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Chapter 1

Introduction

This work is motivated and inspired by the report: ”Correlaties en meerdimensionale
statistiek” (see [7]), written by Chris Geerse, in which several models for bivariate
distributions are investigated. These bivariate distributions are needed to determine,
e.g. failure of a dike or water barrier on the basis of a combination of random loads
such as water level and wind speed. For the probabilistic modeling of random loads,
we need to determine the marginal distributions as well as the associated dependence
structure.
All considered models are based on the transformation of two random variables, with
unknown joint distribution, into the so-called model space. The aim of this trans-
formation is to create a bivariate distribution function with the desired marginal
distributions and dependence structure.
The author considers bivariate copulas, which constitute distribution functions on the
unit square with uniform margins. The copula is a function, which gathers margin-
free dependency of random variables. The notion of copulas became known with the
introduction of Sklar’s theorem (1959). In [7] the following families of copulas are
considered: the Clayton, Gumbel and Frank family. They belong to the Archimedean
class, which has useful properties and realizes a variety of dependency forms. There-
fore, this class is often used in applications.
In [7] also bivariate conditional models for distribution functions are considered.
These models are derived as a product of some conditional distribution and the dis-
tribution of the conditioning variable. The constructions of these models are usually
straightforward and can be explained by using pictures. Moreover, these models allow
to derive the joint upper tail behavior of random variables.
This thesis basically follows the course of report [7]. We will consider some approaches
in modeling bivariate distribution functions. We will investigate the Archimedean
class of copulas, the mentioned conditional models and newly proposed Rotation
Model. In addition, it is our intention to verify whether we can easily judge the fit in
the extreme region of the model space in the application study.
The second chapter describes the copula functions as possible models in the bivariate
case. We will mainly focus on the description of the Archimedean class of copulas.
We will provide an extensive statistical inference, which will be applied in a case
study on water levels and wind speeds data.
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The third chapter is devoted to the consideration of the three bivariate conditional
models, namely the Constant Spread Model, the Variable Spread Model and the Con-
stant Symmetric Spread Model. These models are very interesting and more details
about them can be found in [7]. We will prove some tail properties of these models by
using the notion of the tail dependence coefficients, and we will verify if the copulas
that are related to these models belong to Archimedean class. In order to illustrate
the behavior of these models, we will perform a case study on the same dataset as in
Chapter 2.
The last chapter is based on a proposal of Chris Geerse. We will construct a new
model in the bivariate and 3-variate case. This model originates in the rotation of
the coordinate system. Therefore, this model is called Rotation Model. We will prove
some useful properties of this model including the exponentiality of the margins and
the tail dependence coefficients. At the end of this chapter, a case study will be
conducted. It will reveal a serious drawback of this model.
The conclusions from each chapter will be summarized in the final chapter.
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Chapter 2

Measures of dependence and
copula functions

This chapter is devoted to the introduction of the copula functions. These functions
are used to create joint distributions, based on Sklar’s theorem.
Copulas enable us to extract the dependence structure from the joint distribution
function, and to separate the dependence structure from the marginal distribution
functions. This is very helpful, because it gives us a natural way of allowing for
dependency that is free of the margins influence.
We will start with the description of the bivariate measures of dependence, which are
somewhat related to the bivariate copula notion, since a copula is a distribution used
to describe the margin-free dependency. Then, we will discuss the copula functions.
We will mainly focus on the Archimedean class of copulas and present three bivariate
one-parametric families that belong to this class: the Clayton, Gumbel and Frank
family. All theoretical results are based on the books [13] and [11]. At the end of this
chapter, we will also provide methods for statistical inference, which will allow us to
conduct a case study.

2.1 Measures of dependence

In this section, we introduce the definitions of the most common bivariate measures
of dependence. These measures are used in the following theory of copulas. We will
start with the definition of independent random variables. Then, we will define the
product moment correlation, the rank correlation and Kendall’s tau.

Definition 1 Random variables X and Y are independent if for any Borel sets A
and B holds:

P{X ∈ A, Y ∈ B} = P{X ∈ A}P{Y ∈ B}
However, if the random variables are not independent, then we are interested how de-
pendent they are. Hence, we introduce the following measures of dependence between
two random variables.
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Definition 2 The product moment correlation of random variables X and Y with
finite expectations E(X), E(Y ) and finite variances σ2

X , σ2
Y , is:

ρ(X,Y ) =
E(XY )− E(X)E(Y )

σXσY

If we are given n pairs of samples (Xi, Yi) from the random vector (X, Y ), we can
calculate the so-called population product moment correlation as follows:

ρ(X,Y ) =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2

where X = 1
n

∑n
i=1 Xi and Y = 1

n

∑n
i=1 Yi. For details we refer to [11].

Definition 3 The rank correlation of random variables X and Y with cumulative
distribution functions F and G respectively, is given as follows:

ρr(X, Y ) = ρ(F (X), G(Y ))

Let us assume that we are given n pairs of samples (Xi, Yi) from the random vector
(X,Y ). In order to compute the rank correlation, we replace the value of each Xi, i =
1, ..., n by its rank. We apply the same procedure for each Yi, i = 1, ..., n. Then, the
population version of the rank correlation is:

ρr(X, Y ) =

∑n
i=1(Ri −R)(Si − S)√∑n

i=1(Ri −R)2
√∑n

i=1(Si − S)2

where Ri is the rank of Xi, i = 1, ..., n, Si is the rank of Yi, i = 1, ..., n, R = 1
n

∑n
i=1 Ri

and S = 1
n

∑n
i=1 Si. For details, we refer to [11].

Definition 4 Let (X1, Y1) and (X2, Y2) be two independent pairs of random variables
each with joint distribution function F then Kendall’s tau is defined as:

τ = P{(X1 −X2)(Y1 − Y2) > 0} − P{(X1 −X2)(Y1 − Y2) < 0}
For details we refer to [11].
In order to calculate Kendall’s tau from the data (Xi, Yi), for i = 1, ..., n, we introduce
the notion of concordance and discordance and follow the reasoning presented in [13].
We say that pairs (Xi, Yi) and (Xj, Yj) are concordant if Xi < Xj and Yi < Yj, or if
Xi > Xj and Yi > Yj. We say that (Xi, Yi) and (Xj, Yj) are discordant if Xi < Xj and
Yi > Yj, or if Xi > Xj and Yi < Yj. Equivalently, we can say that (Xi, Xj) and (Yi, Yj)
are concordant if (Xi − Xj)(Yi − Yj) > 0 and discordant if (Xi − Xj)(Yi − Yj) < 0.
Observe that there are nC2 distinct pairs (Xi, Yi) and (Xj, Yj) in the sample and each
pair is either concordant or discordant, where nC2 is defined as follows:

nC2 :=

(
n
2

)
=

n!

2!(n− 2)!
=

(n− 1)n

2

Let c stand for the number of concordant pairs and d for the number of discordant
pairs. Then, Kendall’s tau for the sample is given by:

τn =
c− d

c + d
=

c− d

nC2

(2.1)
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2.2 An introduction to copulas

A d-copula (copula) is a d-variate distribution function defined on the unit product
[0, 1]d with uniform marginal distributions. The following theorem is central in the
theory of copulas and elucidates the role that copulas play in the relationship between
multivariate distribution functions and their univariate margins.

Theorem 1 Sklar’s theorem Let H be a d-dimensional distribution function with
margins F1, F2, ..., Fd. Then, there exists a d-copula C such that for all x = (x1, x2..., xd) ∈
<d:

H(x1, x2, ..., xd) = C(F1(x1), ..., Fd(xd)) (2.2)

If F1, F2, ..., Fd are continuous, then C is unique; otherwise, C is uniquely determined
on RanF1 × RanF2...× RanFd. Conversely, if C is a d-copula and F1, F2, ..., Fd are
distribution functions, then the function H, defined by (2.2), is a joint distribution
function with margins F1, F2, ..., Fd.

The proof can be found in [13].
The name ”copula” was chosen to describe the way in which a copula ”couples” a
multivariate distribution function to its univariate margins. Note that continuous
F1, ..., Fd give an exhaustive description of variables X1, ..., Xd considered separately,
whereas the dependence between these variables is completely characterized by C.
If the d-copula C is absolutely continuous then its density function c is given in the
standard form:

c(u1, u2, ..., ud) =
∂d

∂u1...∂ud

C(u1, u2, ..., ud)

Moreover, we note that the density function h - if it exists - of the d-dimensional
distribution H can be expressed in terms of the density c. Indeed:

h(x1, x2, ..., xd) = c(F1(x1), F2(x2), ..., Fd(xd))f1(x1)f2(x2)...fd(xd)

where fi is the density that corresponds to Fi, for i = 1, ..., d.
The notion of copula function entails some useful properties. One of them is the
representation of Kendall’s tau in terms of a bivariate copula C. This is enclosed in
the following proposition:

Proposition 1 If X and Y are continuous random variables joined by a copula C
then Kendall’s tau is given by the following formula:

τ = 4
∫

[0,1]2
C(s, t)dC(s, t)− 1

For the proof and further details we refer to [13].
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2.3 Archimedean copulas

In this section, we introduce the bivariate Archimedean class of copulas. We will
begin with the definitions, which give the foundation of this class. Then, we will
proceed with the useful properties that arise. The theory below can be found in more
details in [13].

Definition 5 A function φ : [0, 1] → [0,∞] is called a generator if it satisfies the
following conditions:

• φ(1) = 0

• function φ is convex

• function φ is strictly decreasing

Definition 6 The pseudo-inverse of the generator φ is given by the following formula:

φ[−1](t) =

{
φ−1(t) 0 ≤ t ≤ φ(0)
0 φ(0) ≤ t ≤ ∞

Definition 7 A bivariate copula C is called Archimedean with generator φ if:

C(u, v) = φ[−1](φ(u) + φ(v))

Clearly, Archimedean copulas can be constructed from the last definition. We only
need to find the functions that can serve as generators. Below, we present three often
used one-parametric families of bivariate Archimedean copulas with their generators:

Copula C(u, v) φ(t)

Clayton max{(u−θ + v−θ − 1)−1/θ, 0} 1
θ
(t−θ − 1), θ ∈ [−1,∞)\{0}

Gumbel exp{−[(− ln u)θ + (− ln v)θ]1/θ} (− ln t)θ, θ ∈ [1,∞)

Frank −1
θ
ln

(
1 + (e−θu−1)(e−θv−1)

e−θ−1

)
− ln e−θt−1

e−θ−1
, θ ∈ (−∞,∞)\{0}

For the bivariate Archimedean class of copulas the following proposition arises:

Proposition 2 Let us assume that C is a absolutely continuous bivariate Archimedean
copula, with generator φ, such that φ′′(t) exists and φ′′(t) > 0 for t ∈ (0, 1). Then the
density function c of copula C is given by the following formula:

c(u, v) = −φ′′(C(u, v))φ′(u)φ′(v)

(φ′(C(u, v)))3
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Proof The definition of the derivative of the inverse function, the definition of the
Archimedean copula and the absolute continuity of a copula C yield:

c(u, v) =
∂

∂v

∂

∂u
C(u, v) =

∂

∂v

(
∂

∂u
φ[−1](φ(u) + φ(v))

)

=
∂

∂v

(
φ′(u)

φ′(φ[−1](φ(u) + φ(v)))

)
=

∂

∂v

(
φ′(u)

φ′(C(u, v))

)

= φ′(u)
∂

∂v

(
1

φ′(C(u, v))

)
= φ′(u)

(
− φ′′(C(u, v))

(φ′(C(u, v)))2

∂

∂v
C(u, v)

)

= φ′(u)

(
− φ′′(C(u, v))

(φ′(C(u, v)))2

∂

∂v
(φ[−1](φ(u) + φ(v)))

)

= φ′(u)

(
− φ′′(C(u, v))

(φ′(C(u, v)))2

φ′(v)

φ′(φ[−1](φ(u) + φ(v)))

)

= −φ′′(C(u, v))φ′(u)φ′(v)

(φ′(C(u, v)))3

Hence, the proof is accomplished.

Under the assumptions of Sklar’s theorem let us define function K(t):

K(t) := P{H(X1, X2, ..., Xd) ≤ t} = P{C(F1(X1), F2(X2)..., Fn(Xd)) ≤ t} for t ∈ [0, 1]

Function K states for the distribution function of the random variable C(F1(X1), ..., Fd(Xd)).
Moreover, we observe that Fi(Xi), i = 1, ..., d, are standard uniformly distributed. In-
deed:

P{Fi(Xi) ≤ xi} = P{Xi ≤ F−1
i (xi)} = Fi(F

−1
i (xi)) = xi for i = 1, ..., n

A useful property arises for the bivariate Archimedean class of copulas:

Proposition 3 Let U and V be standard uniform random variables whose joint dis-
tribution function is the Archimedean copula C generated by φ. Then, the distribution
function of the random variable C(U, V ) is given by:

K(t) = P{C(U, V ) ≤ t} = t− φ(t)

φ′(t+)
for t ∈ [0, 1] (2.3)

For the proof, we refer to [13]. φ′(t+) denotes the right-side derivative of φ at t. If
φ′(t) exists then φ′(t+) = φ′(t).
Applying the above proposition to the bivariate Clayton, Gumbel and Frank copula
results in the following table:

Copula K(t)

Clayton t(θ+1−tθ)
θ

Gumbel t(θ−ln t)
θ

Frank
θt+(1−eθt) ln

{
e−θt−1

e−θ−1

}

θ

15



One of the useful properties of the bivariate Archimedean class of copulas is that
the corresponding Kendall’s tau can be expressed in terms of the generator φ. The
theory below can be found in [11]. Additionally, we sustain the assumptions of the
Proposition 2.

Proposition 4 If two random variables are joined by the Archimedean copula with
generating function φ, then Kendall’s tau is given by the following formula:

τ = 1 + 4
∫ 1

0

φ(t)

φ′(t)
dt (2.4)

Proof Proposition 1 yields:

τ = 4
∫

[0,1]2
C(s, t)dC(s, t)− 1 = 4

∫

[0,1]2
C(s, t)c(s, t)dsdt− 1

We note that C(u, v) = 0 for all (u, v) such that φ(u) + φ(v) = φ(0). This fact and
Proposition 2 entail:

∫

[0,1]2
C(s, t)c(s, t)dsdt = −

∫

φ(u)+φ(v)<φ(0)
C(u, v)

φ′′(C)φ′(u)φ′(v)

[φ′(C)]3
dudv

We impose the following transformation:

s = C(u, v) = φ[−1](φ(u) + φ(v)), t = v

with Jacobian ∂(s,t)
∂(u,v)

= φ′(u)
φ′(C)

and s ≤ t, we also recall that φ(1) = 0, then we obtain:

−
∫ 1

0

∫ 1

s
s
φ′′(s)φ′(u)φ′(t)φ′(s)

[φ′(s)]3
dtds = −

∫ 1

0

∫ 1

s
s
φ′′(s)φ′(t)
[φ′(s)]2

dtds

= −
∫ 1

0
s
φ′′(s)φ′(t)
[φ′(s)]2

∫ 1

s
φ′(t)dtds =

∫ 1

0
s
φ′′(s)φ(s)

[φ′(s)]2
ds

Partial integration gives:

w = sφ(s) z′ = φ′′(s)
[φ′(s)]2

w′ = φ(s) + sφ′(s) z = − 1
φ′(s)

Hence, we obtain:

−
∫ 1

0

∫ 1

s
s
φ′′(s)φ′(u)φ′(t)φ′(s)

[φ′(s)]3φ′(u)
dtds =

(
−s

φ(s)

φ′(s)

)1

0

+
∫ 1

0

(
φ(s)

φ′(s)
+ s

)
ds

=
∫ 1

0

φ(s)

φ′(s)
ds +

1

2

Thus, we conclude that τ = 1 + 4
∫ 1
0

φ(t)
φ′(t)dt and the proof is complete.
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The more general case of the above proposition is treated in [13].
The following table presents the values of Kendall’s tau for three bivariate Archimedean
copulas:

Copula Kendall’s tau

Clayton θ
θ+2

Gumbel θ−1
θ

Frank 1 + 4
∫ 1
0

eθt−1
θ

ln
(

e−θt−1
e−θ−1

)
dt

2.4 Estimation

Suppose that some parametric family of copulas is being considered as a model for
the dependence structure between some random variables. Given a random sample,
we will tackle the problem of estimation of the unknown parameters that arise from
the parametric family of copulas but often also from the univariate margins.

2.4.1 Maximum Likelihood Inference

Consider random variables X1, X2, ..., Xd joined by the d-dimensional distribution H,
with marginal distributions F1(x1; α1), F2(x2; α2), ..., Fd(xd; αd). Then, according to
Sklar’s theorem, the function H can be expressed in terms of the d-copula C:

H(x1, x2, ..., xd; α1, α2, ..., αd, θ) = C(F1(x1; α1), F2(x2; α2), ..., Fd(xd; αd); θ)

where αi, for i = 1, ..., d and θ constitute the vectors of the marginal and copula
parameters, respectively. For simplicity, we will call them ”parameters”.
The d-dimensional density function h of the d-dimensional distribution H is given as
follows:

h(x1, x2, ..., xd; α1, α2, ..., αd, θ) = c(F1(x1; α1), F2(x2; α2), ...., Fd(xd; αd); θ)
d∏

i=1

fi(xi; αi)

where fi(xi; αi) is the corresponding density function of distribution Fi(xi; αi), for
i = 1, ..., d and c is the density function of the d-copula C. We assume that the above
theory and notation is valid in the following paragraphs. Moreover, we note that this
theory is mathematically less rigorous.

Maximum Likelihood Method

Let us assume that a sample of n d-variate observations {(X i
1, X

i
2, ..., X

i
d)}i=n

i=1 is at our
disposal. Then, the estimates α̂i,θ̂ of the parameters αi, θ, for i = 1, ..., d maximize
the following likelihood function L:

L(α1, α2, ..., αd, θ) =
n∏

i=1


c(F1(X

i
1; α1), F2(X

i
2; α2), ...., Fd(X

i
d; αd); θ)

d∏

j=1

fj(X
i
j; αj)
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Since the logarithm is a continuous and strictly increasing function over the range
of the likelihood, the values which maximize the likelihood will also maximize its
logarithm. Since maximizing the logarithm usually requires simpler calculations, we
define the following log-likelihood function:

l(α1, α2, ..., αd, θ) =
n∑

i=1

ln c(F1(Xi
1;α1), F2(Xi

2; α2), ..., Fd(Xi
d; αd); θ) +

n∑

i=1

ln
d∏

j=1

fj(Xi
j ; αj)

Then, the estimates α̂i, θ̂ of the parameters αi, θ, for i = 1, ..., d maximize the function
l.
The above method yields consistent estimators, for details we refer to [16].

Remark 1 Observe that the Maximum Likelihood Method does not separate the marginal
distributions from the dependency structure (copula). Hence, it does not incorporate
the main feature of the copula function which is the separation of the marginal distri-
butions. The next methods however use this property.

Inference functions for margins

Let us assume that a sample of n d-variate observations {(X i
1, X

i
2, ..., X

i
d)}i=n

i=1 is at our
disposal. The so-called ”Inference functions for margins” is a method of estimation
that consists of two steps. The first step requires the estimation of the parameters of
the marginal distributions:

α̂i = arg max
αi

n∑

j=1

ln fi(X
j
i ; αi) for i = 1, ..., d

Having estimators α̂i, for i = 1, ..., d, we can proceed with the second step, namely
the estimation of the copula parameter θ that is given as follows:

θ̂ = arg max
θ

n∑

j=1

ln c(F1(X
j
1 ; α̂1), F2(X

j
2 ; α̂2), ..., Fd(X

j
d; α̂d); θ)

More information about this method can be found in [10].

