8155
0.2 -8.4162
0.3 -5.2440
0.4 -2.5335
0.5 0.0000
0.6 2.5335
0.7 5.2440
0.8 8.4162
0.9 12.8155
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A.2 – Conditional and Unconditional Rank Correlations 
 

Conditional and Unconditional Rank Correlations Required to quantify the BBN for 
The Aircraft Separation Time Model 

Expert Opinion 
 
 
In the next 8 questions we intend to assess rank correlations between variables of interest. Rank 
correlation measures monotonic relationship between random variables and can be understood roughly 
as a degree to which two random variables take high or low values together. In this document, 
variables are denoted by iX ’s and their median values are denoted by 

50iX ’s. 
 
It is obvious that if two variables are independent, then knowing that one of them takes high values, 
does not give any extra information about the other variable. If variables are completely positively 
rank correlated then if one is equal e.g. to its 90th percentile the other one is also equal to its 90th 
percentile. Hence for positively correlated random variables, information that one of them takes high 
values increases our confidence that the other one will be high as well.  
 
We will ask experts about conditional probability that one variable is above its median given that other 
variable is above its median. If the variables are independent this probability is equal to ½ if they are 
positively correlated then this probability is higher than ½ and lower if they are negatively rank 
correlated.  
 
We also ask experts about the conditional probability that one variable is above its median given that 
two/three variables are above their medians. The provided number will be between a subinterval of 
[ ]1,0 , which depends on previously assessed questions.  
 

Consider the relationship between the following two variables: 
 
2. Suppose that the Wind Prediction was observed to be above its median value. What is your 

probability that the Separation Mode Planner Failure would also lie above its median value? 
 
 

Probability [0, 1] : 0.25 
 

This can be shortened as 

1X : Wind Prediction [m/sec] 2X : Separation Mode Planner Failure [sec] 

Suppose: 
5011 xX ≥ ; what is ( )

5050 1122 xXxXP ≥≥ ? 

 
Now, consider the relationship between the following three variables: 

2X : Separation Mode Planner 
Failure [sec] 

3X : Error ATC Supervisor 
[sec] 

4X : Prescribed Spacing 
[sec] 

 First, we consider the relationship between 3X  and 4X , we say 
 
3. Suppose that the Error ATC Supervisor was observed to be above its median value. What is 

your probability that the Prescribed Spacing would also lie above its median value? 
 



Appendix A –Questionnaires                                                                                                                  

 - 90 - 

 
Probability [0, 1] : 0.7 

 
Shortened as:  

Suppose: 
5033 xX ≥ ; what is ( )

5050 3344 xXxXP ≥≥ ? 

 Then, by adding information about 2X  to the same situation, we ask 
 
4. Consider the same situation as in question 2, now with the further information that the 

Separation Mode Planner Failure is also observed to be above its median value. How does 
this additional information change your previous estimate of 0.7? According to your 
previous answer your current estimate should lie in the indicated interval below. 

 
 

Probability [0.40438, 0.99555] : 0.8 
 

 In short form: 

Suppose: 
5033 xX ≥  and 

5022 xX ≥ ; what is ( )
505050 223344 , xXxXxXP ≥≥≥ ? 

Similarly, consider the relationship between the following three variables: 

5X : Wind Error 
[sec] 

6X : Error Runway/Tower Control  
[sec] 

7X : ATCo Take Off Clearance 
Time  
[sec] 

 This situation first involves 6X  and 7X , we ask   
 
5. Suppose that Error Runway/Tower Controller was observed to be above its median value. 

What is your probability that ATCo Take Off Clearance Time would also lie above its 
median value? 

 
 

Probability [0, 1] : 0.8 
 

 This can be shortened as: 

Suppose: 
5066 xX ≥ ; what is ( )

5050 6677 xXxXP ≥≥ ? 

 
By adding information about 5X  to the same situation, we ask 

 
6. Consider the same situation as in question 4, now with the further information that the Wind 

Error is also observed to be above its median value. How does this additional information 
change your previous estimate of 0.8? According to your previous answer your current 
estimate should lie in the indicated interval below. 

