
24

Vines and Continuous
Non-parametric Bayesian Belief

Nets with Emphasis on
Model Learning

Dorota Kurowicka; Roger M. Cooke
Delft University of Technology;

Resources for the Future and Delft University of Technology

Regular vines are graphical structures for picking out bivariate and
conditional bivariate margins which uniquely determine a joint dis-
tribution. They enable much greater modelling flexibility than famil-
iar families of multivariate distributions, and they easily translate
into sampling algorithms. Recent work (Aas et al 2009) has focused
on estimating parameters for the (conditional) bivariate copulas once
a particular regular vine is chosen. Another line of research (Kurow-
icka and Joe 2010) has focused on optimally choosing a regular vine.
Mathematical results on vines have also motivated developments in
the theory of directed acyclic graphs (DAGs), or Bayesian belief nets
(BBNs), leading to continuous non-parametric Bayesian belief nets
(Hanea et al 2006). Whereas regular vines provide adequate tools
for analysing distributions whose dimensionality runs into tens of
variables, BBNs have proven adequate for distributions with several
hundred variables. This capability is achieved by restricting to the
normal copula; and the usefulness of the graphical representation
depends on having a great deal of conditional independence. Under
these restrictions, the BBNs can offer modelling advantages. Recent
applications of regular vines and BBNs to multivariate data sets and
multivariate spatial distributions have yielded very encouraging
results (see Kurowicka and Joe (2010) for broad exposition of vines
and its applications). This article is based on Cooke et al (2007). The
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first three sections summarise definitions of regular vines and sum-
marise important results. The fourth section (see page 732 onwards)
is devoted to non-parametric continuous BBNs and the fifth section
(see page 736) studies model learning for BBNs and regular vines.
Optimisation heuristics are illustrated with hourly wind speed data
from seven wind stations in The Netherlands in the sixth section (see
page 741) and we present our conclusions in the final section.

DEFINITIONS AND NOTATION

The product moment correlation of random variables X, Y with
finite expectations E(X), E(Y) and finite variancesσ 2

X ,σ 2
Y , also called

linear or Pearson correlation is defined as

ρ(X, Y) = E(XY)− E(X)E(Y)
σXσY

The product moment correlation can be also defined in terms
of regression coefficients as follows. Let us consider X and Y with
means zero. Let bXY minimise

E((X − bXYY)2)

and let bYX minimise
E((Y − bYXX)2)

Then
ρ(X, Y) = sgn(bXY)

√
bXYbYX

The product moment correlation measures degree of linear rela-
tionship between random variables.

The rank correlation of random variables X, Y with cumulative
distribution functions FX and FY is

r(X, Y) = ρ(FX(X), FY(Y))

The rank correlation measures degree of monotonic relationship
between random variables. It always exists and does not depend
on marginal distributions.

By definition, product moment and rank correlations are equal
for uniform variables, but in general they are different.

The partial correlation can be defined in terms of partial regres-
sion coefficients. Consider variables Xi with zero mean and standard
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deviations σi, i = 1, . . . , n, and let the numbers b12;3,...,n, . . . , b1n;2,...,n−1

minimise

E((X1 − b12;3,...,nX2 − · · · − b1n;2,...,n−1Xn)2)

and define

ρ12;3,...,n = sgn(b12;3,...,n)
√

b12;3,...,nb21;3,...,n

etc.
Equivalently, we could define the partial correlation as

ρ12;3,...,n = − C12√
C11C22

where Ci,j denotes the (i, j)th cofactor of the correlation matrix (that
is, the determinant of the submatrix obtained by removing row i
and column j multiplied by (−1)i+j). The partial correlation ρ12;3,...,n

can be interpreted as the correlation between the orthogonal projec-
tions of X1 and X2 on the plane orthogonal to the space spanned by
X3, . . . , Xn.

Partial correlations can be computed from correlations with the
following recursive formula (Yule and Kendall 1965)

ρ12;3,...,n =
ρ12;3,...,n−1 − ρ1n;3,...,n−1 · ρ2n;3,...,n−1√

1− ρ2
1n;3,...,n−1

√
1− ρ2

2n;3,...,n−1

. (24.1)

The conditional correlation of Y and Z given X

ρYZ|X = ρ(Y, Z | X)

= E(YZ | X)− E(Y | X)E(Z | X)
σ(Y | X)σ(Z | X)

is the product moment correlation computed with the conditional
distribution of Y and Z given X.

For the joint normal distribution, partial and conditional cor-
relations are equal. In general, however, partial and conditional
correlations are not equal and the difference can be large.

In the following definition we consider a measure for assessing
the difference between different probability densities.

Definition 24.1 (relative information, mutual information). Let f
and g be densities on Rn with f absolutely continuous with respect
to g.
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• The relative information of f with respect to g is

I( f | g) =
∫
· · ·

∫
f (x1, . . . , xn) ln

(
f (x1, . . . , xn)
g(x1, . . . , xn)

)
dx1 · · · dxn

• The mutual information of f is

MI( f ) = I( f | Πn
i=ifi)

where fi is the ith univariate marginal density of f and Πn
i=1 fi

is the independent distribution with univariate margins fi.

Relative information is also called the Kullback–Leibler informa-
tion, relative entropy or the directed divergence. Note that I( f | g) ≠
I(g | f ). According to the definition above, the relative information
measures the distance of the density g to density f with respect to an
expectation over f . The mutual information is also called the “infor-
mation proper”. It does not depend on margins of f . The mutual
information will be used to capture general dependence in a set of
multivariate data. The following makes the mutual information the
appropriate measure of multivariate dependence.

Proposition 24.2. MI( f ) = 0 if and only if f = Π fi (independence)
and MI( f ) = ∞ if f has positive mass on a set of Π fi measure zero
(complete dependence on a non-null subset).

For the normal distribution e−2 MI( f ) is equal to the determinant
of the correlation matrix (Whittaker 1990).

Theorem 24.3. Let f be a joint normal density with mean vector zero.
Then

MI( f ) = − 1
2 ln(D)

where D is the determinant of the correlation matrix.

We do not possess something like an “empirical mutual informa-
tion”. Rather, it must be estimated with kernel estimators, as sug-
gested in Joe (1993). Hence, according to Theorem 24.3 and Proposi-
tion 24.2, the determinant of the correlation matrix can be considered
as a “good” approximation of the mutual information specially in
high-dimensional problems.

VINES
Graphical models called “vines” were introduced in Cooke (1997),
Bedford and Cooke (2002) and Kurowicka and Cooke (2003).
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Figure 24.1 Partial correlations on four variables
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(a) D-vine and (b) C-vine.