Remark 2 The joint estimation of the unknown marginal and copula parameters -
as is done by the Maximum Likelihood Method - can be very time consuming in ap-
plications, especially when we have to deal with the complicated form of the resulting
log-likelihood function. The ”Inference functions for margins” method is less time-
consuming, because a single numerical optimization with many parameters requires
more time compared with several numerical optimizations, each with fewer parame-
ters.
Observe that in case of the Maximum Likelihood Method the estimation of the depen-
dence parameter θ is affected by the choice of the marginal distributions as well as the
marginal parameters are influenced by the choice of the dependence structure (copula).
In case of the ”Inference functions for margins” method, the copula parameter will be
margin dependent. Moreover, in both methods the marginal distribution models can
entail the risk of being improperly chosen. In the next paragraph the Canonical Maxi-
mum Likelihood Method is proposed, where we estimate the copula parameter without
specifying models for the marginal distributions.

18



Canonical Maximum Likelihood Method

Let us assume that a sample of n d-variate observations {(X i
1, X

i
2, ..., X

i
d)}i=n

i=1 is at our
disposal. This method estimates the copula parameter without specifying precisely
the marginal distributions. The estimator θ̂ of the copula parameter θ maximizes the
following pseudo log-likelihood function:

l(θ) =
n∑

i=1

ln c(F̂1,d(X
i
1), F̂2,d(X

i
2), ..., F̂d,d(X

i
d); θ)

where F̂i,d, for i = 1, ..., d are the empirical marginal distributions and are given as
follows:

F̂j,d(x) =
1

n

n∑

i=1

1(X i
j ≤ x) for j = 1, ..., d

where 1(A) is the indicator of event A.
The resulting estimator of the copula parameter is consistent, for further details we
refer to [8] and [9].

Remark 3 We note that many authors use modified empirical distributions, given
as follows:

F̂j,d(x) =
1

n + 1

n∑

i=1

1(X i
j ≤ x) for j = 1, ..., d

instead of the empirical marginal distributions in the Canonical Maximum Likelihood
Method. This is due to the fact that using empirical margins can entail numerical
problems in the application.
It is important to remark that the Canonical Maximum Likelihood Method indirectly
depends on the empirical distributions. However, it does not mean that we have to
assume that our marginal distributions are empirical. In fact, we can specify the
marginal models and still perform this method. This is done in [8]. Generally, this
method entails an estimation of the copula parameter that is margin-models-free.

2.4.2 Genest-Rivest approach

In this subsection, we consider a bivariate one-parametric Archimedean class of cop-
ulas depending on the real parameter θ. We introduce the Genest-Rivest method of
estimation. This method does not depend on the choice of the marginal distributions.
Moreover, it is especially appropriate for the bivariate Archimedean class of copulas,
due to the fact that Kendall’s tau for this class is straightforwardly determined by the
generator φ. Moreover, the generator depends on our parameter of interest θ. Hence,
if the estimation of Kendall’s tau is known, we can obtain the value of the parameter
θ by using the relation (2.4). Thus, the following estimation procedure is proposed:

1. Having the sample of n bivariate observations (X1, Y1), · · · , (Xn, Yn), compute
the estimations of Kendall’s tau as follows:

τn =
2

(n− 1)n

n∑

i=1

i−1∑

j=1

Sign[(Xi −Xj)(Yi − Yj)]
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where the function Sign is given by:

Sign(x) =





1 x > 0
0 x = 0
−1 x < 0

Observe that the above estimator is equivalent to (2.1).

2. Having the estimation of Kendall’s tau, compute the estimation of the parameter
θ using the relation (2.4).

The above method yields the consistent estimator of the copula parameter, for further
details we refer to [8] and [9].

Remark 4 We note that the above procedure can be generalized for other classes of
one-parametric bivariate copulas provided the real parameter θ can be represented in
terms of g(τ), where τ denotes Kendall’s tau and g is a smooth function.

Remark 5 It is important to remark that an adequate procedure can also be applied
for the multivariate one-parametric Archimedean class of copulas. However, instead
of Kendall’s tau the so-called multivariate version of Kendall’s measure of association
has to be computed. This; however, will not be discussed. For further details, we refer
to [9].

2.5 Determination of the best copula

In a typical modeling task, the analyst usually has a choice between several different
dependence structures for the data at hand. Suppose that several copula models were
fitted by some arbitrary estimation method. It is then natural to ask which of the
models provides the best fit to the observed dataset. Without loss of generality we
can assume that the considered copulas depend on one parameter. In this section the
methods of evaluation of goodness-of-fit for copulas will be discussed. Some of the
methods are only appropriate for the bivariate case, whereas others can be extended
to higher dimensions. To keep things simple, we will consider the bivariate case and
we will indicate whether the considered method can be applied for the multivariate
case.

2.5.1 Basic approach - Method 1

This approach is introduced in [8].
When we consider the bivariate data (Xi, Yi), i = 1, ..., n, possibly the most natural
way of checking the adequacy of a copula model would be to superimpose a scatter
plot of the pairs (F (Xi), G(Yi)), i = 1, ..., n (where F and G denote the marginal
distributions) on the sampled dataset of the same size from the copula C(u, v; θ̂)
(where θ̂ is the estimation of the copula parameter θ on the basis of the dataset
(Xi, Yi), i = 1, ..., n, θ can also be a vector). Since the bivariate Archimedean copulas
will be considered in the following case study, we present the sampling algorithm for
this class:
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1. Generate two independent uniform (0, 1) variates u and t;

2. Set w = φ
′(−1)(φ′(u)/t);

3. Set v = φ[−1](φ(w)− φ(u));

4. The desired pair is (u, v).

where φ is the generator and φ[−1] denotes the pseudo-inverse of φ. For other algo-
rithms and details,we refer to [13].
It is clear that this simple method is not applicable for dimensions higher than three.
Even the 3-dimensional case would result in a cloud of points that would hamper the
assessment of the fit.

2.5.2 Pseudo graphical diagnostic based on the distribution
function of C(V |U) - Method 2

This pseudo-graphical method is presented in [2] and [12].
In order to avoid ambiguity, we start with the mathematical results that lay the
foundation to this method.

Proposition 5 Let (X1, X2, ..., Xd) be a d-variate vector with copula C and marginal
distributions F1, ..., Fd. Let Ck(u1, ..., uk) = C(u1, ..., uk, 1, ..., 1), k = 1, ..., d denote
the k-dimensional margin of C, with C1(u1) = u1 and Cd(u1, ..., ud) = C(u1, ..., ud).
Then, the following relation holds:

P{Xk ≤ xk|X1 = x1, ..., Xk−1 = xk−1} = Ck(uk|u1, ..., uk−1)

=
∂k−1Ck(u1, ..., uk)

∂u1...∂uk−1

/
∂k−1Ck−1(u1, ..., uk−1)

∂u1...∂uk−1

where ui = Fi(xi), for i = 1, ..., k.

Proof This proposition will be proved for the bivariate case (d = 2). Hence, assuming
U1 = F1(X1), U2 = F2(X2), u1 = F1(x1) and u2 = F2(x2), we obtain the following
calculations:

∂

∂u1

C2(u1, u2) = lim
∆u1→0

C(u1 + ∆u1, u2)− C(u1, u2)

∆u1

= lim
∆u1→0

P{U1 ≤ u1 + ∆u1, U2 ≤ u2} − P{U1 ≤ u1, U2 ≤ u2}
P{u1 ≤ U1 ≤ u1 + ∆u1}

= lim
∆u1→0

P{U2 ≤ u2|u1 ≤ U1 ≤ u1 + ∆u1}
= P{U2 ≤ u2|U1 = u1}
= P{F2(X2) ≤ u2|F1(X1) = u1}
= P{X2 ≤ F−1

2 (u2)|X1 = F−1
1 (u1)}

= P{X2 ≤ x2|X1 = x1}
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Since ∂
∂u1

C1(u1) = 1, we obtain:

∂
∂u1

C2(u1, u2)
∂

∂u1
C1(u1)

= P{X2 ≤ x2|X1 = x1}

Thus, the proof is complete.

The following table gives ∂
∂u

C(u, v) for the bivariate Clayton, Gumbel and Frank
copula:

Copula ∂
∂u

C(u, v)

Clayton u−1−θ(u−θ + v−θ − 1)−1−1/θ, u−θ + v−θ − 1 > 0

Gumbel ((− ln u)θ + (− ln v)θ)−1+1/θ(− ln u)θ−1 exp{−((− ln u)θ + (− ln v)θ)1/θ}/u
Frank −(e−θv − 1)e−θu/(−e−θ − e−θ(u+v) + e−θu + e−θv)

The following theory is crucial in the considered method of the evaluation of the fit:

Definition 8 Probability Integral Transform Let X = (X1, ..., Xk) be a ran-
dom vector with distribution function F (x1, ..., xk). Let z = (z1, ..., zk) = Tx =
T (x1, ..., xk), where T is the transformation considered. Then, T is given by:

z1 = P{X1 ≤ x1} = F1(x1)

z2 = P{X2 ≤ x2|X1 = x1} = F2(x2|x1)
...

zk = P{Xk ≤ xk|Xk−1 = xk−1, ..., X1 = x1} = Fk(xk|xk−1, ..., x1)

Proposition 6 Under the assumptions of the above definition, the random vector
Z = TX is uniformly distributed on the k-dimensional hypercube.

Proof This proposition will be proved for the bivariate case. The generalization to
higher dimensions is straightforward. Thus:

P{Z1 ≤ z1, Z2 ≤ z2} =
∫ ∫

{Z1≤z1,Z2≤z2}
dF2(x2|x1)dF1(x1)

=
∫ z1

0

∫ z2

0
dz1dz2 = z1z2

when 0 ≤ zi ≤ 1, for i = 1, 2. Hence, Z1 and Z2 are uniformly and independently
distributed on [0, 1].

Having this theoretical background, let us now proceed with the description of the
method in the bivariate case. On the basis of the above proposition, we conclude that
Z1 = F (X) and Z2 = C2(G(Y )|F (X)) are uniformly and independently distributed
on [0, 1]. The method uses the fact that C2(G(Y )|F (X)) is standard uniformly dis-
tributed random variable. The procedure is given as follows:
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1. Compute the estimation θ̂ of the copula parameter θ (it can be a vector) on the
basis of the sample of n bivariate observations (Xi, Yi), i = 1, ..., n.

2. Having estimation θ̂, compute C2(G(Yi)|F (Xi); θ̂) = ∂
∂u

C(F (Xi), G(Yi); θ̂) for
all i = 1, ..., n.

3. Plot
{

i
n+1

, C2(G(Yi)|F (Xi); θ̂)
∗
}
, where i = 1, ..., n and ∗ indicates ordering.

This is so-called Quantile-Quantile plot (QQ-plot).

The above procedure is repeated for several choices of the copula models. We choose
a copula for which the plot most closely resembles a straight line with a slope 1 (an
approximately straight line with a slope 1 would indicate that C2(G(Y )|F (X)) is a
standard-uniformly distributed).
It is important to notice that this method can in principle be used in the multivariate
case as well, due to the definition of the Probability Integral Transform and the result-
ing properties. However, the application in the 3-dimensional space already becomes
less clear. Consider, the 3-variate case with the copula C(F1(x1), F2(x2), F3(x3)). It is
not stated clearly whether we should examine C2(F2(X2)|F1(X1)) or C3(F3(X3)|F1(X1), F2(X2)),
or maybe both? In this case, it would be better to perform a test that incorporates
the information from both quantities. This will be investigated further.

2.5.3 Kolmogorov-Smirnov goodness of fit test

The graphical method introduced in the last subsection gives insight into the behavior
of the dataset. However, judging the fit only on the basis of graphical representation
can be confusing. Hence, a ”measure” that will determine the goodness-of-fit of this
method is required. We consider the Kolmogorov-Smirnov test. This test deals with
two situations. The first situation arises when we want to determine if the underlying
distribution F1 differs from the hypothesized continuous distribution function F2.
This is the so-called one-sample case. The second situation arises when we want
to judge if two underlying distributions F1 and F2 are identical. This refers to the
so-called two-sample case. In both situations, the null hypothesis assumes that the
distributions F1 and F2 are the same, whereas the alternative hypothesis states that
these two distributions are different (two-tailed test). The test statistic is given as
follows:

T = max
x
|F1(x)− F2(x)|

where F1 and F2 are appropriately chosen with respect to the considered situation.
We assume that the null hypothesis is rejected if the test is significant at the 5%
level. In order to take a correct decision, we compute the p-value, which measures
how much evidence we have against the null hypothesis. If p ≤ 5% we reject the
null hypothesis, whereas p > 5% entails no evidence against the null hypothesis. We
can also compare the resulting observed test statistic with the critical value. If the
observed test statistic is less than the critical value (which depends on the significance
level α), then we cannot reject the null hypothesis. Otherwise, we reject it.
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We use this test for the bivariate case of the method discussed in the previous sub-
section. Thus, we test if the distribution function of variable C2(G(Y )|F (X)) is
standard uniform. For instance, applying the Kolmogorov-Smirnov test for several
copulas would result in several p-values; if all of them are greater than the significance
level 5%, we have no evidence to reject any of the considered copulas. Then, in the
pragmatic way, we would conclude that the better fit is provided by the copula, for
which the corresponding p-value is the highest. This is also suggested in [2]. The
rationale for this is that a high p-value corresponds to a low value of the observed test
statistic, which in turn corresponds to a good fit. However, we decide to be careful
with judging the best fit on the basis of high p-values and we use them more as a
support in the graphical method.
It is important to remark that the Kolmogorov-Smirnov test is more sensitive at the
points near the median of the distribution than at its tails. More details about this
test and hypothesis testing can be found in [17].

2.5.4 Pseudo graphical method based on the distribution of
variable C(U, V ) - Method 3

This method is described in [8] and it is based on the comparison of the non-parametric
and parametric estimations of the distribution function of random variable C(U, V )
(in the bivariate case). We will present this method for the bivariate Archimedean
copulas. The procedure below is of special interest to the Archimedean class of
copulas, because in this case the parametric estimation of the distribution of C(U, V )
can be derived by incorporating the generator. Below we describe algorithms that
provide non-parametric and parametric estimations.
The non-parametric estimation of a distribution function of the variable C(U, V )
can be derived as follows (this estimation procedure holds also for non-Archimedean
classes of copulas):

1. Consider the random sample of n bivariate observations (Xi, Yi), i = 1, ..., n.

2. Compute the pseudo-observations for i = 1, ..., n as follows:

Wi =

∑n
j=1 1(Xj ≤ Xi, Yj ≤ Yi)

n

3. Calculate the non-parametric estimation Kn of the distribution of variable
C(U, V ):

Kn(t) =

∑n
i=1 1(Wi ≤ t)

n
for t ∈ [0, 1]

The parametric estimation of a distribution function of variable C(U, V ) is given by:

1. Compute the estimator θ̂ of the unknown copula parameter θ on the basis of
the sample of n bivariate observations (Xi, Yi), i = 1, ..., n.
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2. Having estimator θ̂, compute the generator φ (let us recall that the generator
of the Archimedean copula depends on the parameter θ).

3. Compute the distribution function of the copula according to the following
formula:

K(t; θ̂) = t− φ(t, θ̂)

φ′(t+, θ̂)
for t ∈ [0, 1]

We perform the above method of estimation for several choices of the bivariate
Archimedean copulas. The best choice of the copula function corresponds to the
parametric estimate that most closely resembles the non-parametric estimate. One
possibility is to plot Kn(t) and K(t; θ̂) on the same graph to see how well they agree.
If the empirical plot approximately follows the parametric estimation we can conclude
that the considered copula is a good model.

Remark 6 Let us consider the following quantity:

E =
∫ 1

0
|Kn(t)−K(t; θ̂)|2dt

Clearly, E measures the distance between the parametric and non-parametric esti-
mations. We choose a copula function for which this quantity is minimized. The
distance E should be calculated analytically. However for simplicity, in the following
case study the solution will be calculated numerically.

A formal methodology for testing the goodness-of-fit of a copula on the basis of the
empirical and parametric estimations of the distribution function of the copula, is
introduced in [8] and [9]. The authors propose the following test statistic:

Sn = n
∫ 1

0
|Kn(t)−K(t; θ̂)|2k(t; θ̂)dt

where k(t; θ̂) = d
dt

K(t; θ̂). The above expression looks a bit complicated. However, it
can be simplified as follows:

Sn =
n

3
+ n

n−1∑

j=1

K2
n

(
j

n

) {
K

(
j + 1

n
; θ̂

)
−K

(
j

n
; θ̂

)}

− n
n−1∑

j=1

Kn

(
j

n

) {
K2

(
j + 1

n
; θ̂

)
−K2

(
j

n
; θ̂

)}

For the proof, we refer to Appendix A.

Remark 7 Note that the proposed statistic is of the Cramer-von Mises type, which
is used for judging the goodness-of-fit of a probability distribution F ∗ compared to a
given distribution F , with the test statistic defined as:

W 2 =
∫ ∞

−∞
(F (x)− F ∗(x))2dF (x)

In applications F is the theoretical distribution and F ∗ is the empirical distribution
function.
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The testing procedures based on this statistic would consist of rejecting the composite
null hypothesis (H0: the data follows some copula C ∈ Cθ) if the value of the observed
test statistic is greater than the 100(1− α)th percentile of its distribution under the
null hypothesis, where α is the significance level. However, the authors in [8] and
[9] observe that this distribution depends on the unknown copula parameter θ even
in the limit (so when the sample size increase). In order to circumvent this, the
Bootstrap method is proposed. Hence, the critical value and the associated p-value
are computed as follows:

1. Calculate estimator θ̂ of the unknown copula parameter θ from the original
observations (Xi, Yi), i = 1, ..., n and compute the value of the test statistic Sn.
The estimator must be consistent.

2. Generate B random samples of size n from the copula of interest with the
estimator θ̂.

3. Estimate parameter θ (it can be a vector of parameters) for each sample (by the
same method as before) and determine the value of the test statistics S∗i , i =
1, ..., B.

4. If S∗1:B ≤ ... ≤ S∗B:B denote the ordered values of the test statistics, then the
critical value of the sampling distribution arises by computing the (1 − α)-
quantile of the values S∗1:B, ..., S∗B:B (then, the significance level is α) whereas
the associated p-value is computed from:

1

B
#{i : S∗i ≥ Sn}

We compare the resulting observed test statistic with the critical value. If the observed
test statistic is less than the critical value, then we cannot reject the null hypothesis.
Otherwise, we reject it. Alternatively, we can compare the resulting p-value with the
significance level α. If the p-value is less than α, we reject the null hypothesis. If the
p-value is greater than α, then we have no evidence against the null hypothesis. It
can be observed empirically that the model for which the test statistic is the smallest
generally has the highest p-value (see [9]). As we will discover, the highest p-value
will usually correspond to a good model fit. However, we have to be careful with the
selection of the best model only on the basis of high p-values. They can be misleading
when the sample size is small or large. Therefore, it is good to support our decision,
regarding the best model, by using a graphical representation - i.e. the comparison
of K(t; θ̂) and Kn(t).

Remark 8 Let us observe that the above method does not depend on the choice of
the marginal distributions. However, the estimator θ̂ can be affected by the choice of
the margins.