 
 

Probability [0.60159, 0.99719] : 0.7 
 

Shortened as: 

Suppose: 
5066 xX ≥  and 

5055 xX ≥ ; what is ( )
505050 556677 , xXxXxXP ≥≥≥ ? 
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Consider the relationship between the following four variables: 

 4X : Prescribed Spacing [sec] 7X : ATCo Take Off Clearance Time [sec] 

8X : Pilot Take Off Time [sec] 
9X : Aircraft Take Off Separation Time [sec] 

 This situation first involves information of 8X  and 9X , we ask 
 
7. Suppose that Pilot Take Off Time was observed to be above the median value. What is your 

probability that the Aircraft Take Off Separation Time would also lie above its median 
value? 

 
 

Probability [0, 1] : 0.6 

Suppose: 
5088 xX ≥ ; what is ( )

5050 8899 xXxXP ≥≥ ? 

By adding information about 7X  to the same situation, we ask 
 
8. Consider the same situation as in question 6, now with the further information that the 

ATCo Take Off Clearance Time is also observed to be above its median value. How does 
this additional information change your previous estimate of 0.6? According to your 
previous answer your current estimate should lie in the indicated interval below. 

 
 

Probability [0.20907, 0.99053] : 0.7 

Suppose: 
5088 xX ≥  and 

5077 xX ≥ ; what is ( )
505050 778899 , xXxXxXP ≥≥≥ ? 

 
If we now add information about 4X  to the same situation, we ask 

 
9. Consider the same situation as in question 7, now with the further information that the 

Prescribed Spacing is also observed to be above its median value. How does this additional 
information change your previous estimate of 0.7? According to your previous answer your 
current estimate should lie in the indicated interval below. 

 
 

Probability [0.40068, 0.99145] : 0.8 

Suppose: 
5088 xX ≥  and 

5077 xX ≥  and 
5044 xX ≥ ; what is

 ( )
50505050 44778899 ,, xXxXxXxXP ≥≥≥≥ ? 

 
 
 
 
 
 
 



Appendix A –Questionnaires                                                                                                                  

 - 92 - 

A.3 – Parameter Values for the ATC-WAKE Maneouvre 
 
 
Table 1 with parameter values for the DWA maneuver (focus on pilot performance/ability) 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
a  - Horizontal Scanning Failure 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
b  - Vertical Scanning Failure 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
c  - Detection Range Error 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
e  - Faulty WV Model Estimation 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
f   - Faulty/inaccurate Traffic Situation 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
g  - Faulty/inaccurate Meteo Nowcasting 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
j   - Loss of DWA tactical function 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
k  - Controller does not initiate warning 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
m - Pilot not able to perform maneuver 10 -1 10 -2 10 -3 10 -1 10 -2 10 -3 
 
 
Table 2 with parameter values for the DWA maneuver (focus on ATC performance/ability) 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
a  - Horizontal Scanning Failure 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
b  - Vertical Scanning Failure 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
c  - Detection Range Error 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
e  - Faulty WV Model Estimation 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
f   - Faulty/inaccurate Traffic Situation 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
g  - Faulty/inaccurate Meteo Nowcasting 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
j   - Loss of DWA tactical function 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
k  - Controller does not initiate warning 10 -1 10 -2 10 -3 10 -1 10 -2 10 -3 
m - Pilot not able to perform maneuver 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
 
 
Table 3 with parameter values for the DWA maneuver (focus on Detector performance) 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
a  - Horizontal Scanning Failure 10 -6 10 -3 10 -1 10 -6 10 -3 10 -1 
b  - Vertical Scanning Failure 10 -6 10 -3 10 -1 10 -6 10 -3 10 -1 
c  - Detection Range Error 10 -6 10 -3 10 -1 10 -6 10 -3 10 -1 
e  - Faulty WV Model Estimation 10 -3 10 -3 10 -1 10 -2 10 -2 10 -2 
f   - Faulty/inaccurate Traffic Situation 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
g  - Faulty/inaccurate Meteo Nowcasting 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
j   - Loss of DWA tactical function 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
k  - Controller does not initiate warning 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
m - Pilot not able to perform maneuver 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
 