Definition and properties

A vine V on n variables is a nested set of connected trees V =
{T1, . . . , Tn−1}, where the edges of tree j are the nodes of tree j + 1,
j = 1, . . . , n−2. A “regular vine” on n variables is a vine in which two
edges in tree j are joined by an edge in tree j + 1 only if these edges
share a common node, j = 1, . . . , n− 2 (see the proximity condition
below). The formal definitions follow.

Definition 24.4 (regular vine). V is a regular vine on n elements if
the following hold.

1. V = {T1, . . . , Tn−1}.
2. T1 is a connected tree with nodes N1 = {1, . . . , n}, and edges

E1; for i = 2, . . . , n− 1, Ti is a tree with nodes Ni = Ei−1. E(V )
denotes the set of edges ofV .

3. (Proximity.) For i = 2, . . . , n− 1, {a, b} ∈ Ei, #a∆b = 2, where ∆
denotes the symmetric difference.

A regular vine is called a canonical vine or “C-vine” if each tree Ti

has a unique node of degree n−i, and hence has a maximum degree.1

A regular vine is called a “D-vine” if all nodes in T1 have degree not
higher than 2 (see Figure 24.1). There are n(n− 1)/2 =

(
n
2

)
edges in

a regular vine on n variables. An edge in tree Tj is an unordered pair
of nodes of Tj or, equivalently, an unordered pair of edges of Tj−1.
By definition, the order of an edge in tree Tj is j− 1, j = 1, . . . , n− 1.
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The above definition is explained using the D-vine in Figure 24.1,
where edges of each tree are distinguished by different line styles.
There are three trees in the D-vine on four variables

V = {T1, T2, T3}
T1 = (N1, E1) : N1 = {1, 2, 3, 4}; E1 = {{1, 2}, {2, 3}, {3, 4}}
T2 = (N2, E2) : N2 = E1; E2 = {{{1, 2}, {2, 3}}, {{2, 3}, {3, 4}}}
T3 = (N3, E3) : N3 = E2; E3 = {{{{1, 2}, {2, 3}}, {{2, 3}, {3, 4}}}
A regular vine is just a way of identifying a set of conditional

bivariate constraints. Conditional bivariate constraints are associ-
ated with each edge and are determined as follows: the variables
reachable from a given edge via the membership relation are called
the constraint set of that edge. When two edges are joined by an
edge of the next tree, the intersection of the respective constraint
sets are the conditioning variables, and the symmetric differences of
the constraint sets are the conditioned variables. More precisely, the
constraint, the conditioning and the conditioned set of an edge can
be defined as follows.

Definition 24.5 (constraint, conditioning and conditioned sets).
For e ∈ Ei, i � n − 1, the constraint set associated with edge e is
the complete union U∗

e of e, that is, the subset of {1, . . . , n} reachable
from e by the membership relation.

For i = 1, . . . , n − 1, e ∈ Ei, if e = {j, k}, then the conditioning set
associated with e is

De = U∗
j ∩U∗

k

and the conditioned set associated with e is

{Ce,j, Ce,k} = {U∗
j \De, U∗

k \De}
Note that, for e ∈ E1, the conditioning set is empty. We can see

that the order of an edge is the cardinality of its conditioning set. For
e ∈ Ei, i � n− 1, e = {j, k}we have U∗

e = U∗
j ∪U∗

k .
For the D-vine in Figure 24.1 the complete union of j = {1, 2}

is U∗
j = {1, 2}, and for k = {2, 3} it is U∗

k = {2, 3}. Hence, the
conditioning set of the edge e = {{1, 2}, {2, 3}} in T2 is De = U∗

j ∩
U∗

k = {1, 2} ∩ {2, 3} = {2}. The conditioned set consists of Ce,j =
U∗

j \De = {1, 2} \ {2} = {1} and Ce,k = U∗
k \De = {2, 3} \ {2} = {3}.

The edge of T2 between {1, 2} and {2, 3} in Figure 24.1 shows the
elements of the conditioned sets {1}, {3} before “;” and conditioning
set {2} after “;”.
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Definition 24.6 (m-child; m-descendent). If node e is an element of
node f , we say that e is an “m-child” of f ; similarly, if e is reachable
from f via the membership relation: e ∈ e1 ∈ · · · ∈ f , we say that e
is an “m-descendent” of f .

The following properties of vines are proved in Bedford and
Cooke (2002) and Kurowicka and Cooke (2003, 2006b).

Proposition 24.7. LetV = {T1, . . . , Tn−1} be a regular vine. Then

1. the number of edges is

n(n− 1)
2

=
(

n
2

)

2. each conditioned set is a doubleton, and each pair of variables
occurs exactly once as a conditioned set,

3. if two edges have the same conditioning set, then they are the
same edge,

4. for any node K of order k > 0 in a regular vine,2 if variable
i is a member of the conditioned set of K, then i is a member
of the conditioned set of exactly one of the m-children of K,
and the conditioning set of an m-child of K is a subset of the
conditioning set of K.

Remark 24.8. When e ∈ E(V ) for a regular vineV , we let De denote
the conditioning set associated with e and {e1, e2} be the conditioned
set.

Partial correlation vine
The edges of a regular vine may be associated with partial corre-
lations, with values chosen arbitrarily in the interval (−1, 1) in the
following way.

To each e ∈ E(V ) we associate

ρe1,e2;De

where ρe1,e2;De = ρe1,e2 if De is vacuous. The result is called a partial
correlation vine.

Theorem 24.9 shows3 that each such partial correlation vine spec-
ification uniquely determines the correlation matrix, and every full
rank correlation matrix can be obtained in this way. In other words, a
regular vine provides a bijective mapping from (−1, 1)(

n
2) into the set

of symmetric positive definite matrices with “1”s on the diagonal.
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Theorem 24.9. For any regular vine on n elements there is a one-
to-one correspondence between the set of n × n positive definite
correlation matrices and the set of partial correlation specifications
for the vine.

In other words this theorem says that all assignments of the num-
bers between −1 and 1 to the edges of a partial correlation regular
vine are consistent, and all correlation matrices can be obtained this
way.

If the set of partial correlations on the D-vine in Figure 24.1 is⎡⎢⎢⎢⎢⎣
∗ ρ12 ρ13;2 ρ14;23

∗ ρ23 ρ24;3

∗ ρ34

∗

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
∗ 0.1 0.2 0.3

∗ 0.4 0.5
∗ 0.6

∗

⎤⎥⎥⎥⎥⎦
then the correlation matrix corresponding to this partial correlation
specification can be calculated as⎡⎢⎢⎢⎢⎣

1 0.1 0.2224 0.3409
1 0.4 0.6066

1 0.6
1

⎤⎥⎥⎥⎥⎦ (24.2)

A regular vine may thus be seen as a way of picking out par-
tial correlations which uniquely determine the correlation matrix
and which are algebraically independent. The partial correlations in
a partial correlation vine need not satisfy any algebraic constraint
like positive definiteness. The “completion problem” for partial cor-
relation vines is therefore trivial. An incomplete specification of a
partial correlation vine may be extended to a complete specification
by assigning arbitrary numbers in the (−1, 1) interval to the unspec-
ified edges in the vine. Moreover, the following theorem shows how
to find the extension with maximal determinant; we have only to
assign zero partial correlation to unspecified edges in the vine.