Remark 9 The above method can be extended to the multivariate case. Moreover, it
can also be applied for non-Archimedean classes of copulas. This is discussed in [9].
However, the theoretical formula for K(t) should be available. Otherwise, a laborious
numerical approximation would have to be implemented.
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2.5.5 A Goodness-of-fit Test for Copulas based on Rosen-
blatt’s Transformation - Method 4

This method is described in [3] and it uses the result of [15].
In this subsection we introduce the goodness-of-fit test based on the Rosenblatt’s
Transformation. We start with a discussion of the bivariate case. Hence, let X and
Y denote two random variables with joint distribution function H(x, y) = P{X ≤
x, Y ≤ y} for (x, y) ∈ <2, and marginal distribution functions F (x) = P{X ≤ x}
and G(y) = P{Y ≤ y} for x, y ∈ <. So we have from Sklar’s theorem:

H(x, y) = C(F (x), G(y))

We note that according to Proposition 6, the random variables:

Z1 = U = F (X) and Z2 = C(V |U) = C(G(Y )|F (X))

are independent and standard uniformly distributed. The above transformation of
variables X and Y into variables Z1 and Z2 is called Rosenblatt’s Transformation.
Then, the following proposition arises:

Proposition 7 If variable U is uniformly distributed on the interval [0, 1] and Φ
is the standard normal distribution, then the variable Φ−1(U) is standard normally
distributed.

Proof Using the definition of a distribution function, we obtain the following calcu-
lations:

P{Φ−1(U) ≤ x} = P{U ≤ Φ(x)} = Φ(x)

Thus, Φ−1(U) is a standard normally distributed random variable and the proof is
accomplished.

Definition 9 If X1, X2 · · · , Xk are independent random variables, such that:

Xi ∼ N(0, 1), i = 1, · · · , k
then, the random variable Z =

∑k
i=1 X2

i is chi-square distributed with k degrees of
freedom. This distribution is denoted by χ2

k.

Since Φ−1(Z1) = Φ−1(F (X)) and Φ−1(Z2) = Φ−1(C(G(Y ))|F (X)) are independent
and standard normally distributed, we conclude that the random variable:

S(X, Y ) = [Φ−1(F (X))]2 + [Φ−1(C(G(Y )|F (X)))]2

has a χ2
2-distribution.

The test uses the fact that S(X, Y ) has a χ2
2 distribution. Hence, if (X1, Y1), ..., (Xn, Yn)

is a random sample from (X, Y ), then S(X1, Y1), ..., S(Xn, Yn) is a random sample
from a χ2

2-distributed random variable. The null hypothesis of interest is given as
follows:

H0 : (X, Y ) ∼ C(F (x), G(y))
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when the marginal distribution functions are known. This hypothesis can be equiva-
lently expressed in terms of the variable S:

H0 : S(X,Y ) ∼ χ2
2

We test the null hypothesis using the Anderson-Darling test. This is suggested in
[3]. However, the authors point out that the Kolmogorov-Smirnov test can also be
applied. The test statistic of the Anderson-Darling test is:

AD = −n−
n∑

i=1

2i− 1

n
[ln(F0(S(j))) + ln(1− F0(S(n−j+1)))]

where Si = S(Xi, Yi), i = 1, ..., n and S(1) ≤ ... ≤ S(n). The function F0 is the
distribution function of χ2

2-distributed random variable.

Remark 10 The Anderson-Darling test is applied to test if a sample comes from
a population with a specific distribution. It is a modification of the Kolmogorov-
Smirnov test and assigns more weight to the tails than the Kolmogorov-Smirnov test
does. The Anderson-Darling test makes use of the specific distribution in calculating
critical values. This has the advantage of imposing a more sensitive test and the
disadvantage that the critical values have to be calculated for each distribution.

Extensive research devoted to the goodness-of-fit test for copulas based on the Rosen-
blatt’s Transformation is performed in [3]. The authors show that this test works well
if the marginal distributions are known and are used in the test statistic, whereas if
the marginal distributions are unknown and are replaced by their empirical counter-
parts the test’s properties change dramatically. They consider two cases. The first
case corresponds to the theoretical situation when the marginal distributions and the
parameters of the considered copula are known. The second case is more relevant
for applications, namely when the marginals are empirical and are used to estimate
the copula parameters. The authors compare these two cases by checking the perfor-
mance of the test for each of them. The results indicate that the power of the test
in the second situation is significantly lower than in the first case. However, as the
authors state, this problem can be fixed by introducing the Bootstrap method (given
below). It is important to mention that if the marginal distributions are known and
the copula parameter has to be estimated, then the performance of the test is ade-
quate to the first case. The authors claim that if the ”Inference for margins” method
is implemented, then the pre-testing (i.e. checking the goodness-of-fit for margins)
has a negative impact on the properties of the goodness-of-fit test for copulas; the
authors do not know how to modify the test in order to solve this problem. They
suspect that the Bootstrap method will not solve this problem.
The Bootstrap method:

1. Calculate estimator θ̂ of the unknown copula parameter θ (it can be a vector
of parameters) from the original observations (Xi, Yi), i = 1, ..., n and compute
the value of the test statistic AD.
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2. Generate B random samples of size n from the copula of interest with the
estimator θ̂.

3. Estimate parameter θ for each sample (by the same method as before) and
determine the value of the test statistics AD∗

i , i = 1, ..., B.

4. If AD∗
1:B ≤ ... ≤ AD∗

B:B denote the ordered values of the test statistics, then
the critical value of the sampling distribution arises by computing the (1− α)-
quantile of the values AD∗

1:B, ..., AD∗
B:B (the significance level is α), whereas the

associated p-value is computed from:

1

B
#{i : AD∗

i ≥ AD}

We compare the resulting observed test statistic with the critical value. If the ob-
served test statistic is less than the critical value, then we cannot reject the null
hypothesis. Otherwise, we reject it. Alternatively, if the resulting p-value is less
than the significance level α, the null hypothesis is rejected. Otherwise, we have no
evidence against the null hypothesis.

Remark 11 The extension of this test to the multivariate case is possible. It is due
to the fact that the definition of the Probability Integral Transform, Proposition 6 and
Definition 9 are stated in the multivariate context. Thus, in the d-dimensional case
S becomes:

S(X1, X2, ..., Xd) = [Φ−1(F1(X1))]
2 + [Φ−1(C2(F2(X2)|F1(X1)))]

2

+...+ [Φ−1(Cd(Fd(Xd)|F1(X1), ..., Fd−1(Xd−1)))]
2

where (X1, ..., Xd) is the d-dimensional random vector with continuous marginal dis-
tributions F1, ..., Fd and d-copula C. Consequently, we test if S is χ2

d-distributed.
Again, the Bootstrap method is required if the marginal distributions are empirical.

2.5.6 Percentile lines - Method 5

In this subsection we introduce the concept of the so-called percentile lines, which
are proposed as one of the methods of the graphical evaluation of the fit. Let us
consider the bivariate case. Assume that X and Y are two random variables with
joint distribution function H(x, y) = P{X ≤ x, Y ≤ x} for (x, y) ∈ <2 and the
marginal distribution functions F = P{X ≤ x} and G(y) = P{Y ≤ y} for x, y ∈ <.
On the basis of Sklar’s theorem we have:

H(x, y) = C(F (x), G(y))

We call the space (F (X), G(Y )) a copula or transformed space. Whereas the space
(X,Y ) is called the original or physical space.
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Definition 10 The p-percentile line in the copula space is defined by the following
function:

v = f(u; p), u ∈ [0, 1]

where p is a percentage and f(u; p) is obtained by solving equation C(v|u) = p with
respect to v.

Remark 12 We are usually interested in the percentile lines for p = 10%, 50%, 90%
or p = 5%, 50%, 95%. These are the most interesting.

We are also interested in the percentile lines in the physical space. This is obtained
by the following transformation:

{(u, f(u; p)) : u ∈ [0, 1]} → {(F−1(u), G−1(f(u; p))) : u ∈ [0, 1]}

The percentile lines can be used as a tool for determining the best copula fit to the
dataset. If the copula model fits well then the percentile lines should reflect the trend
of the dataset. Moreover, if the considered copula fits well, then approximately r%
of the dataset should fall below the percentile lines corresponding to p = r% (both in
the copula and in the original space). Moreover, this should also be satisfied in the
subregions of the physical and copula space.
This method is not applicable in the multivariate case. First of all, the definition of
the percentile lines in the multivariate case could be a problem, and moreover the
visual assessment would be difficult.

Remark 13 We note that the percentile lines are the most interesting in the physical
space, since they visualize the model in comparison with the original dataset.
Assume that we do not specify the marginal models F and G - thus, they are empirical.
Under special conditions it is possible to invert them. However, the resulting percentile
lines in the physical space would not be interesting. Since the empirical margins do
not provide a nice upper tail picture, the upper corner in the physical space will be
cut. Hence, it is better when the marginal distributions have some tail prescribed.

2.6 Case study

This section presents the application of the above methods. Thus, given a dataset,
we will try to investigate which copula function can serve as the best model.

2.6.1 Description of the dataset

In the case study we use a dataset provided by ”HKV Consultants”. This dataset
consists of n = 89 bivariate observations (Vi,Wi), i =, ..., n of the water levels and
wind speeds. To get a feeling of the dependence between V and W , it is traditional
to look at the scatter plot of pairs (Vi,Wi), i = 1, ..., n, which is given in Figure 2.1.
Note that the scatter plot of the original dataset does not only incorporate information
about the dependence between V and W , but also about their marginal behavior. We
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can obtain an informal, margin-free picture of dependence by transforming the data
to have uniform (0, 1) marginal distributions using the modified empirical marginal
distribution functions F̂n and Ĝn. If we consider (Vi, Wi), i = 1, ..., n, as the realiza-
tions of the independent random variables with joint distribution function H, then
(F̂n(Vi), Ĝn(Wi)), i = 1, ..., n can be interpreted as realizations from the copula C
corresponding to H. The points (F̂n(Vi), Ĝn(Wi)), i = 1, ..., n, are presented in Figure
2.2.
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Figure 2.1: Original dataset
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Figure 2.2: Dataset transformed to the
unit square

The covariance matrix Σ of the original dataset is:

Σ =

[
0.26 0.61
0.61 7.50

]

Since the off-diagonal elements in the covariance matrix are positive, we should ex-
pect that both variables V and W increase jointly - as indeed confirmed by Figure
2.1. Moreover, we use the population versions of product moment correlation and
rank correlation in order to check the dependency in our dataset. The numerical
computations yield:

ρ ρr

0.43815 0.39838

Both quantities are positive, showing indeed a positive dependency.

2.6.2 Modified empirical marginal distributions

In this subsection, we consider the modified empirical distributions of variables V and
W - they will be used in the following case study. As it was already mentioned, using
the exact empirical distributions entails some numerical problems in the application.
Therefore, we decide to use the modified empirical distributions instead, let us recall
their definitions:
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F̂V (v) = 1
n+1

∑n
i=1 1(Vi ≤ v) and F̂W (w) = 1

n+1

∑n
i=1 1(Wi ≤ w)

Figure 2.3 illustrates the comparison between the empirical and modified empirical
margins. As we can see the difference is very slight (the largest in the upper corners).
Thus, we expect that using the modified empirical distributions will not change the
final results much.
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Figure 2.3: The empirical and modified empirical marginal distributions.

2.6.3 Prescribed marginal distributions

In this subsection, we construct the marginal distribution functions FV (v) and FW (w).
This construction is presented in [7]. We assume that the distribution FV (v) is given
as follows:

FV (v) =





0 for v < a1

1− exp
{

bi+1−bi

ai+1−ai
v +

(
bi − bi+1−bi

ai+1−ai
ai

)}
for ai ≤ v < ai+1 and i = 1, ..., 6

1− µ1∆
N

exp
{
−

(
v
σ1

)α1

+
(

ω1

σ1

)α1
}

for v ≥ a7

whereas the distribution FW (w) takes the subsequent form:

FW (w) =





0 for w < c1

1− exp
{

di+1−di

ci+1−ci
w +

(
di − di+1−di

ci+1−ci
ci

)}
for ci ≤ w < ci+1 and i = 1, ..., 5

1− µ2∆
N

exp
{
−

(
w
σ2

)α2

+
(

ω2

σ2

)α2
}

for w ≥ c6

where the parameters are given in the following tables:
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i ai bi ci di

1 0.1 ln(1.000e + 00) 6 ln(1.000e + 00)
2 1.2 ln(9.100e− 01) 8 ln(9.600e− 01)
3 1.4 ln(8.400e− 01) 10 ln(8.400e− 01)
4 1.6 ln(6.800e− 01) 12 ln(5.600e− 01)
5 1.7 ln(6.000e− 01) 14 ln(3.200e− 01)
6 1.8 ln(5.000e− 01) 16 ln(1.133e− 01)
7 1.97 ln(3.500e− 01) - -

i αi µi σi ωi ∆ N

1 0.74 1.298 0.0913 1.97 24 89
2 2.05 0.42 8.66 16 24 89

The Figure 2.4 presents the functions 1 − FV (v) and 1 − FW (w) on a logarithmic
scale.
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Figure 2.4: The functions 1− FV (v) and 1− FW (w) on a logarithmic scale.

Remark 14 We observe that the survival function:

µ∆

N
exp

{
−

(
x

σ

)α

+
(

ω

σ

)α}
for x ≥ ω

is the modified Weibull. The term µ∆/N is a frequency that X ≥ ω. Indeed, the
Weibull cumulative distribution function is given as follows:

P (X ≤ x) = 1− exp

{
−

(
x

λ

)k
}

for x ≥ 0
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where λ > 0 is a scale parameter and k > 0 is a shape parameter. Then, it is
straightforward that for x > y the conditional distribution P{X ≤ x|X > y} is:

P{X ≤ x|X > y} = 1− P{X > x|X > y} = 1−
exp

{
−

(
x
λ

)k
}

exp
{
−

(
y
λ

)k
}

= 1− exp

{
−

(
x

λ

)k

+
(

y

λ

)k
}

We observe that the distributions FV (v) and FW (w) consists of two parts. The first
part consists of the interpolated exponential ”pieces”, whereas the second part is the
modified conditional Weibull distribution. This construction of margins allows for a
description of the tail behavior of the considered variables.
We remark that in this thesis FV (v) and FW (w), constructed above, are considered as
”known”, although in [7] they are actually fitted to the data.

2.6.4 Determination of the best copula - the modified em-
pirical marginal distributions

Our aim is to fit a copula function that best reflects the dependency in our dataset.
We consider three Archimedean families of copulas: Clayton, Gumbel and Frank.
Moreover, in this subsection we do not specify the marginal distribution models. We
decide to approximate them by modified empirical distributions.

Estimation of the unknown parameters

Each of the considered copula functions depends on some parameter θ that needs
to be estimated from the dataset. The modified empirical margins entails the use
of the Canonical Maximum Likelihood Method (CML). Moreover, we also perform
the estimation according to the Genest-Rivest approach (GR). Both methods are
described in section 2.4. The resulting estimators of the unknown parameters and
associated approximate 95% confidence intervals are given in the following table:

Copula σ̂ CML Confidence interval for CML σ̂ GR Confidence interval for GR
Clayton 0.49 [0.1439, 0.8361] 0.75968 [0.238, 1.2813]
Gumbel 1.41 [1.1852, 1.6348] 1.3798 [1.119, 1.64067]
Frank 2.67 [1.3494, 3.9906] 2.6 [1.3492, 3.9908]

The construction of the approximate confidence intervals is described in [8].

Method 1

Having the estimated parameters for each considered copula model, we can proceed
with the evaluation of the fit. In this paragraph we consider the method introduced
in subsection 2.5.1. This approach requires drawing the samples of size n from the

34



Clayton, Gumbel and Frank copula. Recall, that in our case n = 89. Since the sample
from the copula is random, the ”small” size n = 89 can lead to a quite arbitrary
picture of the copula. Therefore, we decide to draw samples of size 2000. The
resulting plots are presented in Figure 2.5. We consider only the estimators derived
according to the CML Method, because the plots that correspond to the estimations
derived under the GR approach are very similar. We conclude that the plots do not
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Figure 2.5: Scatter plots of Clayton, Gumbel and Frank copula with superimposed
transformed dataset (CML). The copula parameters are estimated by the CML method. The black dots
correspond to the transformed dataset, whereas the cyan dots represent the copula models.

give a straightforward answer. The pictures show how difficult the problem of the
selection of the best copula is.

Method 2

The aim of this paragraph is to determine the best copula model by using the approach
introduced in subsection 2.5.2. Let us first consider this method applied to the case
when parameters are estimated according to the CML Method. Then, the QQ-plots
in Figure 2.6 emerge. According to the previous section, we should choose the copula
for which the plot most closely resembles a straight line with slope 1. Since for the
Frank copula this is not the case, we may suspect that this copula does not provide a
good fit. However, for the Clayton and Gumbel copula we cannot unambiguously say
which one is better. Additionally, we apply the Kolmogorov-Smirnov test discussed
in subsection 2.5.3. The resulting p-values are 0.6584, 0.6525 and 0.38 (the order of
the p-values corresponds to the order Clayton, Gumbel and Frank copula). All p-
values are greater than the significance level 5%. Hence, we cannot reject any of the
considered copulas. We observe that the magnitude of p-values confirm our previous
observations. The p-value is the smallest for Frank copula, whereas the Clayton and
Gumbel copula seem both reasonable.
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Figure 2.6: QQ-plots for three copulas fitted with Canonical Maximum Likelihood
Method (CML)

Now, let us repeat the analysis for the GR approach. Then, the QQ-plots in Figure
2.7 emerge. We observe that the plot for the Gumbel copula most closely resembles
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Figure 2.7: QQ-plots for three copulas fitted with the Genest-Rivest method (GR)

a straight line with slope 1. Hence, we may conclude that here this copula fits
best. Additionally, we perform the Kolmogorov-Smirnov test. The resulting p-values
are 0.2604, 0.7399 and 0.4409. All p-values are greater than the significance level
5%. Hence, we cannot reject any considered copula function. The highest p-value
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is obtained for the Gumbel copula. For convenience, we present all p-values in the
following table:

p-value
Copula CML GR

Clayton 0.6584 0.2604
Gumbel 0.6525 0.7399
Frank 0.38 0.4409

Method 3

In this paragraph, we apply the method described in subsection 2.5.4. First, we
consider the estimators of the unknown parameters derived according to the CML
Method. The panels of Figure 2.8 illustrate the empirical estimation of the distri-
bution function Kn(t) with the comparison of the parametric estimations K(t; θ̂).
Figure 2.9 presents the plots with respect to the estimations derived according to the
GR approach. We observe that in both cases the highest agreement between Kn(t)
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Figure 2.8: Kn(t) and K(t; θ̂) (CML): The red line corresponds to K(t; θ̂), the black lines constitute
the 95% confidence interval and the blue line the empirical estimation Kn(t). Observe that the highest agreement is
obtained for the Gumbel copula.

and K(t; θ̂) is obtained for the Gumbel copula. Moreover, invoking Remark 6 results
in the following table:

Copula E =
∫ 1
0 |Kn(t)−K(t; θ̂)|2dt CML E =

∫ 1
0 |Kn(t)−K(t; θ̂)|2dt GR

Clayton 0.0019864 0.0027444
Gumbel 0.00080452 0.00069542
Frank 0.0015108 0.00144558
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Figure 2.9: Kn(t) and K(t; θ̂) (GR): The red line corresponds to K(t; θ̂), the black lines constitute
the 95% confidence interval and the blue line the empirical estimation Kn(t). Observe that the highest agreement
between the parametric and non-parametric estimation is obtained for the Gumbel copula.

From the table, we can see that E is the smallest for the Gumbel copula. This
is another rationale that according to this method the Gumbel copula is the best
(of course in the considered group of copulas). In addition, applying the Bootstrap
procedure with B = 500 at the 5%-significance level, results in:

CML estimation GR estimation
Copula Test stat. Crit. val. p-value Test stat. Crit. val. p-value
Clayton 0.11918 0.162 0.138 0.13632 0.165 0.094
Gumbel 0.05706 0.157 0.634 0.0629 0.140 0.490
Frank 0.08862 0.141 0.248 0.08841 0.153 0.308

Consider the CML estimation. All resulting p-values are above the 5%-significance
level. Hence, we cannot reject any model. We observe that the highest p-value is
obtained for the Gumbel copula. This is consistent with the previous observations.
Consider the GR estimation. All p-values are higher than the significance level 5%.
Thus, we cannot reject any considered copula. The highest p-value is obtained for
Gumbel copula. Moreover, the magnitudes of the resulting p-values agree with the
outcomes of Figure 2.9. Note that the Clayton copula would be rejected, if the
significance level was 10%.