 
Table 4 with parameter values for the DWA maneuver (focus on Predictor performance) 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
a  - Horizontal Scanning Failure 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
b  - Vertical Scanning Failure 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
c  - Detection Range Error 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
e  - Faulty WV Model Estimation 10 -6 10 -3 10 -1 10 -6 10 -3 10 -1 
f   - Faulty/inaccurate Traffic Situation 10 -6 10 -3 10 -1 10 -6 10 -3 10 -1 
g  - Faulty/inaccurate Meteo Nowcasting 10 -6 10 -3 10 -1 10 -6 10 -3 10 -1 
j   - Loss of DWA tactical function 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
k  - Controller does not initiate warning 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
m - Pilot not able to perform maneuver 10 -3 10 -3 10 -3 10 -2 10 -2 10 -2 
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Table 1 with parameter values for the DWA maneuver (focus on pilot performance/ability) 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
d – Improper Detector 
Performance 

0.002997 0.002997 0.002997 0.029701 0.029701 0.029701 

h – Improper Model 
Prediction 

0.002997 0.002997 0.002997 0.029701 0.029701 0.029701 

j - Monitoring and Alerting 
Failure 

0.006979 0.006979 0.006979 0.067935 
 

0.067935 
 

0.067935 
 

l - Warning Systems 
Failure 

0.007972 0.007972 0.007972 0.077255 0.077255 0.077255 

T – ATC-Wake DWA 
Failure 

0.107175 0.017892 0.008964 0.16953 0.086483 0.078178 
 

 
Table 2 with parameter values for the DWA maneuver (focus on ATC performance/ability) 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
d – Improper Detector 
Performance 

0.002997 0.002997 0.002997 0.029701 0.029701 0.029701 
 

h – Improper Model 
Prediction 

0.002997 0.002997 0.002997 0.029701 0.029701 0.029701 
 

j - Monitoring and Alerting 
Failure 

0.006979 0.006979 0.006979 0.067935 
 

0.067935 
 

0.067935 
 

l - Warning Systems Failure 0.106281 0.016909 0.007972 0.161141 0.077255 0.068867 
 

T – ATC-Wake DWA 
Failure 

0.107175 0.017892 0.008964 0.16953 0.086483 0.078178 
 

 
Table 3 with parameter values for the DWA maneuver (focus on Detector performance) 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
d – Improper Detector 
Performance 

0.000003 0.002997 0.271000 
 

0.000003 0.002997 0.271000 
 

h – Improper Model Prediction 0.002997 0.002997 0.101799 
 

0.029701 0.029701 0.029701 
 

j - Monitoring and Alerting 
Failure 

0.003997 0.006979 0.345866 
 

0.039407 
 

0.042283 
 

0.299726 
 

l - Warning Systems Failure 0.004993 0.007972 0.34652 
 

0.049013 0.05186 0.306728 
 

T – ATC-Wake DWA Failure 0.005988 0.008964 0.347174 
 

0.058523 0.061341 0.313661 
 

 
Table 4 with parameter values for the DWA maneuver (focus on Predictor performance) 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
d – Improper Detector 
Performance 

0.002997 0.002997 0.002997 0.029701 0.029701 0.029701 

h – Improper Model Prediction 0.000003 0.002997 0.271000 0.000003 0.002997 0.271000 
 

j - Monitoring and Alerting 
Failure 

0.003997 0.006979 0.273912 0.039407 
 

0.042283 
 

0.299726 
 

l - Warning Systems Failure 0.004993 0.007972 0.274638 0.049013 0.05186 0.306728 
 

T – ATC-Wake DWA Failure 0.005988 0.008964 0.275363 0.058523 0.061341 0.313661 
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A.4 – Parameter Values for the I-WAKE Maneouvre 
 
Information required for the quantification of the on-board Wake Vortex Detection, Warning and Avoidance 
Maneuver Probability, and example sub-system requirements are listed in the following Table. 

 
a – Wake Vortex Outside Detection Range/Scanning 0.001 
b – Inaccurate or Faulty Detection of Wake Vortices 0.001 
d – Faulty or Inaccurate Aircraft Data 0.001 
e – Faulty or Inaccurate WV Model Estimation 0.001 
f – Faulty or Inaccurate Meteo Nowcasting 0.001 
h – Loss of WV DWA Tactical Function 0.001 
j – Aircraft Pilot not able to initiate missed approach 0.001 