Theorem 24.10. Let D be the determinant of the n-dimensional
correlation matrix (D > 0). For any partial correlation vine

D =
∏

e∈E(V )
(1− ρ2

e1,e2;De
) (24.3)
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Vine copula

Each edge in a regular vine may also be associated with a condi-
tional copula, that is, a conditional bivariate distribution with uni-
form margins. It is convenient to specify the conditional bivariate
copulas by first assigning a constant conditional rank correlation to
each edge of the vine. For i = 1, . . . , n − 1, with e ∈ Ei and {e1, e2}
the conditioned variables of e, De the conditioning variables of e, we
associate

re1,e2|De

The resulting structure is called a “conditional rank correlation
vine”. These rank correlations can be calculated from data (if
available) or assessed by experts (Morales Napoles et al 2007).

Given a conditional rank correlation vine, we choose a class of cop-
ulas indexed by correlation coefficients in the interval [−1, 1] and
select the copulas with correlation corresponding to the conditional
rank correlation assigned to the edge of the vine. A joint distribu-
tion satisfying the vine-copula specification can be constructed and
sampled on the fly, and will preserve maximum entropy properties
of the conditional bivariate distributions (Bedford and Cooke 2001;
Cooke 1997). Notice that different families of copula can be assigned
to the edges of a vine.

Theorem 24.11. Let V = (T1, . . . , Tn−1) be a regular vine on n ele-
ments. For each edge e ∈ E(V ), let the conditional copula and cop-
ula density be Ce1,e2|De and ce1,e2|De . Let the marginal distributions
Fi with densities fi, i = 1, . . . , n be given. Then the vine-dependent
distribution is uniquely determined and has a density given by

f1···n = f1 · · · fn
∏

e∈E(V )
ce1,e2|De(Fe1|De , Fe2|De) (24.4)

Moreover, every positive density can be represented as a vine-
dependent distribution.

Theorem 24.12. Let

• f be a positive density of random vector (X1, . . . , Xn) with
marginal densities ( f1, . . . , fn),

• F = (F1, . . . , Fn) be cumulative distribution functions with
densities ( f1, . . . , fn) and

• V = (T1, . . . , Tn−1) be a regular vine on n elements,
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• B = {cjk|De(j,k) | e(j, k) ∈ ⋃n−1
i=1 Ei, where e(j, k) is the unique

edge with conditioned set {j, k} and conditioning set
De(j,k), and cjk|De(j,k) is a copula density of conditional
distribution fj,k|De = f{j,k,De}/fDe}

Then f is equal to the density given by Equation 24.4 with cop-
ula densities given by B, and hence Equation 24.4 is a vine-copula
representation of f .

The above two theorems illustrate the flexibility of vines in
representing joint distributions.

Parametric inference for a given vine

Aas et al (2009) develop a maximum likelihood procedure to estimate
parameters in copulas for D- and C-vines.

The parametric inference uses Theorem 24.11 to build likelihood
function of the data. Starting values of the parameters needed in
the numerical maximisation of the log-likelihood are determined
sequentially as follows:

(a) estimate the parameters of the copulas in the first tree from the
original data;

(b) evaluate the conditional distribution functions for the second
tree at observed values using the copula parameters from the
first tree and the conditional distributions of copulas assigned
in the first tree;

(c) estimate the parameters of the copulas in the second tree using
the observations from (b);

(d) repeat for trees T3, . . . , Tn−1.

Parameters estimated in the sequential procedure are taken as the
starting point for the optimisation of all parameters together.

In the above procedure it is assumed that conditional copulas
do not depend on the conditioning variables. Moreover, in prac-
tice only a few copula families are considered as possible building
blocks of the vine. The assumption of constant conditional copulas
and consideration of only a few types of bivariate families in fit-
ting a vine to data cause the phenomenon that some types of vines
can fit the data better than others. To find the best vine structure
we would in principle have to estimate all possible vines. In dimen-
sions higher than seven or eight this is infeasible, as the number of
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vines grows rapidly with dimension (Morales Napoles 2010). More-
over, because of sequential estimation, estimates for parameters of
conditional copulas in higher-order trees are less reliable. For higher-
dimensional cases some simplifying assumptions for fitting vines to
data will have to be made.

Sampling

The joint copula specified by a vine can be sampled. The cumula-
tive strategy to sample such a distribution will be illustrated by the
distribution specified by the D-vine in Figure 24.1, D(1, 2, 3, 4): sam-
ple four independent variables distributed uniformly on the interval
[0, 1], U1, U2, U3, U4 and calculate values of correlated variables X1,
X2, X3, X4 as follows.

1. x1 = u1.

2. x2 = F−1
r12;x1

(u2).

3. x3 = F−1
r23;x2

(F−1
r13|2;Fr12 ;x2 (x1)(u3)).

4. x4 = F−1
r34;x3

(F−1
r24|3;Fr23 ;x3 (x2)(F

−1
r14|23;Fr13|2 ;Fr23 ;x2 (x3)(Fr12 ;x2 (x1))(u4))).

Frij|k ;Xi(Xj) denotes the cumulative distribution function for Xj,
applied to Xj, given Xi under the conditional copula with rank cor-
relation rij|k. Notice that the D-vine sampling procedure uses condi-
tional and inverse conditional distribution functions.Amore general
form of the above procedure simply refers to conditional cumulative
distribution functions

x1 = u1

x2 = F−1
2|1: x1

(u2)

x3 = F−1
3|2: x2

(F−1
3|12: F1|2(x1)(u3))

x4 = F−1
4|3: x3

(F−1
4|23: F2|3(x2)(F

−1
4|123: F1|23(x1)(u4)))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(24.5)

Figure 24.2 depicts the sampling of X4 in the D-vine in Figure 24.1
with a “staircase graph”. Following the dotted arrows, we start by
sampling U4 (realisation u4) and use this with the copula for the con-
ditional rank correlation of {1, 4} given {2, 3} to find the argument
of F−1

4|23, etc. Notice that, for the D-vine, values of F2|3 and F1|23 that
are used to conditionalise copulas with correlations r24|3 and r14|23

to obtain F4|23 and F4|123, respectively, have to be calculated.
The staircase graph shows that if any of the cumulative condi-

tional distributions in Figure 24.2 are uniform, then the correspond-
ing abscissa and ordinates can be identified. This corresponds to
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Figure 24.2 Staircase graph representation of D-Vine sampling
procedure

F4 | 123

F4 | 3

F −1       (u4)

U4

u4

F4 | 23

X4

x4

4 | 123

noting that the inverse cumulative function in Equation 24.5 is the
identity, and this in turn corresponds to a conditional rank correla-
tion being zero and the corresponding variables being conditionally
independent. Notice that the conditional rank correlations can be
chosen arbitrarily in the interval [−1, 1]; they need not satisfy any
algebraic constraint.