Method 4

In this paragraph, we implement the method introduced in subsection 2.5.5. Let
us recall that the marginal distributions FV (v) and FW (w) are modified empirical.
However, these functions are only slightly different from the empirical distributions,
as is shown in Figure 2.3. Therefore, we decide to apply the Bootstrap method, with
B = 500 repetitions. The following table arises:
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CML estimation GR estimation
Copula Test stat. New crit. val. New p-val. Test stat. New crit. val. New p-val.
Clayton 0.5926 0.87 0.242 0.6809 0.94 0.196
Gumbel 0.549 0.85 0.338 0.5722 0.90 0.328
Frank 0.7042 0.90 0.134 0.6994 0.94 0.156

We note that all resulting p-values are grater than the significance level 5%. Clearly,
we cannot reject any of the considered copula models.

Final results

For convenience, we summarize the results of the previous paragraphs in the following
table:
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CML estimation GR estimation

Method 1 The results are difficult to in-
terpret.

The results are difficult to in-
terpret.

Method 2 The plots favor the Clayton
and Gumbel copula. On the
basis of the p-values we can-
not reject any of the considered
copulas. The highest p-values
are obtained for the Clayton
and Gumbel copula.

The plots favor the Gumbel
copula. On the basis of the
p-values we cannot reject any
of the considered copulas. The
highest p-value is obtained for
Gumbel copula.

Method 3 The plots and error E favor the
Gumbel copula. All resulting
p-values are greater than the
significance level 5%. Thus, we
cannot reject any of the consid-
ered copulas. The highest p-
value is obtained for the Gum-
bel copula.

The plots and error E favor
the Gumbel copula. All result-
ing p-values are greater than
the significance level 5%.Thus,
we cannot reject any of the
considered copulas. The high-
est p-value is obtained for the
Gumbel copula. Note that the
Clayton copula would be re-
jected, if the significance level
was 10%.

Method 4 Resulting p-values are greater
than the significance level 5%.
Thus, non of the considered
copulas can be rejected.

Resulting p-values are greater
than the significance level 5%.
Thus, non of the considered
copulas can be rejected.

On the basis of the above table, we can conclude that ”on the average” the Gumbel
copula gives a good fit in each method of estimation. It was indicated by the graphical
methods and not rejected by the statistical tests. However, it is important to notice
that the statistical tests did not lead to the rejection of any considered copula.

2.6.5 Determination of the best copula - prescribed marginal
distributions

Let us again consider the three Archimedean families Clayton, Gumbel and Frank.
We assume that the marginal distribution functions FV (v) and FW (w) are given (the
construction of the margins is presented in the previous section). We repeat the
estimation of the unknown parameters and the evaluation of the fit.
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Estimation of the unknown parameters

In this paragraph, we use the modification of CML Method (we call it MCML), in
order to estimate the copula parameter. To be more precise, we use the CML Method,
where the empirical distributions are replaced by the known margins, which applied
on the dataset are ”almost” empirical. This kind of estimation can also be viewed
as the Maximum Likelihood Method. We obtain the following table of estimations of
parameter θ and the associated approximate 95% confidence intervals:

Copula θ̂ MCML Confidence interval for MCML

Clayton 0.42 [0.1009, 0.7391]
Gumbel 1.44 [1.2094, 1.6706]
Frank 2.82 [1.4986, 4.1414]

Method 1

In this paragraph, we consider the method discussed in subsection 2.5.1 with pre-
scribed marginal distributions and the estimations derived according to the MCML
Method. Again, we sample from each considered copula a set of bivariate points
of size 2000. Thus, Figure 2.10 emerges. The results are not significantly different
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Figure 2.10: The Clayton, Gumbel and Frank copula with the dataset transformed
to the unit square. The copula parameters are estimated by the MCML method. The black dots correspond
to the transformed dataset, whereas the cyan dots represent the copula functions.

than those for the modified empirical marginal distributions. This is not surprising,
due to the fact that the prescribed distributions, FV (v) and FW (w), applied on the
considered dataset are very close to their empirical counterparts. Hence, again the
resulting plots do not give an unambiguous answer.
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Method 2

In this paragraph, we consider the method discussed in subsection 2.5.2 with pre-
scribed marginal distributions and the estimations derived according to the MCML
Method. The corresponding plots are presented in Figure 2.11. We observe that
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Figure 2.11: QQ-plot (MCML)

the highest agreement is obtained for the Clayton and Gumbel copula. The p-values
derived from the Kolmogorov-Smirnov test are given:

Copula p-value MCML

Clayton 0.9160
Gumbel 0.8702
Frank 0.5982

All p-values are above the 5%-significance level. Thus, none of the considered copulas
can be rejected. The highest p-values are obtained for the Clayton and Gumbel
copula.

Method 3

In this paragraph, we consider the method discussed in subsection 2.5.4 with the
prescribed marginal distributions and the estimations derived according to the MCML
Method. Hence, we obtain Figure 2.12 where the empirical estimation Kn(t) together
with the parametric estimation K(t; θ̂) are presented as a functions of t. Let us note
that the highest agreement is obtained for the Gumbel copula. Moreover, Remark 6
results in the following table:
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Figure 2.12: Kn(t) and K(t; θ̂) (MCML) The red line corresponds to K(t; θ̂), the black lines constitute
the 95% confidence interval and the blue line the empirical estimation Kn(t). Observe that the highest agreement
between the empirical and parametric estimations is obtained for the Gumbel copula.

Copula E =
∫ 1
0 |Kn(t)−K(t; θ̂)|2dt MCML

Clayton 0.0019568
Gumbel 0.0009416
Frank 0.001669

From the above table, we can see that E is the smallest for the Gumbel copula.
This is another reason which confirms that the Gumbel copula constitutes a good
fit according to this method. In addition, applying the Bootstrap procedure, with
B = 500 at the 5%-significance level, results in:

MCML estimation
Copula Test stat. Crit. val. p-value
Clayton 0.13838 0.159 0.106
Gumbel 0.054426 0.158 0.650
Frank 0.091038 0.136 0.214

All p-values are greater than the significance level 5%. Hence, we cannot reject
any model. The highest p-value is assigned to the Gumbel copula. Moreover, the
magnitude of the p-values agrees with the previous results, i.e. with outcomes of
plots and error E.

Method 4

In this paragraph, we consider the Rosenblatt Transformation Method, to evaluate the
fit introduced in subsection 2.5.5. This method is developed for known or empirical
marginal distributions (in case of the empirical margins, the Bootstrap simulation is
required). In our case, the marginal distributions are somewhat ”between” known and
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empirical. We consider them as known; however, applied to the considered dataset
they lead to ”almost” empirical values. In order to avoid bias in our derivations, we
decide to not implement this test. We believe that other methods of evaluation of
the fit are enough to make conclusions about the fit.

Method 5

In this paragraph, we consider the method of percentile lines. The theory is introduced
in subsection 2.5.6. We derive the percentile lines in the physical and transformed
spaces for MCML estimation for each considered copula model. Recall that the as-
sumption of the prescribed margins FV (v) and FW (w) have tails with infinite support
(contrary to the empirical margins), which makes it possible to judge the model fit
in the extreme region of the original space. We obtain Figures 2.13, 2.14 and 2.15.
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Figure 2.13: Percentile lines (10%, 50%, 90%) in original and transformed spaces for

Clayton copula with the MCML estimator θ̂ = 0.42: We observe that approximately 5 data
points fall above the 90%-percentile line and approximately 10 data points fall below the 10%-percentile line when
we consider the whole dataset. Recall that it should be approximately 9 data points (10% of the dataset) when we
consider the whole dataset.

From these graphs (physical and copula space), we conclude that the Clayton copula
does not reflect the increasing tendency of the dataset. We observe that the increas-
ing behavior of the data is best described by the Gumbel copula; also the number
of points that fall between the percentile lines agrees with the theory in the physical
and copula space.
We observe that it is a bit easier to judge the fit in the extreme region in the original
space than in the copula space. This is due to the fact that the copula function is
focused on the whole transformed dataset. In the original space, we can ”evaluate”
the fit in the extreme area - this is because of the tails of functions FV and FW .
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Figure 2.14: Percentile lines (10%, 50%, 90%) in original and transformed spaces for

Gumbel copula with the MCML estimation θ̂ = 1.44: We observe that approximately 7 data
points fall above the 90%-percentile line and approximately 8 data points fall below the 10%-percentile line when we
consider the whole dataset. Moreover, the percentile lines follow increasing the trend of the data points.
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Figure 2.15: Percentile lines (10%, 50%, 90%) in original and transformed spaces for

Frank copula with the MCML estimation θ̂ = 2.82: We observe that approximately 8 data points
fall above the 90%-percentile line and below the 10%-percentile line when we consider the whole dataset.

Final results

For convenience, we summarize the results of the previous paragraphs in the following
table:

45



MCML estimation

Method 1 The results are difficult to in-
terpret.

Method 2 The plots favor the Clayton
and Gumbel copula. On the
basis of the p-values we can-
not reject any of the considered
copulas. All p-values are very
high.

Method 3 The plots and error E favor the
Gumbel copula. All resulting
p-values are greater than the
significance level 5%. Thus, we
cannot reject any of the consid-
ered copulas.

Method 5 The increasing tendency of the
dataset is best described by the
Gumbel copula.

Generally, the best model selection is very difficult. However, we observe that ”on
the average” the Gumbel copula can be considered as a good model. This copula was
indicated by the graphical methods and was not rejected by the statistical tests. It
is important to notice that the resulting p-values did not lead to the rejection of any
considered copula.
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2.7 Conclusions

A bivariate copula is a cumulative distribution function defined on the unit square.
The main property of the copula is that it describes the margin-free dependency
between two random variables. There are many classes of copulas. In our consid-
erations, we focused on the Archimedean class, which is often applied in hydrology
and finance. Moreover, this class is ”friendly” in studies, because the corresponding
density functions and the derivatives of the copulas are usually easily obtained.
Copulas can be relatively easily extended to the multivariate case. This is due to
Sklar’s theorem, which is formulated in the multivariate context. This is very useful
in applications if one wants to know the relation between more than two random
variables.
A case study is always very helpful in understanding the underlying methodology.
In case of the copula function the statistical inference is large; however, it is usu-
ally poorly described in the literature. Most authors focus on the final result rather
than on the mathematical explanation. There are many goodness-of-fit tests pro-
posed, which often require the Bootstrap method. The main drawback of this kind
of simulation is that it is time consuming especially when we deal with complicated
algorithms for copula sampling and Maximum Likelihood Method of estimation. Of
course the higher the number of repetitions (samples) the better the final result. Thus,
there is a trade-off between the computation time and the quality of our outcomes.
Looking at the percentile lines, it is a bit difficult to judge the fit in the extreme re-
gion of the copula space. The copula space focuses on the whole transformed dataset.
Therefore, if we are interested in the extremes, it is recommended to evaluate the fit
in the physical space, where the picture of the fit in the extreme region becomes more
clear - provided we have information about the tails of distributions FV and FW .
In our case study we considered three bivariate Archimedean copulas: the Clayton,
Gumbel and Frank. We concluded that the Gumbel copula provides the best fit to
the dataset of bivariate observations of water levels and wind speeds. The results are
affected by the choice of the estimation method and marginal distributions.
In conclusion, we have to be careful with the application of goodness-of-fit tests for
copulas and experience is required.
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Chapter 3

Bivariate dependency models

In this chapter, a number of bivariate dependency models will be introduced. A
detailed description of these models can be found in [5] and [7]. The models are
created using a transformation of random variables into the so-called model space.
The transformation, here described for an arbitrary number of variables is as follows:
Let us assume that V1, V2, ..., Vn are random variables with known distribution func-
tions FV1(v1), FV2(v2), ..., FVn(vn), respectively. The transformation of V1, V2, ..., Vn

into the variables X1, X2, ..., Xn is defined as follows:

FVi
(vi) = FXi

(xi) for i = 1, ..., n

⇓
xi = F−1

Xi
(FVi

(vi)) for i = 1, ..., n

where FXi
(xi) is the distribution of variable Xi, for i = 1, ..., n. Moreover, the density

function of vector X = (X1, X2, ..., Xn) is known and is denoted by fX(x1, x2, ..., xn).
We observe that variables X1, ..., Xn are functions of V1, ..., Vn, respectively. Hence,
the above transformation and assumptions entail the formula for the density function
fV (v1, v2, ..., vn) of vector V = (V1, ..., Vn):

fV (v1, ..., vn) =
fX(F−1

X1
(FV1(v1)), ..., F

−1
Xn

(FVn(vn)))
∏n

i=1 fVi
(vi)∏n

i=1 fXi
(F−1

Xi
(FVi

(vi)))
(3.1)

where fXi
(xi) is the density function of Xi and fVi

(vi) is the density function of Vi,
for i = 1, ..., n.
The above transformation is used to construct the joint density function fV (v1, ..., vn)
- if it is unknown. The aim is to derive fV such that dependency in the dataset is suf-
ficiently described. Moreover, the margins of the density fV (v1, ..., vn) are fVi

(vi), for
i = 1, ..., n - this is inherent from the used transformation. The variables X1, ..., Xn,
defined in terms of the joint density function fX(x1, ..., xn), constitute the model.
If the model density fX is appropriately chosen, then density fV describes well the
dependency in the data.
In the following subsection we will consider three bivariate models, namely the Con-
stant Spread Model (Model CS), Variable Spread Model (Model VS) and the Constant
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Symmetric Spread Model (Model CSS). The main purpose of these models is the cre-
ation of a bivariate distribution function, which gives the information of the upper tail
behavior. This will be obtained by a somewhat modified regression analysis. Models
will be supported by pictures, which help to understand the underlying methodology.
Moreover, we will introduce the notion of the tail dependence coefficients and verify
the relation of these models with the Archimedean class of copulas.

Remark 15 Consider the special case FXi
(xi) = xi, for i = 1, ..., n. Hence, the

marginal distributions are uniform. From transformation (3.1) follows:

FV (v1, ..., vn) = FX(FV1(v1), ..., FVn(vn))

so, in this case FX corresponds to the copula of FV .

3.1 Constant Spread Model

In this section, definitions and necessary details concerning the Constant Spread
Model will be provided. We start with the description of the variable X. We assume
that X is a standard exponentially distributed random variable. Hence, its cumulative
distribution and corresponding density function are given as follows:

FX(x) =

{
1− e−x x > 0
0 x ≤ 0

fX(x) =

{
e−x x > 0
0 x ≤ 0

For further purpose, we define a cumulative distribution function Λσ and the corre-
sponding density function λσ. We assume that if random variable T satisfies:

P{T ≤ t} = Λσ(t)

then µ := E(T ) = 0 and σ :=
√

E(T 2) > 0, where E denotes the expected value.
Let us define the ”positive” domain D of the function λσ, on which it takes positive
values:

D = {t|λσ(t) > 0}
We assume that only functions λσ with open and ”unbroken” domain D will be
considered. This domain will be denoted by the open interval (yb, ye), where indexes
b and e indicate the beginning and the ending of the set D, respectively. In addition,
we assume that the density function λσ satisfies the following conditions:

1. λσ is bounded and continuous except maybe for finitely many points of discon-
tinuity.

2. If P{T ≤ t} = Λσ(t) then:

E(eT ) =
∫ ∞

−∞
etλσ(t)dt < ∞ (3.2)
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Remark 16 In [5] another condition is mentioned, which however is not necessary
for proofs in this report.

We note that if Λσ is a normal distribution function with corresponding zero mean
and standard deviation σ > 0, and P{T ≤ t} = Λσ(t), then the following relations
hold:

E(eT ) =
∫ ∞

−∞
et 1√

2πσ2
exp

(
− t2

2σ2

)
dt

= exp

(
σ2

2

)
1√

2πσ2

∫ ∞

−∞
exp

(
−(t− σ2)2

2σ2

)
dt

= exp

(
σ2

2

)
(3.3)

Thus, condition 2 given by (3.2) is satisfied for every value of the parameter σ.
This is not the case if we consider Λσ as an exponential distribution function with
corresponding mean zero and standard deviation σ > 0:

λσ(t) =
1

σ
e−

t+σ
σ for t > −σ

Then, the expectation E(eT ) is infinite for σ ≥ 1. However, for 0 < σ < 1 the
expectation E(eT ) is equal to e−σ/(1 − σ) and thus, condition (3.2) is fulfilled for
every 0 < σ < 1.
Let us define the conditional density of variable Y |X = x as follows:

fY |X=x(y|x) = λσ(y − x− δ) (3.4)

where δ is a real number.
Relation (3.4) provides a formula for the corresponding density function fX,Y (x, y) of
vector (X,Y ) in terms of the function λσ:

fX,Y (x, y) = fX(x)fY |X=x(y|x) = e−xλσ(y − x− δ) for x > 0 (3.5)

The resulting model (X, Y ) is presented in Figure 3.1. The picture helps to visualize
the main idea and origin of this model. The construction of this model entails that
we can easily observe what happens in the upper tail of the distributions. This is
mainly determined by the function λσ and the corresponding standard deviation σ.
Formula (3.4) entails that the conditional density fY |X=x(y|x) is equal to the function
λσ shifted over x + δ. Since the random variable with density λσ has mean 0, we
expect that Y |X = x has mean x + δ. Indeed, this statement is enclosed in the
following proposition:

Proposition 8 If the density of variable Y |X = x is given by:

fY |X=x(y|x) = λσ(y − x− δ) for x > 0

then:
E(Y |X = x) = x + δ for x > 0

50



−1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

6

7

y

x

Model CS−infinite support

f
Y|X=x

(y|x)=λσ(y−x−δ)
y=x+δ

f
X
(x)=e−x

f
Y
(y)

Figure 3.1: The Constant Spread Model.

Proof Using the ”zero mean-property” of density function λσ we obtain the following
calculations:

E(Y |X = x) =
∫ ∞

−∞
yfY |X=x(y|x)dy =

∫ ∞

−∞
yλσ(y − x− δ)dy

=
∫ ∞

−∞
(z + x + δ)λσ(z)dz =

∫ ∞

−∞
zλσ(z)dz +

∫ ∞

−∞
(x + δ)λσ(z)dz

= 0 + (x + δ) = x + δ

Thus, the proof is accomplished.

The last proposition entails that the successive means of variables Y |X = x, for x > 0
follow a linear function x+δ. It is worth noticing that fX(x) and fY |X=x(y|x) describe
completely a dependency model. In fact, knowing these densities is equivalent to
knowing the bivariate density function fX,Y (x, y) (see equation (3.5)).