 
 

Conditional Probability Table for P(c | a, b) 
Wake Vortex Detection 
Range Scanning (a) 

Non Outside (0) Outside (1) 

Detection of Wake 
Vortices (b) 

Non Failure (0) Failure (1) Non Failure (0) Failure (1) 

IMPROPER 
DETECTOR 
PERFORMANCE (c=1) 

0.0001 0.001 0.001 0.9999 

 
P(c=1 | a=0, b=0) 
Given 1000000 single runway arrivals from the X airport flights and given Wake Vortex not Outside Detection 
Range Scanning and Non Failure of the Detection of Wake Vortices; in how many of the arrivals will the 
Detector Performance still be improper? 
P(c=0 | a=0, b=1)=  
Given 1000000 single runway arrivals from the X airport flights and given Wake Vortex not Outside Detection 
Range Scanning, while the Detection of the Wake Vortices fails; in how many of the arrivals will the Detector 
Performance still be proper? 
P(c=0 | a=1, b=0)=  
Given 1000000 single runway arrivals from the X airport flights, where even though Wake Vortex Outside 
Detection Range Scanning, the Detection of the Wake Vortices does not fail; in how many of the arrivals will the 
Detector Performance still be proper? 
P(c=0 | a=1, b=1)=  
Given 1000000 single runway arrivals from the X airport flights and given Wake Vortex not Outside Detection 
Range Scanning and also the Detection of the Wake Vortices fails; in how many of the arrivals the Detector 
Performance still be proper? 

 
 

Conditional Probability Table for P(g | f, e, d) 
Aircraft Data Non Inaccurate (0) Inaccurate (1) 
WV Model Estimation Non Failure (0) Failure (1) Non Failure (0) Failure (1) 
Meteo Nowcasting Non Failure 

(0) 
Failure 

(1) 
Non Failure 

(0) 
Failure 

(1) 
Non Failure 

(0) 
Failure 

(1) 
Non Failure 

(0) 
Failure 

(1) 
IMPROPER MODEL 
PREDICTION (g=1) 0.000001 0.0001 0.0001 0.001 0.0001 0.001 0.001 0.999999 

 
P(g=1 | d=0, e=0, f=0) 
Given 1000000 single runway arrivals from the X airport flights and given Non Inaccurate Aircraft Data, WV 
Model Estimation and Meteo Nowcasting; in how many of the arrivals will the Model Prediction still be 
improper? 
P(g=0 | d=0, e=0, f=1) 
Given 1000000 single runway arrivals from the X airport flights and given Non Inaccurate Aircraft Data and 
WV Model Estimation but Faulty of the Meteo Nowcasting; in how many of the arrivals will the Detector 
Performance still be proper? 
P(g=0 | d=0, e=1, f=0) 
Given 1000000 single runway arrivals from the X airport flights, where although WV Model Estimation fails, 
the Aircraft Data and Meteo Nowcasting do not fail; in how many of the arrivals will the Detector Performance 
still be proper? 
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P(g=0 | d=0, e=1, f=1) 
Given 1000000 single runway arrivals from the X airport flights and given Faulty of the WV Model Estimation 
and Meteo Nowcasting but Non Inaccurate Aircraft Data; in how many of the arrivals will the Detector 
Performance still be proper? 
P(g=0 | d=1, e=0, f=0) 
Given 1000000 single runway arrivals from the X airport flights, where though the Aircraft Data fails, WV 
Model Estimation and Meteo Nowcasting do not fail; in how many of the arrivals will the Detector Performance 
still be proper? 
P(g=0 | d=1, e=0, f=1) 
Given 1000000 single runway arrivals from the X airport flights and given Inaccurate Aircraft Data and WV 
Model Estimation but Non Failure of the Meteo Nowcasting; in how many of the arrivals will the Detector 
Performance still be proper? 
P(g=0 | d=1, e=1, f=0) 
Given 1000000 single runway arrivals from the X airport flights and given Faulty of the WV Model Estimation 
and Meteo Nowcasting but Non Failure of the Aircraft Data; in how many of the arrivals will the Detector 
Performance still be proper? 
P(g=0 | d=1, e=1, f=1) 
Given 1000000 single runway arrivals from the X airport flights and given that the Aircraft Data, WV Model 
Estimation and Meteo Nowcasting fail;in how many of the arrivals will the Detector Performance still be proper? 