CONTINUOUS NON-PARAMETRIC BAYESIAN BELIEF NETS

Bayesian belief nets (BBNs) are directed acyclic graphs that together
with conditional probability functions represent high-dimensional
uncertainty distributions (Cowell et al 1999; Jensen 1996, 2001; Pearl
1988). The nodes represent variables, which can be discrete or
continuous, and the arcs represent causal/influential or functional
relationships between variables.

Continuous BBNs (Pearl 1988; Shachter and Kenley 1989) devel-
oped for joint normal variables interpret “influence” of the par-
ents on a child as partial regression coefficients when the child
is regressed on the parents. They require means, conditional vari-
ances and partial regression coefficients which can be specified in
an algebraically independent manner. The restriction to joint nor-
mal is severe. We cannot simply invoke the theory of linear least
squares predictors as applied to arbitrary joint distributions. Sup-
pose (X1, . . . , Xk−1) are the ancestors of Xk in an ordered BBN.4 We
could interpret the “influence” of Xj on Xk as the partial regression
of Xk on Xj given 1, . . . , j − 1, j + 1, . . . , k − 1. If j is not a parent of
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k, then j and k are conditionally independent given the parents of
k; however, it is not generally the case that the partial regression of
k on j, given the parents, is necessarily zero (Kurowicka and Cooke
2000). This means that the partial regression coefficients for distribu-
tions other than the normal distribution do not reflect the conditional
independence structure of the BBN.

Kurowicka and Cooke (2006a) advanced a vine-based distribu-
tion-free approach to continuous BBNs. Starting with an arbitrary
BBN whose nodes have continuous invertible distributions, they
associated each arc with a (conditional) parent–child rank correla-
tion according to a protocol presented below. They specified nested
sets of high-dimensional joint distributions using the vine-copula
approach, where any copula with invertible conditional cumulative
distribution functions may be used so long as the chosen copula
represents (conditional) independence as zero (conditional) corre-
lation. The conditional rank correlations (like the partial regression
coefficients) are algebraically independent, and there are tested pro-
tocols for their use in structured expert judgement (see Chapter 22,
page 683 in this volume and Goossens et al 1997; Kraan 2002). The
vine generates a sampling algorithm which satisfies the conditional
independence relations implied by the BBN.

The vine-based approach is quite general, and of course this comes
at a price: these BBNs must be evaluated by Monte Carlo simulation.
However, if the joint normal copula is used, then updating and con-
ditionalising can be done analytically (Hanea et al 2006; Kurowicka
and Cooke 2004).

We associate nodes of a BBN with univariate random vari-
ables {1, . . . , n} having uniform distributions on (0, 1). The proto-
col to associate the arcs, or “influences”, with (conditional) rank
correlations is as follows.

1. Construct a sampling order for the nodes, that is, an ordering
such that all ancestors of node i appear before i in the order-
ing. A sampling order begins with a source node and ends
with a sink node. Of course, the sampling order is not, in gen-
eral, unique. Index the nodes according to the sampling order
1, . . . , n.
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Figure 24.3 A simple BBN on four variables with assigned to arcs
(conditional) rank correlations

1

2 3

4

r13
r12

r43
r42 | 3

2. Factorise the joint in the standard way following the sampling
order. With sampling order 1, 2, . . . , n, write

P(1, . . . , n) = P(1)P(2 | 1)P(3 | 21) · · ·P(n | n−1, n−2, . . . , 1)

3. Underscore those nodes in each condition that are not par-
ents of the conditioned variable and thus are not necessary
in sampling the conditioned variable. This uses some of the
conditional independence relations in the belief net. Hence, if
in sampling 2, . . . , n variable 1 is not necessary (ie, there is no
influence from 1 to any other variable) then

P(1, . . . , n) = P(1)P(2 | 1)P(3 | 21) · · ·P(n | n−1, n−2, . . . , 1).
(24.6)

The underscored nodes could be omitted thereby yielding the
familiar factorisation of the BBN as a product of conditional
probabilities, with each node conditionalised on its parents
(for source nodes the set of parents is empty).

4. For each node i with parents (non-underscored variables)
i1, . . . , ip(i) in Equation 24.6, associate the arc ip(i)−k −→ i with
the conditional rank correlation

r(i, ip(i)) if k = 0

r(i, ip(i)−k | ip(i), . . . , ip(i)−k+1) if 1 � k � p(i)− 1

⎫⎬⎭ (24.7)

where the assignment is vacuous if {i1 · · · ip(i)} = ∅, hence if
this node does not have any parents. This way every arc in the
BBN is associated with a conditional rank correlation between
parent and child. These correlations can be found from data or
assessed by experts.

In Figure 24.3 a simple BBN with (conditional) rank correlations
is shown.
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According to the protocol above we have associated arcs pointing
to the variable 4 with two rank correlations, one unconditional (r43)
and the other conditional (r42|3).

The following theorem (Hanea et al 2006; Kurowicka and Cooke
2006a) shows that assignments of (conditional) rank correlations in
the algorithm above uniquely determine the joint distribution and
are algebraically independent.

Theorem 24.13. Given a BBN with n nodes and continuous invert-
ible univariate margins, the specification of conditional rank corre-
lations (Equation 24.7), i = 1, . . . , n and a copula realising all correla-
tions [−1, 1] for which correlation 0 entails independence uniquely
determines the joint distribution. This joint distribution satisfies the
characteristic factorisation (Equation 24.6) and the conditional rank
correlations in Equation 24.7 are algebraically independent.

Sampling
Assuming that variables in the BBN on Figure 24.3 are uniform, the
sampling procedure for the joint distribution represented by this
BBN is

1. x1 = u1,

2. x2 = F−1
r12;x1

(u2),

3. x3 = F−1
r23;x2

(u3),

4. x4 = F−1
r34;x3

(F−1
r24|3;Fr23 ;x3 (x2)(u4)).