3.1.1 The distribution function of variable Y

In this section the distribution function FY of variable Y will be discussed. This
distribution can be derived from (3.5) as follows:

FY (y) =
∫ y

−∞

{∫ ∞

0
fX,Y (x, t)dx

}
dt =

∫ y

−∞

{∫ ∞

0
e−xλσ(t− x− δ)dx

}
dt

=
∫ ∞

0

{∫ y

−∞
e−xλσ(t− x− δ)dt

}
dx

=
∫ ∞

0
e−xΛσ(y − x− δ)dx (3.6)
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Defining F̄Y = 1− FY , Λ̄σ = 1− Λσ and substituting t = y − x− δ yields:

F̄Y (y) = 1− FY (y) = 1−
∫ ∞

0
e−xΛσ(y − x− δ)dx =

∫ ∞

0
e−xdx−

∫ ∞

0
e−xΛσ(y − x− δ)dx

=
∫ ∞

0
e−x(1− Λσ(y − x− δ))dx =

∫ ∞

0
e−xΛ̄σ(y − x− δ)dx

= eδ−y
∫ y−δ

−∞
etΛ̄σ(t)dt (3.7)

The relation (3.7) entails that the density fY of variable Y can be expressed as follows:

fY (y) =
d

dy
FY (y) = − d

dy
F̄Y (y) = − d

dy

(
eδ−y

∫ y−δ

−∞
etΛ̄σ(t)dt

)

= −
(
−eδ−y

∫ y−δ

−∞
etΛ̄σ(t)dt + eδ−yey−δΛ̄σ(y − δ)

)

= eδ−y
∫ y−δ

−∞
etΛ̄σ(t)dt− Λ̄σ(y − δ) (3.8)

Using relation (3.7) and the fact that Λ̄σ(y) = 1 for y ≤ yb, we can conclude that
for y ≤ yb + δ, F̄Y (y) = 1 and hence fY (y) = 0. Before we proceed with the next
proposition, we will prove the following lemma:

Lemma 1 If Λσ is a distribution function with corresponding density λσ and T is a
random variable such that P{T ≤ t} = Λσ(t) then:

E(eT ) =
∫ ∞

−∞
etλσ(t)dt =

∫ ∞

−∞
etΛ̄σ(t)dt

where Λ̄σ = 1− Λσ.

Proof Here we only treat the case in which λσ has no discontinuity points. The more
general case is not really more complicated and is treated in [5]. Partial integration
yields: ∫ z

−∞
etΛ̄σ(t)dt = etΛ̄σ(t)|z−∞ +

∫ z

−∞
etλσ(t)dt

To finish the proof, it is enough to show that limz→∞ ezΛ̄σ(z) = 0. Indeed, using de
l’Hopital’s rule we obtain:

lim
z→∞ ezΛ̄σ(z) = lim

z→∞
Λ̄σ(z)

e−z
= lim

t→∞
λσ(t)

e−z
= lim

t→∞λσ(z)ez = 0

where the last step follows from condition (3.2). Hence, the proof is accomplished.

Proposition 9 The condition E(eT ) =
∫∞
−∞ etλσ(t)dt < ∞ is equivalent to:

∫ ∞

−∞
etΛ̄σ(t)dt < ∞
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Proof From Lemma 1 it follows that:

E(eT ) =
∫ ∞

−∞
etλσ(t)dt =

∫ ∞

−∞
etΛ̄σ(t)dt

The assumption E(eT ) < ∞ yields that
∫∞
−∞ etΛ̄σ(t)dt < ∞. Thus, the proof is

accomplished.

Below, we introduce the definition of a strictly convex function and discuss a modifi-
cation of ”Jensen’s inequality”. Compared with the ordinary inequality, the modifi-
cation deals with the strictness of the convexity.

Definition 11 Function f : < → < is called strictly convex, if:

∀x,y∈<∀α∈(0,1)f((1− α)x + αy) < (1− α)f(x) + αf(y)

Proposition 10 Modification of Jensen’s inequality If f is a strictly convex
function, then:

E(f(T )) > f(E(T ))

provided the expectations exist.

Proof Let us assume that T is a random variable with density function λσ. We note
that if function f is strictly convex, then for all x0 ∈ < there exists a linear function
k(x) = ax + b for a, b ∈ < such that:

f(x0) = k(x0) and k(x) = ax + b < f(x) for x 6= x0 (3.9)

Suppose x0 = E(T ). Then, observation (3.9) entails that:
∫ ∞

−∞
(f(x)− ax− b)λσ(x)dx > 0

which leads to:
E(f(T )) > aE(T ) + b = f(E(T ))

Thus, the proof is accomplished.

Let us assume that T is a random variable with density function λσ. We observe that
function f(t) = et, t ∈ < is strictly convex. Hence, applying Proposition 10 results in:

E(eT ) > eE(T ) = 1 (3.10)

since T is a random variable with zero mean. For further use, we introduce the
following quantity:

δ0 = − ln(E(eT )) (3.11)

We observe that thanks to inequality (3.10) quantity δ0 is strictly less than 0. More-
over, if we consider λσ as a normal density function with zero mean and standard
deviation σ, by relation (3.3) we obtain:

δ0 = −σ2

2
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3.1.2 Situation ye < ∞
In this section we will show that in case of a density λσ with finite ye, the distribution
of Y becomes a exactly shifted exponential for sufficiently large values of y. Consider
ye < ∞ and y ≥ ye + δ. Because Λ̄σ(t) = 0 for t > ye, we observe that the function
F̄Y given by relation (3.7) simplifies to:

F̄Y (y) = eδ−y
∫ ye

−∞
etΛ̄σ(t)dt

Then by Lemma 1 for ye < ∞ and y ≥ ye + δ, we obtain:

F̄Y (y) = eδ−y
∫ ye

−∞
etΛ̄σ(t)dt = eδ−yE(eT ) = e−y+δ−δ0

This implies that for large y the random variable Y becomes exponential with scale
parameter 1 and location parameter δ− δ0. If we substitute δ = δ0 then, the location
parameter becomes 0 and Y becomes a standard exponential random variable. Note
that the value ye implicitly depends on the standard deviation σ of variable Y . Larger
values of σ lead to larger values of ye.

3.1.3 Situation ye = ∞
In this subsection the situation ye = ∞ will be discussed. By Lemma 1 the following
relation holds:

lim
y→∞

∫ y−δ

−∞
etΛ̄σ(t)dt = E(eT ) (3.12)

Then, for sufficiently large y, we can write:

∫ y−δ

−∞
etΛ̄σ(t)dt ≈ E(eT )

Combining this result with the exact form of F̄Y , we obtain for large y that:

F̄Y (y) ≈ eδ−yE(eT ) = e−y+δ−δ0 (3.13)

The accuracy of approximation (3.13) is determined by the rate at which the function
on the left hand side of (3.12) approaches E(eT ). This happens faster if the tail of
density λσ decreases more rapidly. If it decreases slowly the usefulness of this approx-
imation might be questionable. Therefore, the quality of this approximation depends
on the type of the considered density function. It is worth noticing that large values
of the standard deviation σ provide a slower decay of the tail than smaller values of
σ.
Clearly, differentiation of relation (3.13) yields an approximation of the density func-
tion fY of variable Y :

fY (y) ≈ e−y+δ−δ0 , for large y (3.14)
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Example 1 λσ-Exponential random variable with mean zero and standard
deviation σ ≥ 1 Let us recall that the exponential random variable with zero mean
and standard deviation σ ≥ 1 does not satisfy condition (3.2). If density function λσ

is given by:
λσ(t) = e−(t+1), for t > −1

then, as can be shown by explicit calculations, the density fY of variable Y is given
as follows:

fY (y) = (y − δ + 1)e−y+δ−1, for y > δ − 1

Definition 12 The gamma density h with shape parameter α and scale parameter
β is given as follows:

h(x; α, β) =
xα−1βαe−βx

Γ(α)
, for x > 0

where function Γ is:

Γ(z) =
∫ ∞

0
tz−1e−tdt

It is easy to check that, if z is a positive integer, then Γ(z) = (z − 1)!.
We observe that:

fY (y) = h(y − δ + 1; 2, 1)

3.1.4 The conditional variable X given Y = y

In the previous section the conditional variable Y given X = x has been discussed,
whereas now, we would like to focus on the opposite case. In order to treat fX|Y =y(x|y),
it is useful to introduce the characteristic function χ of the interval (0,∞):

χ(x) =

{
1 x > 0
0 x ≤ 0

Since the joint density function fX,Y (x, y) is given by relation (3.5), the conditional
density fX|Y =y(x|y) is given by:

fX|Y =y(x|y) =
fX,Y (x, y)

fY (y)
=

e−xχ(x)λσ(y − x− δ)

fY (y)
, for y > yb + δ

We introduce an additional condition for function λσ:

E(TeT ) =
∫ ∞

−∞
tetλσ(t) < ∞ (3.15)

The above restriction is satisfied by a normal distribution with arbitrary standard
deviation σ, as well as by the exponential distribution with standard deviation σ < 1.
In practice the requirements (3.2) and (3.15) mean approximately the same.
We introduce a function γ as follows:

γ(t) = eδ0−tλσ(−t)
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Since the functions eδ0−t, λσ(−t) are nonnegative, using δ0 = − ln E(eT ), it is straight-
forward to check that γ integrates to 1 and hence constitutes a probability density
function. The corresponding average value µγ is then given by:

µγ =
∫ ∞

−∞
tγ(t)dt = −eδ0

∫ ∞

−∞
tetλσ(t)dt

The above result makes clear why condition (3.15) is required.
Moreover, it can be shown that:

µγ < 0

For the proof we refer to [5].
We observe that the joint density fX,Y (x, y) = e−xχ(x)λσ(y−x−δ) can be equivalently
expressed in terms of the function γ, indeed:

fX,Y (x, y) = e−xχ(x)λσ(y − x− δ)

= e−xχ(x)ex+δ−y−δ0γ(x− y + δ)

= e−y+δ−δ0χ(x)γ(x− y + δ) (3.16)

From relation (3.16) we obtain a formula for the conditional density function fX|Y =y(x|y)
in terms of function γ:

fX|Y =y(x|y) =
fX,Y (x, y)

fY (y)
=

e−y+δ−δ0

fY (y)
χ(x)γ(x− y + δ), for y > yb + δ (3.17)

3.1.5 Situation ye < ∞
In this subsection we consider the situation when ye < ∞ and y ≥ ye + δ. Since
F̄Y (y) = e−y+δ−δ0 for ye < ∞ and y ≥ ye + δ we have:

fY (y) = − d

dy
F̄Y (y) = e−y+δ−δ0

Substituting fY into equation (3.17) results in:

fX|Y =y(x|y) = γ(x− y + δ)χ(x), for y ≥ ye + δ, ye < ∞
The assumption x < 0 leads to x − y + δ ≤ x − ye < −ye. Then, the definition of
function γ entails that γ(x − y + δ) = 0. Thus, the presence of the characteristic
function χ is redundant and we can write:

fX|Y =y(x|y) = γ(x− y + δ), for y ≥ ye + δ, ye < ∞
This implies that for y ≥ ye + δ the average values that correspond to density
fX|Y =y(x|y) lie on a straight line. Indeed, for y ≥ ye + δ we obtain the following
calculations:

E(X|Y = y) =
∫ ∞

0
xfX|Y =y(x|y)dx

=
∫ ∞

0
xγ(x− y + δ)dx =

∫ ∞

−y−δ
tγ(t)dt + y − δ

= µγ + y − δ
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For y < ye + δ the above relation is not satisfied.
Let us recall that E(Y |X = x) = x + δ. Then, we observe that E(Y |X = x) and
E(X|Y = y) are parallel and the distance between them is |µγ|, for y ≥ ye + δ.

3.1.6 Situation ye = ∞
In this subsection we assume that ye = ∞. Let us recall that in this case the density
function fY of variable Y can be approximated by the right-hand side of relation
(3.14). Using this fact and the observation (3.17) results in the approximation of the
conditional density function fX|Y =y(x|y):

fX|Y =y(x|y) ≈ γ(x− y + δ)χ(x), for large y (3.18)

We note that for x < 0 and for large values of y the function γ(x − y + δ) becomes
close to zero. Therefore, the term χ can be safely omitted. Hence, we can write:

fX|Y =y(x|y) ≈ γ(x− y + δ), for large y (3.19)

In fact, the relation (3.19) is more practical than result (3.18), because the right-hand
side of relation (3.18) is not a density function. The integration over all x values does
not appear to be 1. In order to show this we will first prove that fY (y) < e−y+δ−δ0 .
Indeed, using relations (3.8) and (3.11) we obtain:

fY (y) = eδ−y
∫ y−δ

−∞
etΛ̄σ(t)dt− Λ̄σ(y − δ)

≤ eδ−y
∫ ∞

−∞
etΛ̄σ(t)dt− Λ̄σ(y − δ)

= eδ−yE(eT )− Λ̄σ(y − δ) = eδ−y−δ0 − Λ̄σ(y − δ)

< eδ−y−δ0

The above result and relation (3.16) yield:

∫ ∞

0
χ(x)γ(x− y + δ)dx =

∫ ∞

0

fY (y)fX|Y =y(x|y)

e−y+δ−δ0
dx =

fY (y)

e−y+δ−δ0

∫ ∞

0
fX|Y =y(x|y)dx

=
fY (y)

e−y+δ−δ0
< 1

Due to approximation (3.19), we obtain the approximation of E(X|Y = y), for large
values of y:

E(X|Y = y) ≈ µγ + y − δ

Hence, for large y the average values tend to lay on a straight line, what is consistent
with the situation ye < ∞.

Example 2 Because of the importance of the normal density in applications, we
consider the situation in which λσ is a normal density function with zero mean and
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standard deviation σ > 0. In this case δ0 takes the value −σ2/2 and the function γ,
as can be verified, is given by:

γ(t) =
1

σ
√

2π
exp

(
−(t + σ2)2

2σ2

)

We note that γ is a normal density with mean µγ = −σ2 and standard deviation σ.
Therefore, γ and λσ belong to the same class of density functions. In general, this
will not be the case. The above result for function γ and approximation (3.14) leads
to:

f(x|y) ≈ 1

σ
√

2π
exp

(
−−[x− (y − δ − σ2)]2

2σ2

)
, for large y

Hence, for large values of y the density f(x|y) tends to be a normal density with mean
(y − δ − σ2) and standard deviation σ.
In applications, δ equal to δ0 is usually chosen. In this case the function g becomes
asymptotically standard exponential and E(X|Y = y) ≈ y− δ−σ2 = y−σ2/2. Thus,
the line E(X|Y = y) tends to lie above the line y = x for large values of y, whereas,
the function E(Y |X = x) = x− σ2/2 lies below the line y = x.

3.1.7 The role of parameter δ

In this subsection, we investigate the role of parameter δ. Consider two Constant
Spread Models:

1. fX,Y (x, y; σ, δ1) with transformation: FV (v) = FX(x), FW (w) = FY (y; σ, δ1)︸ ︷︷ ︸
System 1

2. fX,Y (x, y; σ, δ2) with transformation: FV (v) = FX(x), FW (w) = FY (y; σ, δ2)︸ ︷︷ ︸
System 2

Solving the Systems 1 and 2 with respect to x and y we obtain:

1. For System 1: x(v) = F−1
X (FV (v)) and y1(w) = F−1

Y (FW (w); δ1)

2. For System 2: x(v) = F−1
X (FV (v)) and y2(w) = F−1

Y (FW (w); δ2)

Since y1(w) and y2(w) must satisfy the second equations of Systems 1 and 2, we
obtain:

FW (w) = FY (y1(w); δ1) = FY (y2(w); δ2)

FW (w) =
∫ ∞

0
e−tλσ(y1(w)− t− δ1)dt =

∫ ∞

0
e−tλσ(y2(w)− t− δ2)dt

Then y1(w) − δ1 = y2(w) − δ2. Using this result and definitions of fX,Y (x, y), fX(x)
and fY (y) we obtain:

fV,W (v, w; σ, δ1) =
e−x(v)λσ(y1(w)− x(v)− δ1)fV (v)fW (w)

e−x(v)
∫∞
0 e−tλσ(y1(w)− t− δ1)dt

=
e−x(v)λσ(y2(w)− x(v)− δ2)fV (v)fW (w)

e−x(v)
∫∞
0 e−tλσ(y2(w)− t− δ2)dt

= fV,W (v, w; σ, δ2)
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Hence, the Constant Spread Model in the original space does not depend on the
value of parameter δ - it is invariant under the choice of δ. Therefore, δ can be safely
omitted, for simplicity we propose to assume δ = 0.

3.2 Variable Spread Model

In the previous section we have discussed the Constant Spread Model, where the
spread of the variable Y |X = x stays constant for all x > 0. In this section, a more
general model will be considered. This model allows for changes of the spread of
variable Y |X = x for all values of x > 0. It is called the Variable Spread Model. This
model was first considered in [6].
We assume that X and Y are two random variables with cumulative distribution
functions FX(x) and FY (y), respectively. The random variable X is standard expo-
nentially distributed, that is:

FX(x) = 1− e−x for x ≥ 0

Hence, the corresponding density function is given by:

fX(x) = e−x for x ≥ 0

It is assumed that the conditional density function fY |X=x(y|x) of variable Y |X = x
takes the following form:

fY |X=x(y|x) = λσ(x)(y − x− δ)

where σ(x) is a strictly positive function defined on the interval [0,∞), δ is some cho-
sen constant, and λσ(t) is a density function with mean zero and standard deviation
σ > 0.
We note that the above assumptions characterize the whole model, since knowing
them, the joint density of variables X and Y can be derived:

fX,Y (x, y) = fX(x)fY |X=x(y|x) = e−xλσ(x)(y − x− δ)

The construction of this model is illustrated in Figure 3.2. The picture helps us to
understand the idea behind this model. Moreover, due to the construction we can
easily observe what occurs in the upper tail of the distribution. This is determined
by the form of the ”spread function” σ(x) and density λσ(x), for x ∈ [0,∞).
The distribution function FY (y) of variable Y can be calculated as follows:

FY (y) =
∫ y

−∞
fX,Y (x, t)dt =

∫ ∞

0
e−xΛσ(x)(y − x− δ)dx

where Λσ(t) is the cumulative distribution function that corresponds to λσ.
Moreover, as in case of the Constant Spread Model the parameter δ is redundant,
and in the applications in this report we put δ = 0. Moreover, in the case study we
will consider a normal distribution function for λσ(t).
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Figure 3.2: The Variable Spread Model.

3.3 Constant Symmetric Spread Model

In this section, the Constant Symmetric Spread Model will be introduced. It was
developed by Duits and van Noortwijk (see [4]). Moreover, this model was also
discussed in [5].
Assume that X and Y are two random variables with distribution functions FX(x)
and FY (y), respectively. Suppose that Λσ(t) is a cumulative distribution function of a
normally distributed random variable with mean zero and standard deviation σ > 0.
Let us define the quantity s0 as follows:

s0 = ln{2(1− Λ2/σ(1))} ≤ 0

and for x ≥ 0:

µ(x) = x− σ2

2

A(x) = 1− Λσ(s0 − µ(x))

The model is obtained by defining fX(x) and fY |X=x(y|x). The density function fX(x)
of variable X is given by:

fX(x) = A(x)e−x, x ≥ s0

We note that the choice of s0 indeed implies that fX(x) integrates to 1, for x ≥ s0

(this can be shown using partial integration).
The conditional density fY |X=x(y|x) of variable Y |X = x is:

fY |X=x(y|x) =
1

A(x)

1

σ
√

2π
exp{−(y − µ(x))2/2σ2}, x ≥ s0, y ≥ s0
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This information is enough to build the complete model, since knowing fX(x) and
fY |X=x(y|x), is equivalent with having fX,Y (x, y). Figure 3.3 illustrates this model.
Observe that we get an impression of the tail behavior of the vector (X, Y ), due to
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Figure 3.3: The Constant Symmetric Spread Model.

the definition of the conditional density function fY |X=x(y|x).

Remark 17 Note that function A(x) → 1 as x →∞. Hence, the random variable X
is asymptotically standard exponential. Moreover, the formula for fY |X=x(y|x) yields
that Y |X = x can be considered as a left-truncated modified normal variable.

Combining expressions for fY |X=x(y|x) and fX(x) leads to the density function fY (y)
of variable Y . As can be shown in a straightforward way:

fY (y) =
∫ ∞

s0

fX(x)fY |X=x(y|x)dx = A(y)e−y, y ≥ s0

We note that density fY (y) has the same functional form as fX(x). Thus, the random
variable Y is asymptotically standard exponentially distributed as well. Moreover,
it can be shown that fX|Y =y(x|y) is the same as fY |X=x(y|x) (in case x and y are
exchanged). It confirms that the model is symmetric with respect to X and Y .