 
 

Conditional Probability Table for P(i | h, g, c) 
Detector 
Performance 

Non Improper (0) Improper (1) 

Model Prediction Non Improper (0) Improper (1) Non Improper (0) Improper (1) 
WV DWA Tactical 
Function 

Non Loss 
(0) 

Loss (1) Non Loss (0) Loss (1) Non Loss 
(0) 

Loss (1) Non Loss 
(0) 

Loss (1) 

I-WAKE 
MONITORING 
AND ALERTING 
FAILURE (i=1) 

0.000001 0.0001 0.0001 0.001 0.0001 0.001 0.001 0.999999 

 
P(i=1 | c=0, g=0, h=0) 
Given 1000000 single runway arrivals from the X airport flights and given Non Improper Detector Performance 
and Model Prediction and Non Loss of the WV DWA Tactical Function; in how many of the arrivals will the I-
Wake Monitoring and Alerting still fail? 
P(i=0 | c=0, g=0, h=1) 
Given 1000000 single runway arrivals from the X airport flights and given Non Improper Detector Performance 
and Model Prediction but Loss of the WV DWA Tactical Function, in how many of the arrivals will the I-Wake 
Monitoring and Alerting still not fail? 
P(i=0 | c=0, g=1, h=0) 
Given 1000000 single runway arrivals from the X airport flights, where although Improper Model Prediction, the 
Detector Performance is not Improper and there is not Loss of the WV DWA Tactical Function; in how many of 
the arrivals will the I-Wake Monitoring and Alerting still not fail? 
P(i=0 | c=0, g=1, h=1) 
Given 1000000 single runway arrivals from the X airport flights and given Improper Model Prediction and Loss 
of the WV DWA Tactical Function but Non Improper Detector Performance; in how many of the arrivals will 
the I-Wake Monitoring and Alerting still not fail? 
P(i=0 | c=1, g=0, h=0) 
Given 1000000 single runway arrivals from the X airport flights, where though Improper Detector Performance, 
there is Non Improper Model Prediction and Non Loss of the WV DWA Tactical Function; in how many of the 
arrivals will the I-Wake Monitoring and Alerting still not fail? 
P(i=0 | c=1, g=0, h=1) 
Given 1000000 single runway arrivals from the X airport flights and given Improper Detector Performance and 
Loss of the WV DWA Tactical Function but Non Improper Model Prediction; in how many of the arrivals will 
the I-Wake Monitoring and Alerting still not fail? 
P(i=0 | c=1, g=1, h=0) 
Given 1000000 single runway arrivals from the X airport flights and given Improper Detector Performance and 
Model Prediction but Non Loss of the WV DWA Tactical Function; in how many of the arrivals will the I-Wake 
Monitoring and Alerting still not fail? 
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P(i=0 | c=1, g=1, h=1) 
Given 1000000 single runway arrivals from the X airport flights and given Improper Detector Performance and 
Model Prediction and Loss of the WV DWA Tactical Function; in how many of the arrivals will the I-Wake 
Monitoring and Alerting still not fail? 

 
Conditional Probability Table for P(T | j, i) 

I-Wake Monitoring and 
Alerting (i) 

Non Failure (0) Failure (1) 

Aircraft/pilot (j) Able to initiate missed 
approach (0) 

Not able to initiate 
missed approach (1) 

Able to initiate missed 
approach (0) 

Not able to initiate 
missed approach (1) 

I-WAKE DWA 
FAILURE (T=1) 0.0001 0.001 0.001 0.9999 

 
 