Notice that Fr23;x3(x2) is in general not known analytically and has
to be calculated form the joint distribution of variables 1, 2 and 3 by
integrating out the variable 1. Numerical integration on every sam-
ple is time consuming. This problem disappears if the normal copula
is used to realise all conditional rank correlations. These computa-
tional difficulties when sampling BBNs restrict the choice of copula
to the normal copula. The choice of normal copula also allows ana-
lytical conditioning, which is possibly the biggest advantage of this
model.

Partial correlations on BBN
Instead of (conditional) rank correlations, partial correlations can be
assigned to arcs of a BBN following the same algorithm as for rank
correlations. Then a factorisation of the determinant similar to that
for regular vines holds (Hanea et al 2010).
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Theorem 24.14. For any partial correlation BBN specification

D =
∏
(1− ρ2

ij;Dij
)

where ρij;Dij is the partial correlation associated with the arc between
node i and node j, Dij is the conditioning set for the arc between node
i and node j, and the product is taken over all arcs in the BBN.

Continuous non-parametric BBNs are in some sense very simi-
lar to vines. They both specify the dependence structure of a joint
distribution via specification of the joint copula. The joint copula is
described by (conditional) copulas assigned to the edges or arcs.
Kurowicka and Joe (2010) compared vines and BBNs. The most
important difference between BBNs and vines appears to be the
difference in conditional independence statements that they can
represent.

MODEL LEARNING
An approach to model learning inspired by Whittaker (1990) was
developed in Kurowicka and Cooke (2006a) for vines, based on
the factorisation of the determinant in Theorem 24.10. The same
approach can be followed in order to learn a BBN model and is based
on the factorisation of the determinant in Theorem 24.14. We propose
a strategy to choose a regular vine or a BBN structure which captures
the mutual information in a small number of conditional bivariate
terms. We will approximate the mutual information by − 1

2 ln(Dr),
where Dr is the determinant of the rank correlation matrix.

BBNs
Since BBNs are currently used only with normal copula then the
first step of BBN model building consists of validating the joint nor-
mal copula. If this step is successful we may learn a graph structure
by removing arcs associated with small conditional rank correlation
(which in case of normal copula correspond to small partial corre-
lations). This procedure is detailed in Hanea et al (2010) and it uses
the following three determinants.

DER: the determinant of the empirical rank correlation matrix.

DNR: the determinant of the rank correlation matrix obtained by
transforming the marginals to standard normals, and then trans-
forming the product moment correlations to rank correlations
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using Pearson’s transformation

r = 6
π

arcsin( 1
2ρ)

where r and ρ denote rank and Pearson’s correlations for the
joint normal, respectively.5 DNR will generally differ from DER
because DNR assumes the normal copula. A statistical test for the
suitability of DNR for representing DER uses the sampling distri-
bution of DNR and checks whether DER is within the 90% central
confidence band of DNR.

DBBN: the determinant of the rank correlation matrix for normal
copula with correlation structure of the BBN.

The procedure of constructing a BBN is as follows.

(a) Construct a skeletal BBN by adding arcs to capture known
causal or temporal relations.

(b) If DNR is within the 90% central confidence band of the
determinant of the skeletal BBN (DBBN), then stop; otherwise
continue with step (c).

(c) Find the pair of variables such that the arc between them is not
in the graph and their rank correlation is greater than the rank
correlation of any other pair not in the BBN.

(d) Add an arc between them and recompute DBBN together with
its 90% central confidence band. If DNR is within the 90% cen-
tral confidence band of DBBN, then stop; otherwise, continue
adding arcs.

Vines
Strategies for choosing a regular vine structure which captures the
mutual information in a small number of conditional bivariate terms
will be described.

Majorisation

We now write Theorem 24.10 as

MI( f ) ≈ − 1
2 ln(Dr) =

∑
e∈E(V )

be1,e2;D(e) (24.8)

where D(e) is the conditioning set for the node inV with conditioned
set {e1, e2}, be1,e2;D(e) = − 1

2 ln(1− r2
e1,e2;D(e)) and re1,e2;D(e) denotes par-

tial rank correlation. The terms be1,e2;K(e) will depend on the regular
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vine which we choose to represent the second-order rank structure.
However, the sum of these terms must satisfy Equation 24.8.

We seek a regular vine for which the terms be1,e2;K(e) in Equa-
tion 24.8 are as “spread out” as possible. In other words, we wish
to capture the total dependence MI( f ) in a small number of terms,
with the remaining terms being close to zero. This concept is made
precise with the notion of majorisation (Marshall and Olkin 1979).

Definition 24.15. Let x, y ∈ Rn be such that
n∑

i=1

xi =
n∑

i=1

yi

Then x majorises y if for all k, k = 1, . . . , n

k∑
j=1

x(j) �
k∑

j=1

y(j) (24.9)

where x(j) is the increasing arrangement of the components of x, and
similarly for y.

In view of Equation 24.8, the model inference problem may be
cast as the problem of finding a regular vine whose terms be1,e2;K(e)

are non-dominated in the sense of majorisation. In that case, setting
the smallest mutual information values equal to zero will change
the overall mutual information as little as possible. Pairs of vari-
ables whose (conditional) mutual information is zero, are (condition-
ally) independent. Finding non-dominated solutions may be diffi-
cult, but a necessary condition for non-dominance can be found by
maximising any Schur convex function.

Definition 24.16. Afunction f : Rk → R is Schur convex if f (x) � f (y)
whenever x majorises y.

Schur convex functions have been studied extensively.Asufficient
condition for Schur convexity is given by Marshall and Olkin (1979).

Proposition 24.17. If g : Rk → R may be written as g(x) = ∑ gi(xi)
with gi convex, then g is Schur convex.

Vine inference strategy. The following strategy for model inference
suggests itself:

1. choose a Schur convex function g : R(n(n−1))/2 → R;

2. find a regular vineV whose vector be1,e2;D(e) maximises g;
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3. set the mutual information values inV equal to zero for which
the terms be1,e2;D(e) are smallest;

4. associate copulas with the nodes in the vine, such that the
non-zero mutual information values are preserved.

In our application to wind data we use as g the negative entropy
function and inspect vectors of be1,e2;D(e) for all vines on seven vari-
ables (more than 2 million). This procedure will not be possible for
high-dimensional problems.

Two greedy strategies described below do not require the gen-
eration of all possible vines; instead we generate the “best vine”
sequentially to satisfy required constraints.

Most dependence in lowest order trees

Aregular vine on n variables can be generated in different ways. One
way is to follow its definition: choose the first tree; for j = 2, . . . , n−1
build Tj by connecting two edges in Tj−1 if they share a common
node. This way of generating a vine can be used for the following
strategy.