Remark 18 The symmetry entails that FX = FY as well as F−1
X = F−1

Y .

3.4 Tail dependence

In this section the definitions and propositions concerning the so-called tail depen-
dence coefficients will be introduced. The tail dependence coefficients provide some
kind of measure of the dependence in the upper and lower tails of the bivariate dis-
tribution. The tail dependence coefficients are defined in the bivariate case. More
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information about this theory can be found in [14].
The tail dependence coefficients will be computed for the Constant Spread Model,
the Variable Spread Model and the Constant Symmetric Spread Model.

Definition 13 Let (X, Y ) be a bivariate vector of continuous random variables with
marginal distribution functions FX and FY . The lower tail dependence coefficient is
defined as follows:

λL = lim
u↓0

P{Y ≤ F−1
Y (u)|X ≤ F−1

X (u)} = lim
u↓0

P{X ≤ F−1
X (u)|Y ≤ F−1

Y (u)}

provided that this limit exists.

We say that X and Y are lower tail dependent if λL ∈ (0, 1] and lower tail independent
if λL = 0. Lower tail dependence arises when there is a positive probability of small
outliers occurring jointly.

Definition 14 Let (X, Y ) be a bivariate vector of continuous random variables with
marginal distribution functions FX and FY . The upper tail dependence coefficient is
defined as follows:

λU = lim
u↑1

P{Y > F−1
Y (u)|X > F−1

X (u)} = lim
u↑1

P{X > F−1
X (u)|Y > F−1

Y (u)}

provided that this limit exists.

We say that X and Y are upper tail dependent if λL ∈ (0, 1] and upper tail indepen-
dent if λU = 0. Upper tail dependence arises when there is a positive probability of
large outliers occurring jointly.

Proposition 11 Let (X,Y ) be a bivariate vector of continuous random variables
with marginal distribution functions FX and FY and the associated copula C(u, v),
such that it is differentiable with respect to u and v. Then the lower tail dependence
coefficient is given as follows:

λL = lim
u↓0

(P{Y ≤ F−1
Y (u)|X = F−1

X (u)}+ P{X ≤ F−1
X (u)|Y = F−1

Y (u)}) (3.20)

whereas the upper tail dependence coefficient is:

λU = lim
u↑1

(P{Y > F−1
Y (u)|X = F−1

X (u)}+ P{X > F−1
X (u)|Y = F−1

Y (u)}) (3.21)

Provided that the above limits exist.

Proof Let C denote the copula corresponding to (X,Y ). Applying the definition of
copula function and de l’Hopital’s rule we obtain:

λL = lim
u↓0

P{Y ≤ F−1
Y (u)|X ≤ F−1

X (u)}

= lim
u↓0

P{X ≤ F−1
X (u), Y ≤ F−1

Y (u)}
P{X ≤ F−1

X (u)}
= lim

u↓0
C(u, u)

u

= lim
u↓0

(
∂

∂s
C(s, t)|s=t=u +

∂

∂t
C(s, t)|s=t=u

)
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λU = lim
u↑1

P{Y > F−1
Y (u)|X > F−1

X (u)}

= lim
u↑1

P{X > F−1
X (u), Y > F−1

Y (u)}
P{X > F−1

X (u)}
= lim

u↑1
1− P{X ≤ F−1

X (u)} − P{Y ≤ F−1
Y (u)}+ P{X ≤ F−1

X (u), Y ≤ F−1
Y (u)}

1− P{X ≤ F−1
X (u)}

= lim
u↑1

1− 2u + C(u, u)

1− u

= lim
u↑1

(
2− ∂

∂s
C(s, t)|s=t=u − ∂

∂t
C(s, t)|s=t=u

)

We note that:

P{Y ≤ F−1
Y (u)|X = F−1

X (u)} = P{FY (Y ) ≤ u|FX(X) = u}
=

P{FX(X) = u, FY (Y ) ≤ u}
P{F (X) = u}

= lim
∆u↓0

P{u ≤ FX(X) < u + ∆u, FY (Y ) ≤ u}
P{u ≤ FX(X) < u + ∆u}

= lim
∆u↓0

P{FX(X) < u + ∆u, FY (Y ) ≤ u} − P{FX(X) ≤ u, FY (Y ) ≤ u}
P{FX(X) < u + ∆u} − P{FX(X) ≤ u}

= lim
∆u↓0

C(u + ∆u, u)− C(u, u)

∆u

=
∂

∂s
C(s, t)|(s,t)=(u,u)

analogously:

P{X ≤ F−1
X (u)|Y = F−1

Y (u)} =
∂

∂t
C(s, t)|(s,t)=(u,u)

Rearranging the expressions above, we obtain:

λL = lim
u↓0

(P{Y ≤ F−1
Y (u)|X = F−1

X (u)}+ P{X ≤ F−1
X (u)|Y = F−1

Y (u)})

λU = lim
u↑1

(P{Y > F−1
Y (u)|X = F−1

X (u)}+ P{X > F−1
X (u)|Y = F−1

Y (u)})

Hence, the proof is accomplished.

Corollary 1 If P{X ≤ x, Y ≤ y} = P{X ≤ y, Y ≤ x} (symmetric) then Proposi-
tion 11 is equivalent with:

λL = lim
u↓0

2P{Y ≤ F−1
X (u)|X = F−1

X (u)}

and
λU = lim

u↑1
2P{Y > F−1

X (u)|X = F−1
X (u)}
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The symmetry implies that C(s, t) = C(t, s) and hence:

∂

∂s
C(s, t)|(s,t)=(u,u) =

∂

∂s
C(t, s)|(s,t)=(u,u) =

∂

∂t
C(s, t)|(s,t)=(u,u)

The corollary then easily follows from the proof of Proposition 11.

Remark 19 It is well known that if the limits limx→c f(x) and limx→c g(x) exist then:

lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x)

If Proposition 11 is applied for the upper tail dependence coefficient, we will usually
start with splitting the limit (3.21). As we will find out in all considered cases the
limits:

lim
u↑1

P{Y > F−1
Y (u)|X = F−1

X (u)}
lim
u↑1

P{X > F−1
X (u)|Y = F−1

Y (u)}

exist.

3.4.1 The tail dependence for Constant Spread Model with
finite endpoints

In this subsection, the tail dependence coefficients for the Constant Spread Model
with finite endpoints will be derived. Let us denote x = F−1

X (u) and y = F−1
Y (u) for

u ∈ [0, 1]. We observe that x ↓ 0 and y ↓ δ+yb as u ↓ 0. We start with the calculation
of the probability:

P{Y ≤ y|X ≤ x} =
P{Y ≤ y,X ≤ x}

P{X ≤ x} =

∫ x
0

{∫ y
w+δ+yb

e−wλσ(v − w − δ)dv
}

dw

1− e−x

=

∫ x
0

{∫ y−w−δ
yb

e−wλσ(z)dz
}

dw

1− e−x
≤

∫ x
0 e−wdw

∫ y−δ
yb

λσ(z)dz

1− e−x

=
(1− e−x)

∫ y−δ
yb

λσ(z)dz

1− e−x
=

∫ y−δ

yb

λσ(z)dz

Taking the limit with respect to u ↓ 0 yields that the lower tail dependence coefficient
λL is:

λL = lim
u↓0

P{Y ≤ y|X ≤ x} = 0

Thus, we can conclude that lower tail independence occurs.
In order to compute the upper tail dependence coefficient λU , we apply Proposition
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11. Let us first consider the following limit, where it is understood that x and y
depend on u:

lim
u↑1

P{X > x|Y = y} = lim
u↑1

∫ y−δ−yb

x
fX|Y =y(k|y)dk

= lim
u↑1

1

fY (y)

∫ y−δ−yb

x
e−kλσ(y − k − δ)dk

= lim
u↑1

e−y+δ

fY (y)

∫ y−x−δ

yb

ezλσ(z)dz

Since x → ∞ and y → ∞ as u ↑ 1, we consider this limit for y ≥ ye + δ, where the
function fY (y) becomes a shifted exponential, thus:

lim
u↑1

P{X > x|Y = y} = lim
u↑1

e−y+δ

e−y+δ−δ0

∫ y−x−δ

yb

ezλσ(z)dz

= lim
u↑1

1

e−δ0

∫ y−x−δ

yb

ezλσ(z)dz

To calculate the above limit, first observe that for y ≥ ye + δ:

lim
u↑1

(y − x− δ) = lim
u↑1

(F−1
Y (u)− F−1

X (u)− δ)

= lim
u↑1

(δ − δ0 − ln(1− u) + ln(1− u)− δ) = −δ0

Using this result, we obtain that:

lim
u↑1

P{X > x|Y = y} = eδ0

∫ −δ0

yb

ezλσ(z)dz (3.22)

An analogical procedure yields:

lim
u↑1

P{Y > y|X = x} = lim
u↑1

∫ x+δ+ye

y
fY |X=x(k|x)dk

= lim
u↑1

1

fX(x)

∫ x+δ+ye

y
e−xλσ(k − x− δ)dk

= lim
u↑1

1

e−x

∫ x+δ+ye

y
e−xλσ(k − x− δ)dk

= lim
u↑1

∫ x+δ+ye

y
λσ(k − x− δ)dk = lim

u↑1

∫ ye

y−x−δ
λσ(z)dz

=
∫ ye

limu↑1(y−x−δ)
λσ(z)dz =

∫ ye

−δ0
λσ(z)dz (3.23)

Adding (3.22) and (3.23) entails that the upper tail dependence coefficient λU for the
considered model is:

λU = eδ0

∫ −δ0

yb

ezλσ(z)dz +
∫ ye

−δ0
λσ(z)dz
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The upper tail dependence coefficient λU should (from its definition) be smaller or
equal to 1. Indeed, recalling that δ0 < 0, we conclude that eδ0+z < 1 for z ∈ [yb,−δ0).
Thus, the upper tail dependence coefficient can be bounded by:

λU <
∫ −δ0

yb

λσ(z)dz +
∫ ye

−δ0
λσ(z)dz = 1

where we have used the fact that λσ is a density function and takes only positive
values on the interval [yb, ye].

3.4.2 The tail dependence for Constant Spread Model with
infinite endpoints

In this subsection the lower and upper tail dependence coefficients for the Constant
Spread Model with the assumption of the infinite endpoints will be derived. For
simplicity we denote x = F−1

X (u) and y = F−1
Y (u). We observe that x ↓ 0 and

y ↓ −∞ as u ↓ 0. First, we consider the following probability:

P{Y ≤ y|X ≤ x} =
P{X ≤ x, Y ≤ y}

P{X ≤ x} =

∫ x
0

{∫ y
−∞ e−uλσ(v − u− δ)dv

}
du

1− e−x

=

∫ x
0

{∫ y−u−δ
−∞ e−uλσ(z)dz

}
du

1− e−x
≤

∫ x
0

{∫ y−δ
−∞ e−uλσ(z)dz

}
du

1− e−x

=
(1− e−x)

∫ y−δ
−∞ λσ(z)dz

1− e−x
=

∫ y−δ

−∞
λσ(z)dz

Taking the limit with respect to u ↓ 0 results in:

λL = lim
u↓0

P{Y ≤ y|X ≤ x} = 0

Hence, we conclude that lower tail independence occurs.
In order to derive the upper tail dependence coefficient λU we recall Proposition 11.
First, we compute the following probability:

P{Y > y|X = x} = 1− Λσ(y − x− δ) (3.24)

For the probability P{X > x|Y = y} we obtain:

P{X > x|Y = y} =
∫ ∞

x
fX|Y =y(k|y)dk =

∫∞
x e−kλσ(y − k − δ)dk∫∞
0 e−kλσ(y − k − δ)dk

=

∫ y−x−δ
−∞ ez−y+δλσ(z)dz
∫ y−δ
−∞ ez−y+δλσ(z)dz

=

∫ y−x−δ
−∞ ezλσ(z)dz
∫ y−δ
−∞ ezλσ(z)dz

(3.25)

The calculation of the upper tail dependence coefficient λU requires the following
proposition:
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Proposition 12 Under the assumptions of the Constant Spread Model the following
relation holds:

lim
u↑1

(y − x) = lim
u↑1
{F−1

Y (u)− F−1
X (u)} = ln(eδE(eZ))

In order to prove Proposition 12, we apply Lemma 2, which is given as follows:

Lemma 2 Under the assumption of the Constant Spread Model the following relation
is satisfied:

lim
y→∞

1− FY (y)

e−y
= eδE(eZ)

Proof of Lemma 2 We observe that limy→∞(1 − FY (y)) = 0 and limy→∞ e−y = 0.
Hence, using de l’Hospital’s rule we obtain:

lim
y→∞

1− FY (y)

e−y
= lim

y→∞
f(y)

e−y

= lim
y→∞

∫∞
0 e−xλσ(y − x− δ)dx

e−y

= lim
y→∞

∫ y−δ
−∞ ez−y+δλσ(z)dz

e−y

= eδ lim
y→∞

∫ y−δ

−∞
ezλσ(z)dz = eδE(eZ)

Hence, the proof is complete.

Proof of Proposition 12 We express the limit limu↑1{F−1
Y (u) − F−1

X (u)} in terms
of variable y as follows:

F−1
Y (u) = y ⇒ u = FY (y)

then:
F−1

X (u) = − ln(1− u) = − ln(1− FY (y))

Hence, we can write:

lim
u↑1
{F−1

Y (u)− F−1
X (u)} = lim

y→∞{y + ln(1− FY (y))}
= lim

y→∞{− ln(e−y) + ln(1− FY (y))}

= lim
y→∞ ln

(
1− FY (y)

e−y

)
(3.26)

= ln(eδE(eZ)) (3.27)

where the equality between equations (3.26) and (3.27) follows from Lemma 2. Thus,
the proof is finished.
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Adding results (3.24) and (3.25), taking the limit with respect to u ↑ 1 and applying
Proposition 12 entail that the upper tail dependence coefficient λU is:

λU = 1− Λσ(ln(E(eZ))) +

∫ ln(E(eZ))
−∞ ezλσ(z)dz

E(eZ)
(3.28)

Example 3 Consider λσ as a normal density function with the corresponding zero
mean and standard deviation σ > 0. In this case:

E(eZ) = eσ2/2

Then, as can be shown by a straightforward calculation, the upper tail dependence
coefficient (given by the general formula (3.28)) diminishes to:

λU = 2(1− Φ(σ/2)) = 2Φ(−σ/2)

where Φ(t) = Λσ(t/σ).

We note that the upper tail dependence coefficient given by (3.28) is less than or
equal to 1. Observe that λU can be written as follows:

λU =
∫ ∞

ln(E(eZ))
λσ(z)dz +

∫ ln(E(eZ))

−∞
e− ln(E(eZ))+zλσ(z)dz (3.29)

Hence, if z ∈ (−∞, ln(E(eZ))) then e− ln(E(eZ))+z < 1. Thus, we conclude that the
upper tail dependence coefficient can be bounded by:

λU <
∫ ∞

ln(E(eZ))
λσ(z)dz +

∫ ln(E(eZ))

−∞
λσ(z)dz = 1

where we have used the fact that λσ is a strictly positive density function on the real
line.

3.4.3 Tail dependence for the Constant Symmetric Spread
Model

In this subsection the tail dependence coefficients for the Constant Symmetric Spread
Model will be derived. The symmetry property of this model immediately entails the
application of Corollary 1. Let us denote x = F−1

X (u) for u ∈ [0, 1]. We observe that
x ↓ s0 as u ↓ 0. Recall the definitions of fY |X=x(y|x) and A(x) from section 3.3 and
compute the following probability:

2P{Y ≤ x|X = x} = 2
∫ x

s0

fY |X=x(k|x)dk

=
2

A(x)

∫ x

s0

1√
2πσ2

exp{−(k − µ(x))2/2σ2}dk

=
2

A(x)

∫ x−µ(x)
σ

s0−µ(x)

σ

1√
2π

e−
z2

2 dz

= 2
Φ((x− µ(x))/σ)− Φ((s0 − µ(x))/σ)

A(x)

= 2
Φ((x− µ(x))/σ)− Φ((s0 − µ(x))/σ)

1− Φ((s0 − µ(x))/σ)
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Recalling that µ(x) = x− σ2/2 and taking the limit with respect to u ↓ 0 entail that
the lower tail dependence coefficient λL is:

λL = lim
u↓0

2P{Y ≤ x|X = x} = 0

Thus, we can conclude that lower tail independence occurs.
To deal with the upper tail dependence coefficient λU , note that x → ∞ as u ↑ 1.
Hence, using Corollary 1 we obtain:

λU = lim
u↑1

2(1− P{Y ≤ x|X = x})

= lim
u↑1

2

(
1− Φ((x− µ(x))/σ)− Φ((s0 − µ(x))/σ)

1− Φ((s0 − µ(x))/σ)

)

= 2(1− Φ(σ/2)) = 2Φ(−σ/2)

Remark 20 Observe that the upper tail dependence coefficient for the Constant Sym-
metric Spread Model is the same as in case of the Constant Spread Model with the
assumption of λσ as a normal density function with zero mean and standard deviation
σ > 0.

3.4.4 Tail dependence for a special case of the Variable Spread
Model

In this subsection the tail dependence coefficients for a special case of the Variable
Spread Model will be investigated. We assume that λσ is the normal density function
with mean zero and standard deviation σ > 0. In addition, we assume that the
”spread function” σ(x) : [0,∞) → <, which plays a crucial role in this model, satisfies
the following conditions:

1. σ(x) is an increasing function

2. σ(0) = σ0 > 0

3. limx→∞ σ(x) = σ1 < ∞
Based on the previous results we expect that λL = 0 and λU = 2Φ(−σ1/2). This
is reasonable, since as σ(x) → σ1, the Variable Spread Model tends to the Constant
Spread Model with the standard deviation σ1. It is relatively easy to show that
λL = 0; however, a mathematically rigorous proof for the statement concerning λU is
more difficult.

Proposition 13 Under the above assumptions the lower and upper tail dependence
coefficients are:

λL = 0 and λU = 2Φ
(
−σ1

2

)
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Proof Let us denote x = F−1
X (u) and y = F−1

Y (u) for u ∈ [0, 1]. We observe that
y → −∞ as u ↓ 0. Consider the following probability:

P{Y ≤ y|X ≤ x} =

∫ x
0

{∫ y
−∞ e−uλσ(u)(v − u− δ)dv

}
du

1− e−x
=

∫ x
0

{
∫ y−u−δ

σ(u)

−∞ e−uλ1(z)dz

}
du

1− e−x

≤ (1− e−x)
∫ y−δ

σ0−∞ λ1(z)dz

1− e−x
=

∫ y−δ
σ0

−∞
λ1(z)dz

where we have used the fact that σ(x) is an increasing function with σ(0) = σ0 > 0.
Taking the limit with respect to u ↓ 0 results in:

λL = lim
u↓0

P{Y ≤ y|X ≤ x} = 0 (3.30)

Thus, we conclude that lower tail independence occurs.
In order to derive the upper tail dependence coefficient λU we apply Proposition 11.
Moreover, the following theorem is needed. It is known as Lebesgue’s dominated
convergence theorem and it is stated in terms of the Lebesgue integrals. We note
that implicitly all integrals in this section are in the sense of Lebesgue.