P(T=1 | i=0, j=0) 
Given 1000000 single runway arrivals from the X airport flights and given that the I-Wake Monitoring and 
Alerting systems component does not fail and the aircraft pilot is able to initiate an evasive action (missed 
approach); in how many of the arrivals will the aircraft/pilot will still fail to avoid a wake encounter? 
P(T=0 | i=0, j=1)=  
Given 1000000 single runway arrivals from the X airport flights and given that the I-Wake Monitoring and 
Alerting systems component does not fail however the aircraft pilot is not able to initiate an evasive action 
(missed approach) because he makes a mistake; in how many of the arrivals will the aircraft/pilot still be able to 
avoid a wake encounter? 
P(T=0 | i=1, j=0)=  
Given 1000000 single runway arrivals from the X airport flights, where even though the I-Wake Monitoring and 
Alerting systems component failed, the aircraft pilot is able to initiate an evasive action (missed approach); in 
how many of the arrivals will the aircraft/pilot still be able to avoid a wake encounter? 
P(T=0 | i=1, j=1)=  
Given 1000000 single runway arrivals from the X airport flights and given that the I-Wake Monitoring and 
Alerting systems component failed and also the aircraft pilot is not able to initiate an evasive action (missed 
approach); in how many of the arrivals will the aircraft/pilot still be able to avoid a wake encounter? 
 

 
A.5 – Expert Distributions for the Nodes of the On-board Wake Vortex 
Detection, Warning and Avoidance Manoeuvre Probability Model 

 
The Questionnaire 

 
In this questionnaire, it is assumed that an on-board WV detection system is installed in all 
aircraft arriving at the destination airport. We would like to obtain your view on the I-Wake 
operation, in order to obtain insight into the impact of individual subsystem failures on the 
overall risk of a wake vortex induced incident/accident. This information will be used for the 
setting of requirements for the individual I-Wake sub-system components and related hazards. 
Please fill in your 5%, 50% and 95% quantiles for the following uncertain quantities. 
 
Given 100 single runway arrivals from the X airport flights: 

 
1. What is the percentage of flights that the on-board WV detection system (e.g. 

LiDAR) does not detect wake vortices of the leading aircraft, when these are 
inside the planned scanning volume of air ahead of the aircraft? 

 
 

5%_______ 
 

 
 

 
50%_______ 

  
95%_______ 
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2. What is the percentage of flights that the on-board WV detection system (e.g. LiDAR) 

does not detect wake vortices of the leading aircraft, because these are outside the 
scanning volume of air ahead of the aircraft? 

 
 

5%_______ 
 

 
 

 
50%_______ 

 
 

 
95%_______ 

 
 

 
3. What is the percentage of flights which would register an improper detector 

performance? 
 
 

5%_______ 
 

  
50%_______ 

  
95%_______ 

 
 

 
4. What is the percentage of flights where the aircraft data, as used in the I-Wake system, 

is inaccurate/wrong? 
 
 

5%_______ 
 

  
50%_______ 

  
95%_______ 

 
 

 
5. What is the percentage of flights where the WV model locations and/or strengths 

predictions, are inaccurate/wrong? 
 
 

5%_______ 
 

  
50%_______ 

  
95%_______ 

 
 

 
6. What is the percentage of flights when the meteorological nowcasting data, as 

used in the I-Wake system, is inaccurate or wrong? 
 
 

5%_______ 
 

  
50%_______ 

  
95%_______ 
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7. What is the percentage of flights which would register an improper model 

prediction? 
 
 

5%_______ 
 

  
50%_______ 

  
95%_______ 

 
 

 
8. What is the percentage of flights which would register a loss of the WV DWA tactical 

function? 
 
 

5%_______ 
 

  
50%_______ 

 
 

 
95%_______ 

 
 

 
9. What is the percentage of flights where a timely warning is not provided to the flight 

crew when one should be given? 
 
 

5%_______ 
 

  
50%_______ 

  
95%_______ 

 
 

 
10. What is the percentage of flights when an aircraft pilot is not able to initiate evasive 

action (missed approach) when needed? 
 
 

5%_______ 
 

  
50%_______ 

 
 

 
95%_______ 

 
 

 
11. What is the percentage of flights when an aircraft pilot is not able to perform the I-

Wake Detection, Warning and Avoidance Maneuver when required? 
 
 

5%_______ 
 

  
50%_______ 

  
95%_______ 

 
 