1. Choose the fist tree with maximum sum of absolute values
of rank correlations assigned to it. This can be archived with
maximum spanning tree algorithm.6

2. Check which edges can be connected in the second tree. (Con-
struct a line graph for the first tree by connecting by an edge all
edges that share a common node in the first tree. A line graph
is usually not a tree.)

3. Calculate partial correlations on the line graph in step 2.

4. Choose a tree with maximum absolute values of partial
correlations on the line graph calculated in step 3.

5. Repeat for trees T3, . . . , Tn−1.

This strategy ensures that the first tree captures the most depend-
ence, but higher trees may not be optimal due to the regularity con-
dition that has to be satisfied when generating a vine. The first tree
accounts for only n − 1 out of

(
n
2

)
correlations in the correlation

matrix. Hence, fixing the lowest tree first may not lead to the opti-
mal strategy. On the other hand, estimates of lower-order partial
correlations are less affected by estimation error.
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Least dependence in highest order trees

We can also start building the vine from the top edge (edge in tree
n − 1) and progress to the lower trees, ensuring that the regularity
condition is satisfied.7 This way of generating a vine can be used for
the following strategy.

1. Choose the edge in tree n − 1 with minimum absolute value
of partial correlation given all remaining variables (these par-
tial correlations can be found in the normalised inverse of the
correlation matrix). If we have chosen n and n−1 then the con-
straint set of this edge is {n, n− 1, 1, . . . , n− 2}. Constraint sets
of its two m-children are {n, 1, . . . , n−2} and {n−1, 1, . . . , n−2}.

2. Choose variables for the conditioned sets with variables n and
n−1 in Tn−2 such that regularity will be satisfied. We call them
partners of n and n−1 and denote them as pt(n) and pt(n−1),
respectively. The partners must be chosen such that absolute
values of partial correlations

ρn,pt(n);{1,...,n−2}\pt(n) and ρn−1,pt(n−1);{1,...,n−2}\pt(n−1)

are minimal.

3. Repeat for trees Tn−2, . . . , T1.

Truncated model

So far we have chosen a vine structure with few different heuristics.
The procedure of testing which copulas on the vine can be set to the
independent copula is as follows:

(a) choose a copula assigned to the edges of the vine with the
smallest positive absolute value of the correlation;

(b) set it to the independent copula and refit the model;

(c) sample the copula obtained in (b) and calculate the determi-
nant of the rank correlation matrix;

(d) repeat (c) and construct 90% central confidence band of this
determinant;

(e) if the empirical rank determinant is outside the 90% central
confidence band of vine rank determinant, then reset this
copula and stop; otherwise go to step (a).
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Figure 24.4 Wind speed measuring stations

MODEL LEARNING: RESULTS FOR WIND SPEED DATA
To illustrate these ideas, we use two years of hourly wind speed data
at seven locations in the Netherlands (indicated in Figure 24.4), pro-
vided by the Royal Netherlands Meteorological Institute (KNMI).
Predicting wind speeds on this timescale is of interest for wind
farms entering the spot electricity markets. Our goal is to model the
dependence structure of wind speed at these locations. At low wind
speeds, measurements are jittery and values are binned to reduce
jitter, causing granularity in the data.

The Spearman rank correlation matrix of this data given in
Table 24.1 indicates quite high correlations between wind speed in all
stations. The determinant of this matrix DER is equal to 2.9917×10−4.

Figure 24.5 shows a rank scatter plot for variables Schip and Ijmu.
We can observe the granular nature of this data specially for low
wind speed values. Correlations at high wind speeds are stronger
than at low wind speeds, indicating upper tail dependence in wind
speeds at different locations.

We select unconditional bivariate copulas for each pair of vari-
ables by choosing from the following four families of bivariate cop-
ulas: Normal (N), Frank’s (F), Student’s t (T) and Gumbel (G). The
Gumbel copula is the best for almost all bivariate margins. This is not
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Table 24.1 Hourly wind speed data for the seven locations in the
Netherlands given in Figure 24.4

Rott Eind Schip Ijmu Deko Vlie Wijd

Rott 1.0000 0.8030 0.8566 0.8050 0.7791 0.7094 0.7680
Eind 0.8030 1.0000 0.7991 0.6901 0.7046 0.6147 0.6870
Schip 0.8566 0.7991 1.0000 0.8233 0.8342 0.7308 0.8054
Ijmu 0.8050 0.6901 0.8233 1.0000 0.8410 0.8211 0.7679
Deko 0.7791 0.7046 0.8342 0.8410 1.0000 0.8764 0.8054
Vlie 0.7094 0.6147 0.7308 0.8211 0.8764 1.0000 0.7458
Wijd 0.7680 0.6870 0.8054 0.7679 0.8054 0.7458 1.0000

Figure 24.5 Scatter plot of ranks for variables Schip and Ijmu
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surprising in light of the upper tail dependence noted in Figure 24.5.
We see the results for each bivariate margin in the matrices below

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 2.6863 3.2433 2.6878 2.5029 2.1452 2.4269
∗ 2.6915 2.0636 2.1223 1.8148 2.0504

∗ 2.8545 2.9610 2.2483 0.8327(17.45)
∗ 2.9903 2.8217 2.4110

∗ 3.4462 0.8297(17.85)
∗ 0.7748(17.20)

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ G G G G G G
∗ G G G G G

∗ G G G T
∗ G G G

∗ G T
∗ T

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The first matrix shows parameters of copulas estimated form the

data. In the second matrix the type of copula that gives the max-
imum likelihood is presented. Since the Student-t copula has two
parameters, the degrees of freedom parameter are printed in the
first matrix in parentheses. We see that the best copula for Schip and
Ijmu (variables 3 and 4 in the rank correlation matrix) is Gumbel
with parameter 2.8545.

We will first try to model these data with non-parametric continu-
ous BBNs and then test different strategies of choosing the best vine
structure.

Non-parametric continuous BBNs
All calculations in this subsection are done with software Uninet.
We first test the assumption of normal copula using the re-sampling
technique presented in the previous section (see page 736). The 90%
confidence bound of sampling distribution for DNR was [4.4444 ×
10−4, 5.2782×10−4]. The DER is 2.9917×10−4 and falls outside of this
interval, meaning that normal copula does not adequately represent
dependence of this data set. This is not surprising, due to the upper
tail dependence in this data. The fully connected BBN with normal
copula leads to the DNR equal to 4.8206× 10−4.

In the further analysis of this section we will neglect the differ-
ences in DNR and DER, and try to build a BBN structure that will
capture DNR in a small number of conditional bivariate terms. For
this purpose, the algorithm presented in the previous section (see
page 736) is used. We have also included knowledge of the prevail-
ing wind direction in the Netherlands for directionality of arcs in
the BBN. Figure 24.6 shows the BBN with 14 arcs and with (condi-
tional) rank correlations assigned to these arcs. Sample-based 90%
confidence bounds for DBBN are [4.544×10−4, 5.4557×10−4]which
contain DNR. Hence, the dependence of DNR is captured using 14
out of 21 correlations.