Theorem 2 Lebesgue’s dominated convergence theorem If |fn| ≤ g almost
everywhere, where g is integrable, and if fn → f almost everywhere, then f and the
fn are integrable and:

lim
n→∞

∫
fn(x)dx =

∫
f(x)dx

For a proof, we refer to [1].
Denote x = F−1

X (u) and y = F−1
Y (u), for u ∈ [0, 1]. We want to apply Proposition

11. Let us compute the following limit (further it will appear that this limit indeed
exists):

lim
u↑1

P{Y > y|X = x} = lim
u↑1

∫ ∞

y
fY |X=x(k|x)dk

= lim
u↑1

1

e−x

∫ ∞

y
e−xλσ(x)(k − x− δ)dk

= lim
u↑1

∫ ∞
y−x−δ

σ(x)

λ1(z)dz (3.31)

This limit exists if the following limit exists:

lim
u↑1

y − x− δ

σ(x)
(3.32)

where x = − ln(1− u) and y = F−1
Y (u). We can write:

u = FY (y) and x = − ln[1− FY (y)]
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Moreover, we note that y →∞ as u ↑ 1. Then we obtain that limit (3.32) is equivalent
with:

lim
y→∞

y + ln[1− FY (y)]− δ

σ(− ln[1− FY (y)])
= lim

y→∞
ln

(
1−FY (y)

e−y

)
− δ

σ(− ln[1− FY (y)])

Consider the numerator of the above expression. Using de l’Hopital’s rule, we obtain:

lim
y→∞

1− FY (y)

e−y
= lim

y→∞

∫∞
0 e−zλσ(z)(y − z − δ)dz

e−y
= eδ lim

y→∞

∫ y−δ

−∞
ekλσ(y−k−δ)(k)dk

= eδ lim
y→∞

∫ ∞

−∞
1(−∞,y−δ)(k)ekλσ(y−k−δ)(k)dk

The derivation of the above limit requires some careful steps. Let us first consider
the following function:

g(k) =
ek

σ0

√
2π

e
− k2

2σ2
1

We note that g is nonnegative and Lebesgue integrable. Now, consider a sequence yn

such that yn →∞ as n →∞, and define:

fn(k) = 1(−∞,yn−δ)(k)ekλσ(yn−k−δ)(k)

Due to the conditions imposed on the ”spread function” σ(x), we can derive the
following limit:

|fn(k)| ≤ g(k)

Moreover, we note that ∀k ∈ < the following relation holds:

lim
n→∞ fn(k) = ekλσ1(k) (3.33)

Then from Lebesgue’s dominated convergence theorem we obtain:

lim
n→∞

1− FY (yn)

e−yn
= eδ lim

n→∞

∫ ∞

−∞
fn(k)dk = eδ

∫ ∞

−∞
ekλσ1(k)dk = eδE(eK)

Since this limit exists and gives the same answer for every yn such that yn → ∞ as
n →∞, we conclude that:

lim
y→∞

1− FY (y)

e−y
= eδE(eK)

So, the limit (3.32) is:

lim
y→∞

y + ln[1− FY (y)]− δ

σ(− ln[1− FY (y)])
=

ln(eδE(eK))− δ

σ1

=
ln(E(eK))

σ1
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Thus, the limit (3.31) is equal to:

lim
u↑1

P{Y > y|X = x} =
∫ ∞

ln(E(eK ))
σ1

λ1(z)dz (3.34)

Next, to apply Proposition 11, let us compute the following probability:

P{X > x|Y = y} =

∫∞
x e−kλσ(k)(y − k − δ)dk∫∞
0 e−kλσ(k)(y − k − δ)dk

=

∫ y−x−δ
−∞ ez−y+δλσ(y−z−δ)(z)dz
∫ y−δ
−∞ ez−y+δλσ(y−z−δ)(z)dz

=

∫∞
−∞ 1(−∞,y−x−δ)e

zλσ(y−z−δ)(z)dz∫∞
−∞ 1(−∞,y−δ)ezλσ(y−z−δ)(z)dz

(3.35)

Again, we observe that Lebesgue’s dominated convergence theorem can be applied.
The reasoning is analogous as before and will not be repeated. Thus, taking the limit
with respect to u ↑ 1 yields:

lim
u↑1

P{X > x|Y = y} =

∫ ln(E(eK))
−∞ ezλσ1(z)dz∫∞

−∞ ezλσ1(z)dz
(3.36)

Adding results (3.34) and (3.36), from Proposition 11 we obtain:

λU =
∫ ∞

ln(E(eK ))
σ1

λ1(z)dz +

∫ ln(E(eK))
−∞ ezλσ1(z)dz∫∞

−∞ ezλσ1(z)dz
(3.37)

Since λσ is a normal density function with mean zero and standard deviation σ > 0,
the upper tail dependence coefficient λU simplifies to:

λU = 2(1− Φ(σ1/2)) = 2Φ(−σ1/2)

where we have used the result (3.3). Thus, the proof is accomplished.

Remark 21 In the proof of (3.30) and (3.37) we assumed λσ to be a normal den-
sity. It seems likely that these results will also hold for more general densities.
Such an extension has not been studied yet. Moreover, we intuitively expect that
if limx→∞ σ(x) = ∞, then the upper tail dependence coefficient is 0 (for λσ normal
as well as more general).

3.5 Models and the related Copulas

The purpose of this section is to derive the copula functions that correspond to the
discussed models. Moreover, we are interested whether the resulting copulas belong
to the Archimedean class.
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3.5.1 The Constant Spread Model and the related Copula

In this subsection, the copula function that corresponds to the Constant Spread
Model will be calculated. Using the definition of the copula function for this model
we obtain:

C(u, v) = P{X ≤ F−1
X (u), Y ≤ F−1

Y (v)}
=

∫ F−1
X (u)

0

{∫ F−1
Y (v)

−∞
e−sλσ(t− s− δ)dt

}
ds

=
∫ F−1

X (u)

0
e−sΛσ(F−1

Y (v)− s− δ)ds

For the density c(u, v) we obtain in a standard way the formula:

c(u, v) =
fX,Y (x, y)

fX(x)fY (y)

∣∣∣x=F−1
X (u),y=F−1

Y (u)

Hence, denoting x = F−1
X (u) and y = F−1

Y (v), we obtain:

c(u, v) =
fX,Y (x, y)

fX(x)fY (y)
=

e−xλσ(y − x− δ)

e−x
∫∞
0 e−tλσ(y − t− δ)dt

=
λσ(y − x− δ)∫∞

0 e−tλσ(y − t− δ)dt

Figure 3.4 pictures the density c and its contour plot under the assumption that λσ is
a normal density function with mean zero and standard deviation σ = 2. Moreover,
we assume that δ = 0.

3.5.2 The Constant Symmetric Spread Model and the re-
lated Copula

In this subsection the copula function for the Constant Symmetric Spread Model will
be derived. Using the formulas of section 3.3, we obtain:

C(u, v) = P{X ≤ F−1
X (u), Y ≤ F−1

Y (v)}
=

∫ F−1
X (u)

s0

{∫ F−1
Y (v)

s0

e−s 1

σ
√

2π
exp

{
−(t− µ(s))2

2σ2

}
dt

}
ds

=
∫ F−1

X (u)

s0

e−s
{
Λσ[F−1

Y (v)− µ(s)]− Λσ[s0 − µ(s)]
}

ds

whereas the density function c is:

c(u, v) =
fX,Y (x, y)

fX(x)fY (y)
=

A(x)e−x 1
A(x)

1
σ
√

2π
exp {−[y − µ(x)]2/σ2}

A(x)e−xA(y)e−y

=
1

A(x)A(y)σ
√

2π
exp

{
−[y − µ(x)]2/σ2 + y

}

where x = F−1
X (u) and y = F−1

Y (v), for u, v ∈ [0, 1].
Figure 3.5 presents the density c, for the case σ = 2.
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Figure 3.4: The density function c and its contour plot, where λσ is a normal density
function with mean zero and standard deviation σ = 2, δ = 0. The contour plot shows that
the density c is not a symmetric function.
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Figure 3.5: The density function c and its contour plot for σ = 2.

3.5.3 The Variable Spread Model and the related Copula

In this subsection the copula function related to the Variable Spread Model will be
computed. We obtain:

C(u, v) = P{X ≤ F−1
X (u), Y ≤ F−1

Y (v)}
=

∫ F−1
X (u)

0

{∫ F−1
Y (v)

−∞
e−sλσ(s)(t− s− δ)dt

}
ds
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=
∫ F−1

X (u)

0
e−sΛσ(s)(F

−1
Y (v)− s− δ)ds

whereas the density function c is:

c(u, v) =
fX,Y (x, y)

fX(x)fY (y)
=

e−xλσ(x)(y − x− δ)

e−x
∫∞
0 e−tλσ(t)(y − t− δ)dt

=
λσ(x)(y − x− δ)∫∞

0 e−tλσ(t)(y − t− δ)dt

where x = F−1
X (u) and y = F−1

Y (v), for u, v ∈ [0, 1].
The density function c and its contour plot with σ(x) = 2+x/2 and δ = 0 is presented
in Figure 3.6.
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Figure 3.6: The density function c and its contour plot with σ(x) = 2 + x/2 and
δ = 0. Observe, that the contour plot of the density c suggests that the corresponding copula function is not
symmetric.

3.5.4 Do copulas of the considered models belong to the
Archimedean class?

The purpose of this subsection if a verification whether the copula functions derived
in subsections 3.5.1, 3.5.2 and 3.5.3 are Archimedean. Let us recall the definition of
the bivariate Archimedean copula:
The copula C is an Archimedean copula if:

C(u, v) = φ[−1](φ(u) + φ(v))

where φ is a generator, (for further details we refer to Chapter 2).
One of the properties of this class is symmetry. Indeed, it follows straightforwardly
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from the above definition:

C(u, v) = φ[−1](φ(u) + φ(v)) = φ[−1](φ(v) + φ(u)) = C(v, u)

Moreover, if the joint cumulative distribution is symmetric, the corresponding joint
density function is also symmetric. The symmetry property is crucial in finding the
counter examples for the copulas related to the Constant Spread Model and Variable
Spread Model.
Thus, consider the copula that corresponds to the Constant Spread Model with λσ

as a normal density function with mean zero and standard deviation σ > 0. If we
substitute u = 0.95, v = 0.85, σ = 2 and δ = 0, then we obtain:

c(0.95, 0.85) = 1.976 6= 1.7456 = c(0.85, 0.95)

Since both quantities are different, we conclude that this copula function is not
Archimedean. Note that the contour plot of the Figure 3.4 also shows that c(u, v) is
not symmetric.
Next, consider the copula function related to the Variable Spread Model with σ(x) =
2 + x/2. If we substitute u = 0.3, v = 0.7 and δ = 0, then:

C(0.3, 0.7) = 0.2505 6= 0.2376 = C(0.7, 0.3)

Both quantities are different. Thus, we conclude that this copula function is not
Archimedean. Figure 3.6 also shows that c(u, v) is not symmetric.
We observe that in case of the copula related to the Constant Symmetric Spread
Model the symmetry property holds. In order to show this, the following proposition
is required:

Proposition 14 If a bivariate distribution function H is symmetric then the related
copula function C is symmetric.

Proof Let F and G be the marginal distribution functions related to the distribution
H, then:

F (x) = lim
y→∞H(x, y) = lim

y→∞H(y, x) = G(x)

Hence, the marginal distribution functions are equal. Then we have:

C(u, v) = H(F−1(u), G−1(v)) = H(F−1(u), F−1(v))

= H(F−1(v), F−1(u)) = H(F−1(v), G−1(u)) = C(v, u)

Thus, the copula C is a symmetric function and the proof is complete.

The bivariate distribution function that corresponds to the Constant Symmetric
Spread Model is symmetric. Hence, the above proposition entails that the copula
related to this model is also symmetric. Figure 3.5 also shows this symmetry. To
investigate whether the Constant Symmetric Spread Model is Archimedean we use
the following theorem:
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Theorem 3 Let C be an associative (i.e. C(C(u, v), w) = C(u,C(v, w)) for u, v, w ∈
[0, 1]) copula such that C(u, u) < u for all u ∈ (0, 1). Then C is Archimedean.

For details we refer to [13].
We cannot prove that the Constant Symmetric Spread Model has an associative
copula. Therefore, we investigate associativity numerically, for the case σ = 2. Figure
3.7 illustrates the following error:

E = |C(C(u, v), w)− C(u,C(v, w))| for u, v, w ∈ [0.1, 0.2, 0.3, ..., 0.9]

The second condition, namely C(u, u) < u for u ∈ (0, 1), is satisfied in a numerical
sense, as shown in Figure 3.8.
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Figure 3.7: The error E =
|C(C(u, v), w) − C(u,C(v, w))|
for u, v, w ∈ [0.1, 0.2, 0.3, ..., 0.9] and
σ = 2. The notation (u, v, w) on the horizontal
line of the plot is used for simplicity. In fact the hor-
izontal line corresponds to the following ”ordered”
set of points: {(u, v, w) : w = 0.1, 0.2, ..., 0.9, v =
0.1, 0.2, ..., 0.9, u = 0.1, 0.2, ..., 0.9}, where we first fix
the values of u and v and go across the values of w.
Then we change the value of v and we repeat the
procedure. At the end we change the value of u and
again we repeat everything.
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Figure 3.8: The condition C(u, u) < u
for u ∈ (0, 1) and σ = 2. This condition
is satisfied in a numerical sense, where we have used
the grid u = [0.01, 0.02, ..., 0.99].

We believe that the small fluctuations, which are visible in Figure 3.7, are due to
numerical errors. Therefore, we suppose that this copula for σ = 2 belongs to the
Archimedean class of copulas or at least it is very ”close” to the Archimedean class.
We expect a similar behavior for other choices of the parameter σ.

3.6 Maximum Likelihood Method and evaluation

of the fit

The purpose of this section is to provide a theoretical background that will be applied
in the following case study. Recall that so far we discussed three bivariate parametric
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models (sections 3.1, 3.2 and 3.3). For a given dataset we would like to estimate the
parameters of the underlying probability distributions and then evaluate the fit. The
latter will be done using the so-called percentile lines method - explained in subsection
2.5.6. In the next two subsections, we describe the Maximum Likelihood Method and
recall the percentile lines method. We denote the probability density corresponding
to (V,W ) by fV,W (v, w; θ), where θ is a vector of model parameters. Moreover, we
assume that fV,W (v, w; θ) is related to a model in terms of a random vector (X,Y ) as
in (3.1), with probability density fX,Y (x, y; θ) and marginals FX(x; θ) and FY (y; θ).

3.6.1 Maximum Likelihood Method

Let (Vi,Wi), i = 1, ..., n, be a sample of n bivariate observations originating from a
random vector (V,W ) with known marginal distributions FV (v) and FW (w). Thus,
the dataset is transformed to the model space as follows:

Xi = F−1
X (FV (Vi); θ) and Yi = F−1

Y (FW (Wi); θ)

with fV,W (v, w; θ) obtained from fX,Y (x, y; θ) by using (3.1):

fV,W (v, w; θ) =
fX,Y (x, y; θ)fV (v)fW (w)

fX(x; θ)fY (y; θ)

where x = F−1
X (FV (v); θ), y = F−1

Y (FW (w); θ) and fX(x; θ) and fY (y; θ) are the mar-
gins of fX,Y (x, y; θ). The quantities (Xi, Yi), i = 1, ..., n, constitute the observations

in the model space. The Maximum Likelihood Method now yields the estimator θ̂ of
the parameter θ (we stress that θ can be a vector of parameters):

θ̂ = arg maxθ

n∏

i=1

fX,Y (Xi, Yi; θ)fV (Vi)fW (Wi)

fX(Xi; θ)fY (Yi; θ)

Let us now consider the likelihood function:

L(θ) =
n∏

i=1

fX,Y (Xi, Yi; θ)fV (Vi)fW (Wi)

fX(Xi; θ)fY (Yi; θ)

and the corresponding log-likelihood function given by:

l(θ) = ln L(θ) = ln

(
n∏

i=1

fX,Y (Xi, Yi; θ)fV (Vi)fW (Wi)

fX(Xi; θ)fY (Yi; θ)

)

= ln

(
n∏

i=1

fX,Y (Xi, Yi; θ)

fX(Xi; θ)fY (Yi; θ)

)
+ ln

(
n∏

i=1

fV (Vi)fW (Wi)

)

Remark 22 Since we assume that the cumulative distribution functions FV (v) and
FW (w) are known, the second term in the above expression is irrelevant in the maxi-
mization process of l(θ).
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3.6.2 The percentile lines

Consider the bivariate random vector (V, W ) with marginal distribution functions
FV (v) and FW (w). Let us transform (V, W ) into the model (X,Y ) with the margins
FX(x) and FY (y) as in the previous subsection. We call (V, W ) the original or physical
space, whereas the space (X,Y ) is called the transformed or model space.

Definition 15 The p-percentile line in transformed space is given by the following
function:

y = f(x; p), x ∈ D

where p is a percentage and f(x; p) is obtained by solving the equation P{Y ≤ y|X =
x} = p with respect to variable y. The set D is the support of the distribution FX(x).

The transformation of the p-percentile line from the model space into the physical
space is given as follows:

{(x, f(x; p)) : x ∈ D} → {(F−1
V (FX(x)), F−1

W (FY (f(x; p)))) : x ∈ D}

Observe that this is exactly the inverse of the transformation (3.1).
As it will become clear below, percentile lines can be used as a visual tool for deter-
mining the best model. They indicate the trend of the considered model. Moreover,
if the considered distribution fits well, then approximately r% of the dataset should
fall below the percentile lines corresponding to p = r% (both in the transformed and
in the original space). Moreover, this should also be satisfied in the subregions of the
physical and model space.
We stress that the method of the percentile lines is a bit subjective and requires
experience in interpreting the results.

Remark 23 Recall that we have derived the corresponding copula functions for each
considered model. It will be interesting to see how the percentile lines in the copula
space will look like (the percentile lines in the copula space are obtained by applying
the proper transformations, which we will not explicitly describe here).

3.7 Case study

In this section, the bivariate models CS, CSS and VS will be applied to a given
dataset.

3.7.1 Assumptions

In this subsection, we list the assumptions used to carry out the case study:

1. We consider the dataset of n = 89 bivariate observations of the water levels
and wind speeds already introduced in Chapter 2. This dataset constitutes the
observations (Vi,Wi), i = 1, ..., n.
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2. The cumulative distribution functions FV (v) and FW (w) are prescribed (for fur-
ther details we refer to Chapter 2).

3. The Constant Spread Model (Model CS) - We assume that δ = 0 and λσ is a
normal density function with mean zero and standard deviation σ > 0. The
unknown parameter is σ.

4. The Constant Symmetric Spread Model (Model CSS) - The unknown parameter
is σ > 0, which is asymptotically equal to the standard deviation of the normal
distribution in the transformed space.

5. The Variable Spread Model (Model VS) - We assume that δ = 0 and function
σs(x) is given as follows:

σs(x) =

{
σ
5
x + σ for x ∈ [0, 5]

2σ for x > 5

where σ > 0. Clearly, σ is our parameter of interest.
This choice of function σs(x) is very subjective and was made for simplicity,
in order to illustrate a simple application of this model. It could be modified
in various ways. For instance, σs(x) could be changed into a two-parametric
function.

3.7.2 Estimation

In this subsection we present the estimations of the unknown parameters by using
the Maximum Likelihood Method, they are given in the following table:

σ̂ Model CS σ̂ Model CSS σ̂ Model VS

1.6 1.4 1.1

In order to confirm the above results, we present the Figures 3.9, 3.10, 3.11 and 3.12,
which picture the log-likelihood functions of the corresponding models.