743



RETHINKING RISK MEASUREMENT AND REPORTING

Figure 24.6 BBN of wind speed measuring stations
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The log-likelihood for the data with normal copula is equal to
70,461.

Vines
Majorisation

We use as a Schur convex function the negative entropy function.
Hence, we calculate

Entropy(V ) =
∑

e∈E(V )
be1,e2;De ln(be1,e2;De)

for all 2,580,480 possible vines and choose one for which entropy is
the smallest. To generate all possible vines, the algorithm presented
in Kurowicka and Joe (2010) was used. The “best vine” according
to the majorisation strategy (VM) is shown in Figure 24.7. To show
results of inference for different types of vines we can use the matrix
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Figure 24.7 Vine chosen with majorisation heuristic

4

7 5 3 1 2

6
54

76 56 53 31 12

76 | 5 63 | 5 43 | 5 51 | 3 32 | 1

73 | 56 64 | 35 41 | 35 52 | 13

74 | 356 61 | 345 42 | 135

71 | 3456 62 | 1345

72 | 13456

representation of a regular vine which contains all information about
conditioning and conditioned sets on the vine. The conditioning and
conditioned sets of edges of the vine in matrixAare coded as follows:

{A(i, j), A(j, j) | A(1, j) · · ·A(i−1, j)}, i = 1, . . . , n, j = i+1, . . . , n

The matrix representationVM can be compared with the conditioned
and conditioning sets of edges in each tree shown in Figure 24.7

VM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 5 5 3 5 1 5
3 3 5 3 3 6

4 4 4 5 3
1 1 4 4

6 6 1
2 2

7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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VM is neither a D-vine nor a C-vine. Using the sequential fitting pro-
cedure, the following copulas (typesM) with parameters (paramM)
are assigned to cell VM (i, j). paramM denotes the parameter of the
copula with conditioning and conditioned sets coded in the matrix
VM at position (i, j). The log-likelihood for the data using VM was
equal to 74,350 which is much higher than using the normal copula

paramM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 2.8546 2.9202 3.0853
∗ 0.3817(11.25) 0.2255

∗ 0.2824(19.95)
∗

3.3397 2.6011 0.8187(17.70)
0.0025(19.15) 0.3847(13.35) 0.1487

1.2860 0.0205 0.3996
−0.0135 −0.0738 0.1139(18.60)
∗ −0.3469 0.9207

∗ 0.0367
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

typesM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ G G G G G T
∗ T N T T N

∗ T G N N
∗ N N T

∗ F F
∗ N

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The sequential fitting procedure does not yield the best set of
parameters for this vine. Given the vine and the copula types cho-
sen sequentially, we have optimised the set of parameters to max-
imise log-likelihood for the data. We obtained the distribution with
log-likelihood equal to 74,543 and parameters denoted as paramMLL

M

746



VINES AND CONTINUOUS NON-PARAMETRIC BAYESIAN BELIEF NETS

Table 24.2 5th, 50th and 95th percentile of the distribution of the rank
determinant for majorised vine with parameters obtained sequentially
V SF

M and optimised together VMLL
M

Vine/rank LL 5% 50% 95%

V SF
M 74,350 2.8366× 10−4 3.1906× 10−4 3.5078× 10−4

VMLL
M 74,543 4.5528× 10−4 5.0320× 10−4 5.5357 × 10−4

given by

paramMLL
M

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 2.6783 2.8101 2.9224
∗ 0.3995(10.80) 0.2200

∗ 0.2829(19.55)
∗

3.2192 2.4327 0.8116(17.36)
0.0209(19.70) 0.3767(12.78) 0.1446

1.2766 0.0217 0.3955
−0.0037 −0.0785 0.1166(18.36)
∗ −0.3893 0.9527

∗ 0.0386
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
As with the BBN model, we can use the rank determinant test to

see if the dependence structure of the data is represented well by the
vine copula obtained with sequential fitting procedure or with fully
optimised parameters. We find the sampling distribution of the rank
determinant for majorised vine with parameters obtained sequen-
tially and optimised together. The 5th, 50th and 95th percentile of
these distributions are presented in Table 24.2.

The empirical rank determinant is contained in the 90% confi-
dence bound of V SF

M and is strongly outside 90% bounds VMLL
M . In

the penultimate section (see page 752) we discuss briefly the issue
of sequential fitting.

Due to computational issues we have followed a somewhat dif-
ferent heuristic than that presented in the previous section (see
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page 736) to decide which copulas should to be set to the indepen-
dent copula, basing the decision on values of partial rank correla-
tions calculated for the vine. The partial rank correlation matrix PRM

for the vine coded in the matrixVM is equal to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0.8342 0.8410 0.8566 0.8764 0.8030 0.8054
∗ 0.4078 0.2270 −0.0010 0.3618 0.1397

∗ 0.2700 0.3538 0.0311 0.4127
∗ 0.0166 −0.0618 0.0912

∗ −0.0350 0.1518
∗ 0.0269

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We see seven partial correlations smaller than 0.1 in absolute

value. Assigning the independent copula to edges with small par-
tial rank correlations, we found the set of parameters of the remain-
ing (non-independent) copulas that maximise log-likelihood of the
data. The estimates obtained param∗

M and types∗M (where I denotes
the independent copula for which the parameter is 0) can be com-
pared with paramMLL

M and typesMLL
M . The log-likelihood, as expected,

become smaller (74,269) and the 5th, 50th and 95th percentile of
the rank determinant distribution become [4.7461 × 10−4, 5.323 ×
10−4, 5.8028× 10−4]

param∗
M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 2.6671 2.8074 2.9293
∗ 0.3970(11.29) 0.2212

∗ 0.2634(19.53)
∗

3.2051 2.4347 0.8115(16.88)
0 0.3781(12.69) 0.1364

1.2798 0 0.3974
0 0 0
∗ 0 0.9593

∗ 0
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 24.8 Vine chosen with least dependence in highest order trees
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types∗M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ G G G G G T
∗ T N I T N

∗ T G I N
∗ I I I

∗ I F
∗ I

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Most dependence in first trees

Interestingly the “most dependence in lowest trees” heuristic leads
to the same vine as the majorisation heuristic in the preceding
section. This naturally does not have to be the case in general.

Least dependence in highest order trees

Following the algorithm presented earlier (see page 740) we obtain
vine shown in Figure 24.8. It can be coded in the matrix form denoted
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as

VT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 3 3 3 3 6
4 4 4 7 2 3

7 7 4 4 7
2 2 7 4

6 6 2
1 1

5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

VT is neither a D-vine nor a C-vine. We started with the sequential
fitting procedure, which led to the choice of types of the copulas
assigned to the edgesVT and the initial values of parameters of these
copulas. The log-likelihood for the data with VT fitted sequentially
was equal to 74,446 and the 90% interval of rank determinant was
[3.0285×10−4, 3.6775×10−4]. Then, the parameters of copulas were
optimised together and the following parameter values (typesMLL

T )
(paramMLL

T )) were found to maximise likelihood (equal to 74,582)
for the data. The rank determinant distribution for this vine with
parameters optimised together had the following 5th, 50th and 95th
quantiles [4.6830× 10−4, 5.1676× 10−4, 5.6454× 10−4]

paramMLL
T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 2.6054 0.8067(17.25) 2.4450
∗ 0.3300 0.0760(19.66)

∗ 0.0973
∗

2.1352 2.9048 3.1961
0.3920 0.3558(12.79) 0.5761(13.76)
1.4863 0.3497(17.90) 0.2185
−0.0220 1.0991 0.1490(18.50)
∗ −0.0085 0.4399

∗ −0.0125
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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typesMLL
T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ G T G G G G
∗ N T N T T

∗ N G T N
∗ N G T

∗ N F
∗ N

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Six partial correlations on this vine were smaller than 0.1 in abso-

lute value. Setting the corresponding copulas to the independent
copula and re-fitting the model we obtained vine VT with copulas
and parameters given in types∗T and param∗

T we obtain

param∗
T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 2.5959 0.8064(17.03) 2.4706
∗ 0.3274 0 0.3913 0

∗ 0
∗

2.1286 2.9411 3.2248
0.3294(13.01) 0.5705(13.36)
1.4863(8.45) 0.3493(12.55) 0.2152

0 1.0955 0.1457(18.05)
∗ 0 0

∗ 0
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

types∗T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ G T G G G G
∗ N I N T T

∗ I T T N
∗ I F T

∗ I I
∗ I

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The log-likelihood for the data using VT with independent cop-

ulas assigned to the edges corresponding to small partial corre-
lations was equal to 74,369. The 5th, 50th and 95th quantiles of
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Table 24.3 5th, 50th and 95th percentile of the distribution of the rank
determinant for majorised vine with normal copulas with parameters
obtained sequentially VNSF

M and optimised together VNMLL
M

Vine LL Det

VNSF
M 70,223 1.9199×10−4

VNMLL
M 70,463 3.0456×10−4

Vine 5% 50% 95%

VNSF
M 2.7046×10−4 3.0295e×10−4 3.3330e×10−4

VNMLL
M 4.2812×10−4 4.7508×10−4 5.2415×10−4

Column “Det” contains determinants of the product moment correlation
matrix corresponding the the vine specification or the product of one
minus squared parameters on the vine.Column“LL” contains log-likelihood
values.

the rank determinant for VT with 6 independent copulas were
[4.7791× 10−4, 5.2712× 10−4, 5.8028× 10−4].

SEQUENTIAL FITTING: NORMAL

Parameters for the VM using the sequential fitting procedure are
given by paramN

M equal to⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0.8460 0.8526 0.8672 0.8859 0.8163 0.8187
∗ 0.4003 0.2370 0.0204 0.3925 0.1615

∗ 0.2883 0.3464 0.0416 0.4039
∗ 0.0041 −0.0616 0.1008

∗ −0.0480 0.1587
∗ 0.0379

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The log-likelihood is 70,223, which is much smaller than that cal-

culated earlier (see page 743 onwards). Parameters of normal copu-
las are (conditional) product moment correlations which are equal
to partial correlations. Hence, we can calculate the product moment
correlation matrix of the normal copula represented on VM with
parameters obtained with sequential fitting. The determinant of this
product moment correlation matrix is 1.9199× 10−4. Optimising all
parameters together leads to a new set of parameters and a higher
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log-likelihood for the data, equal to 70,463. The determinant of the
product moment correlation matrix for the vine with parameters
optimised together is 3.0456× 10−4.

In all cases examined so far, the sequential procedure for choos-
ing optimal conditional bivariate copula parameters leads to greater
joint dependence, as measured by the rank correlation determinant,
than the procedure of optimising these parameters all together. Since
the latter procedure leads to greater likelihood than the sequential
procedure, it appears that the sequential procedure overestimates
the second-order dependence structure. Optimising all parameters
together smooths the distribution out.

CONCLUSIONS

BBNs and regular vines pose some of the same challenges in model
learning, and therefore can be treated with similar tools. Choosing an
appropriate model requires separating the problems of estimating
marginal distributions from the problem of identifying the depend-
ence structure which connects the margins. Regular vines enable
us to represent a joint distribution in terms of (conditional) bivari-
ate margins, and hence allow us to split the margin/dependence
structure in a convenient way: the margins are one dimensional and
the dependence structure is that of a regular vine. Non-parametric
continuous BBNs offer a different graphical structure for capturing
the dependence, and the proof of their adequacy in this regard is an
application of results for regular vines. In either case, judging model
adequacy requires a suitable scalar measure of multivariate depend-
ence. The mutual information is the appropriate concept, and the
determinant of the rank correlation matrix is proposed as a suitable
proxy. This can be used to assess the adequacy of the dependence
structure.

Of course, rank correlations do not determine the full dependence
structure; for this we must choose conditional bivariate copulas. This
entails choosing a copula class for each conditional bivariate distri-
bution in the regular vine or BBN, and optimally choosing its param-
eter values. Owing to the complexity of these problems, heuristics
must be used. Three heuristics are discussed, namely

• majorisation,

• most dependence in lowest trees, and
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• least dependence in highest trees.

The choice of heuristic is ultimately governed by convenience.
Optimising parameter values can be done either sequentially or all
at once. The application to Dutch wind speed data shows that the
sequential procedures result in greater dependence than the all-at-
once optimisation, regardless which heuristic is used. The all-at-
once approach will break down for large data sets, leaving us only
with sequential procedures. Understanding and correcting the over
estimation of dependence of sequential procedures is an important
task for the future.

1 The degree of a node is the number of edges attached to it.

2 Equivalently, we can formulate this proposition for edges ofV .

3 See Bedford and Cooke (2002).

4 Y is an ancestor of X with respect to an ordering of the variables which preserves the parent–
child relations, that is, an ordering such that parents occur before their children in the ordering.

5 See, for example, Kurowicka and Cooke (2006a).

6 See, for example, Harary (1969).

7 For details see Kurowicka and Joe (2010).
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