3.7.3 Evaluation of the fit by using the percentile lines

In this subsection the transformed spaces derived under the estimated parameters are
presented. In addition, the percentile lines in the original, transformed and copula
space are pictured. The Figures 3.13, 3.14 and 3.15 illustrate this. We stress that in
our application the interest is in the extreme region. Suppose we only interpret the
outcomes in the copula space (the rightmost pictures). It is difficult to judge the fit
in the extreme region. A copula is focused on the whole transformed dataset, whereas
the picture of the fit in the tail is a bit blurry - it is easier to evaluate the fit in the
extreme area in the physical space (the leftmost pictures).
In case of the percentile lines in the model space (middle pictures), we can see precisely
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Figure 3.9: The log-likelihood function
for Model CS, δ = 0 - maximum is
reached for σ̂ = 1.6
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Figure 3.10: The log-likelihood func-
tion for Model CSS - maximum is
reached for σ̂ = 1.4
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Figure 3.11: The log-likelihood func-
tion for Model VS, δ = 0 - maximum
is reached for σ̂ = 1.1
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Figure 3.12: The log-likelihood func-
tion for Model VS, δ = 0 - zoom of the
area where the maximum is reached

what the model ”says” about the tail. For instance, the Model CS ”predicts” that
the variables will increase jointly and that there will be a constant spread of variable
Y conditioning on the variable X = x (even in the tail) - as a direct consequence of
its construction. Moreover, we can judge the fit in the extreme region, because we
have the picture of the percentile lines in this area.
Generally, the three pictures of the original, model and copula space together with
the percentile lines provide the complete information. However, in this case, the
picture of the copula space could be omitted, since it does not contribute much into
the information about the extreme fit. The percentile lines in the model space give
more information about the fit in the extreme region than the percentile lines in the
copula space.
Let us now interpret the results looking at the percentile lines in the physical and
model space. The percentile lines describe well the increasing tendency of the dataset.

81



0 5 10
−4

−2

0

2

4

6

8

10

12

14

16
Transformed space−Model CS

X

Y

0 2 4
5

10

15

20

25

30

35
Original space

V

W

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fv

F
w

Copula space

Figure 3.13: The original, transformed and copula space with the percentile lines
(10%, 50%, 90%) for Model CS, σ̂ = 1.6, δ = 0. We observe that approximately 8 points fall below
the 10%-percentile line and approximately 7 points fall above the 90%-percentile line when we consider the whole
dataset. Recall that it should be around 9 data points below the 10%-line and above the 90%-line when we consider
the whole dataset.
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Figure 3.14: The original, transformed and copula space with the percentile lines
(10%, 50%, 90%) for Model CSS, σ̂ = 1.4. We observe that approximately 9 points fall below the
10%-percentile line and around 7 points fall above the 90%-percentile line when we consider the whole dataset.

The number of data points that fall below the percentile lines agree with the theory
for Model CS and CSS (even in the upper subregion). Thus, we may conclude that
these models fit well.
We emphasize that the Model VS with the spread function σs(x) > 0, defined in
subsection (3.7.1), was used as an example - generally, it should be verified if this
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Figure 3.15: The original, transformed and copula space with the percentile lines
(10%, 50%, 90%) for Model VS, σ̂ = 1.1, δ = 0. We observe that approximately 7 points fall below
the 10%-percentile line and above the 90%-percentile line when we consider the whole dataset.

model is proper for modeling the considered dataset. In case of this model and under
assumption of function σs(x), the fit is a bit doubtful in the upper subregion. In the
model space for x ∈ [2, 5] there are no points that fall above the 90%-percentile line
and below the 10%-percentile line. This is of course subjective judgment.
Moreover, the percentile lines in the copula space (for each model) are very similar
to the picture of the percentile lines for the Gumbel copula presented in the previous
chapter. Our conclusion from Chapter 2 was that the Gumbel copula could be used
as a possible representation of our dataset. This fact is consistent with the pictures
of the copulas in this paragraph.

3.8 Conclusions

In this chapter three models were considered: the Constant Spread Model, the Vari-
able Spread Model and the Constant Symmetric Spread Model. The Constant Spread
Model contains the (constant) parameter σ, with which the dependence in the model
can be varied. In the Variable Spread Model, which is a generalization of the Constant
Spread Model, the parameter σ no longer needs to be constant, but can be modeled
using the function σ(x). The Constant Symmetric Spread Model uses, just as in the
Constant Spread Model, a constant parameter σ with which the dependence in the
model can be varied.
The Models CS, VS and CSS are constructed in such a way that the behavior of these
models in the extreme region can more or less be ”predicted” from the very construc-
tion of the models. So, the extrapolation from the data to the extreme region occurs
more or less in a ”controlled way”, which is believed to be an advantage of these
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models.
In the first part of this chapter, we focused on the mathematical description of these
models. Later on, we provided some theoretical results concerning the tail dependence
coefficients. For every model, we proved lower tail independence and upper depen-
dence (under some special assumptions in case of the Variable Spread Model). Also,
explicit formulas were derived for the upper tail coefficients. Moreover, we tackled the
question whether the copulas corresponding to these models are Archimedean. For
the Constant Spread and the Variable Spread Model (with σ(x) = 2 + x/2 > 0), we
have provided counter examples, using the symmetry property of the Archimedean
class. For the Symmetric Spread Model, we performed some computer experiments,
which seem to confirm that the related copula is Archimedean or at least very ”close”
to this class.
At the end, we provided a bivariate case study using observations of water levels and
wind speeds with prescribed marginals. For each model the unknown parameters were
estimated using the Maximum Likelihood Method. The goodness-of-fit of the models
was judged, both in the model space and the original space, using the visual method
of the percentile lines. These lines (in the original and model space) not only allow
for a proper judgment in the data region, but also in the extreme region (beyond the
data). Moreover, we observed that the related copula models are ”similar” (judging
on the basis of the percentile lines) to the Gumbel copula - presented in Chapter 2 -
which was concluded as the best copula fit.
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Chapter 4

Rotation Model

This chapter is devoted to the development of the so-called Rotation Model in the bi-
variate and 3-variate case. The principle of this model was proposed by Chris Geerse.
The model arises from the rotation of the system of coordinates; that is where the
name of this model originates from.
The Rotation Model is related to the conditional models discussed in Chapter 3, be-
cause it is constructed as a modification of the product of the conditional distribution
function and the distribution of the conditioning variable. This model is relatively
easily extended to the 3-variate case. Moreover, the behavior in the tail of the result-
ing distribution in the original space can be approximately predicted from the very
construction of the model.
It is important to mention that, given the bivariate random vector (V, W ), the model
will arise from the transformation - introduced in the previous chapter - of random
variables (V, W ) into (X, Y ) (the analogous situation occurs in the 3-variate case).
We will prove some useful properties of this model like the exponentiality of the
marginal distributions and the values of the associated tail dependence coefficients
(under special assumptions). At the end, we will provide a bivariate case study in
which the same statistical tools as for the dependency models introduced in Chap-
ter 3 will be used. However, the case study will reveal a serious drawback of the
model, which implies that practical applications of the model seem to be very lim-
ited. Notwithstanding its lack of practical use, it seems worthwhile to present the
mathematics of the model.

4.1 The 2-dimensional Basic Model

In this section, we introduce the so-called 2-dimensional Basic Model, which gives the
foundation to the main goal of the chapter, namely to the Rotation Model. Let us
assume that S and T are two random variables, such that the density function fS(s)
of random variable S is:

fS(s) = e−s for s ≥ 0 (4.1)
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and the conditional density function fT |S=s(t|s) of random variable T given S = s,
for s ≥ 0, is represented by:

fT |S=s(t|s) =

{
λσ(t) for t ∈ D
0 otherwise

(4.2)

where λσ is a density function with corresponding mean zero and standard deviation
σ > 0, and D = {t : λσ(t) > 0} = [yb, ye] and −∞ < yb < 0 < ye < ∞.
We note that S is a standard exponentially distributed random variable and that the
joint density function fS,T (s, t) of variables S and T is given by:

fS,T (s, t) = fS(s)fT |S=s(t|s) =

{
e−sλσ(t) for (s, t) ∈ [0,∞)×D
0 otherwise

(4.3)

Then, we can derive the formula for the density function fT (t) of random variable T
as follows:

fT (t) =
∫ ∞

0
e−sλσ(t)ds = λσ(t) (4.4)

Since fS,T (s, t) = fS(s)fT (t), we observe that this model yields independence of ran-
dom variables S and T . A sketch of this model is presented in Figure 4.1.
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Figure 4.1: Basic model

4.2 Rotation in 2 dimensions

In this section the rotation of a system of two coordinates will be discussed. Suppose
we have a point A in a plane with perpendicular x and y coordinate axes subscribed
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Figure 4.2: Rotation

on it, as pictured in Figure 4.2. We can introduce a different pair of perpendicular
coordinate axes s and t on the same plane surface, using dashed lines, by simply
rotating the original coordinate axes by an angle θ about their common origin (0, 0).
Let us assume that we have the coordinates (xA, yA) of point A in the original co-
ordinate system (x, y). The basic trigonometry rules provide the transformation of
coordinates (xA, yA) into the coordinates (sA, tA) in the system (s, t) as follows:

{
sA = xA cos θ + yA sin θ
tA = −xA sin θ + yA cos θ

(4.5)

The above system of equations yields the relation between space (x, y) and (s, t).

4.3 Transformation of 2-dimensional probability den-

sities

Let:

u = u(x, y) and v = v(x, y) (4.6)

be continuous functions defined on set B with continuous first order partial deriva-
tives. Assume that (4.6) - treated as a system of equations - has exactly one solution,
that is given by:

x = x(u, v) and y = y(u, v) (4.7)

with continuous first order partial derivatives and that:

D(x, y)

D(u, v)
=

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ 6= 0 for (u, v) ∈ ∆ (4.8)
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where ∆ is obtained by applying the relations (4.6) on set B.
If fX,Y is a density function of the random vector (X, Y ), then the density fU,V of
vector (U, V ), such that U = u(X, Y ) and V = v(X,Y ) is given by:

fU,V (u, v) =

{
fX,Y (x(u, v), y(u, v))

∣∣∣D(x,y)
D(u,v)

∣∣∣ for (u, v) ∈ ∆

0 otherwise
(4.9)

4.4 The 2-dimensional Rotation Model

In this section the 2-dimensional Rotation Model will be introduced. We will start
with the simplest situation, from which the essence of the model becomes clear.
Later on, it will be generalized to more complicated cases; although all calculations
are analogous.

4.4.1 The 2-dimensional Rotation Model with finite endpoints
and θ = π

4

Consider a space (x, y), where x and y constitute the perpendicular axis. We rotate
the axis about an angle θ = π

4
to the new coordinate system (s, t). We assume that the

random vector (S, T ), defined on the space (s, t), follow the assumptions of the Basic
Model discussed in details in section 4.1. Moreover, we assume that the domain of the
function λσ, namely the set D, is an interval [yb, ye], where −∞ < yb < 0 < ye < ∞
(finite endpoints). We say that the two random variables X and Y defined on the
space (x, y) state the Rotation Model. A visualization of this model is presented in
Figure 4.3.

Figure 4.3: The 2-dimensional Rotation Model with finite endpoints and θ = π
4
.
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Clearly, the relation between random vectors (S, T ) and (X, Y ) is of the form (4.6),
with u = s and r = t.
Since the angle θ is equal to π

4
, we obtain:

{
S = X+Y√

2

T = −X+Y√
2

Invoking expressions (4.3) and (4.9), we obtain the formula for the joint density
function fX,Y (x, y) of variables X and Y in terms of the joint density function fS,T (s, t)
defined on the set D = {(s, t) ∈ [0,∞) × [yb, ye]}. Since it is easily checked that
D(x, y)/D(s, t) = 1, we can write:

fX,Y (x, y) =





e
−
(

x+y√
2

)
λσ

(−x+y√
2

)
for (x, y) ∈ ∆

0 otherwise
(4.10)

where ∆ is given as follows:

∆ = {(x, y) : 0 ≤ x + y√
2

, yb ≤ −x + y√
2

≤ ye}

The integration of the joint density function fX,Y (x, y) over all y values yields the
density function fX(x) of variable X. For x ≥ − ye√

2
, we have:

fX(x) =
∫ √

2ye+x

max{−x,
√

2yb+x}
fX,Y (x, y)dy

=
∫ √

2ye+x

max{−x,
√

2yb+x}
e
−
(

x+y√
2

)
λσ

(−x + y√
2

)
dy

=
√

2e−
√

2x
∫ ye

max{−√2x,yb}
e−kλσ(k)dk (4.11)

We observe that for x ≥ − yb√
2

the density function fX(x) takes the following form:

fX(x) =
√

2e−
√

2xE(e−K) (4.12)

where E denotes the expected value with respect to the density function λσ.
Thus, for x ≥ − yb√

2
the function fX(x) becomes a shifted exponential density with a

scale parameter 1/
√

2 and location parameter ln(E(e−K))/
√

2.

Remark 24 For x ≥ −yb

2
the distribution function FX(x) of variable X takes the

following form:

FX(x) = 1− E(e−K)e−
√

2x

Hence for u ∈ [0, 1], the inversion F−1
X (u) of function FX(x) becomes:

x = F−1
X (u) = − 1√

2
ln

(
1− u

E(e−K)

)
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The integration of the joint density function fX,Y (x, y) over all x values yields the
density function fY (y) of variable Y . For y ≥ yb√

2
, we have:

fY (y) =
∫ y−√2yb

max{−y,y−√2ye}
fX,Y (x, y)dx

=
∫ y−√2yb

max{−y,y−√2ye}
e
−
(

x+y√
2

)
λσ

(−x + y√
2

)
dx

=
√

2e−
√

2y
∫ min{√2y,ye}

yb

ekλσ(k)dk (4.13)

We observe that for y ≥ ye√
2

the density function fY (y) takes the following form:

fY (y) =
√

2e−
√

2yE(eK) (4.14)

Thus, for y ≥ ye√
2

the function fY (y) becomes a shifted exponential density with a scale

parameter 1/
√

2 and location parameter ln(E(eK))/
√

2.

Remark 25 For y ≥ ye√
2

the distribution function FY (y) of variable Y takes the
following form:

FY (y) = 1− E(eK)e−
√

2y

Hence for u ∈ [0, 1], the inversion F−1
Y (u) of function FY (y) becomes:

y = F−1
Y (u) = − 1√

2
ln

(
1− u

E(eK)

)

Example 4 Let us assume that λσ, for σ > 0, is a density function of the uniform
(−√3σ,

√
3σ) random variable, hence:

λσ(x) =

{
1

2
√

3σ
for −√3σ < x <

√
3σ

0 otherwise

the corresponding distribution function Λσ is:

Λσ(x) =





0 for x ≤ −√3σ
x+
√

3σ
2
√

3σ
for −√3σ < x <

√
3σ

1 for x ≥ √
3σ

It is straightforward to check that the expected value and standard deviation are 0
and σ, respectively. Under the above assumptions we obtain the exact expressions for
fX(x) and FX(x), which are given as follows:

fX(x) =





0 for x ≤ −
√

3σ√
2√

2e−
√

2x

2
√

3σ
(e
√

2x − e−
√

3σ) for −
√

3σ√
2

< x <
√

3σ√
2√

2e−
√

2x

2
√

3σ
(e
√

3σ − e−
√

3σ) for x ≥ −
√

3σ√
2
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FX(x) =





0 for x ≤ −
√

3σ√
2

(e−
√

2x−√3σ−1)

2
√

3σ
+

√
2(x+

√
3σ√
2

)

2
√

3σ
for −

√
3σ√
2

< x <
√

3σ√
2

1− (e
√

3σ−√2x−e−
√

3σ−√2x)

2
√

3σ
for x ≥ −

√
3σ√
2

The formulas for fY (y) and FY (y) are analogous. Figure 4.4 pictures the density
function fX(x) for σ = 2.
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The density function f
X
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Figure 4.4: The density function fX(x) when λσ is a uniform (−2
√

3, 2
√

3) density.

4.4.2 The 2-dimensional Rotation model with finite endpoints
and θ ∈ [0, π/2]

In this subsection the 2-dimensional Rotation Model with an arbitrary angle θ ∈
[0, π/2] will be discussed. We again assume that the domain of the function λσ,
namely the set D, is an interval [yb, ye], where −∞ < yb < 0 and 0 < ye < ∞. Clearly,
the system of equations (4.5) describes the dependency between spaces (X,Y ) and
(S, T ). Then, recalling (4.3) and (4.9) results in:

fX,Y (x, y) =

{
e−(x cos θ+y sin θ)λσ (−x sin θ + y cos θ) for (x, y) ∈ ∆
0 otherwise

(4.15)

where the set ∆ is given by:

∆ = {(x, y) : 0 ≤ x cos θ + y sin θ , yb ≤ −x sin θ + y cos θ ≤ ye}
The integration of the joint density function fX,Y (x, y) over all y values yields the
density function fX(x) of variable X. For x ≥ −ye sin θ we have:

fX(x) =
∫ ye+x sin θ

cos θ

max{−x cos θ
sin θ

,
yb+x sin θ

cos θ
}
fX,Y (x, y)dy
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=
∫ ye+x sin θ

cos θ

max{−x cos θ
sin θ

,
yb+x sin θ

cos θ
}
e−(x cos θ+y sin θ)λσ (−x sin θ + y cos θ) dy

=
1

cos θ
e−

x
cos θ

∫ ye

max{− x
sin θ

,yb}
e−k sin θ

cos θ λσ(k)dk (4.16)

We observe that for x ≥ −yb sin θ the density function fX(x) takes the following form:

1

cos θ
e−

x
cos θ E

(
e−K sin θ

cos θ

)
(4.17)

Thus, for x ≥ −yb sin θ the function fX(x) becomes a shifted exponential density with

scale parameter cos θ and location parameter ln(E(e−K sin θ
cos θ )) cos θ.

The integration of the joint density function fX,Y (x, y) over all y values yields the
density function fX(x) of variable X. For y ≥ yb cos θ we have:

fY (y) =
∫ −yb+y cos θ

sin θ

max{−y sin θ
cos θ

,−ye+y cos θ
sin θ

}
fX,Y (x, y)dx

=
∫ −yb+y cos θ

sin θ

max{−y sin θ
cos θ

,−ye+y cos θ
sin θ

}
e−(x cos θ+y sin θ)λσ (−x sin θ + y cos θ) dx

=
1

sin θ
e−

y
sin θ

∫ min{ y
cos θ

,ye}

yb

ek cos θ
sin θ λσ(k)dk (4.18)

We observe that for y ≥ ye cos θ the density function fY (y) takes the following form:

1

sin θ
e−

y
sin θ E

(
eK cos θ

sin θ

)
(4.19)

Thus, for y ≥ ye cos θ the function fY (y) becomes a shifted exponential density with

scale parameter sin θ and location parameter ln(E(eK cos θ
sin θ )) sin θ.

Remark 26 Let us assume that random variables X and Y follow the Rotation Model
with finite endpoints and θ = 0, then this model becomes equal to the Basic Model.
Indeed, using (4.3), (4.5) and (4.9) we obtain:

fX,Y (x, y) =

{
e−xλσ(y) for (x, y) ∈ ∆
0 otherwise

where ∆ is:
∆ = {(x, y) : x ≥ 0, yb ≤ y ≤ ye}

Hence, X becomes exactly standard exponential random variable. Moreover, X and
Y are independent.
If we assume that random variables X and Y satisfy the assumptions of the Rotation
Model with finite endpoints and θ = π

2
, then using (4.3), (4.5) and (4.9) we obtain:

fX,Y (x, y) =

{
e−yλσ(−x) for (x, y) ∈ ∆
0 otherwise
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where ∆ is:
∆ = {(x, y) : y ≥ 0, yb ≤ −x ≤ ye}

Therefore, the random variable Y becomes exactly standard exponential, and X and
Y are independent.

4.4.3 The 2-dimensional Rotation Model with infinite end-
points

In this subsection the Rotation Model with infinite endpoints will be considered. The
term infinite endpoints refers to the function λσ and its domain D. We assume that
the set D becomes (−∞,∞).
For purpose of application we assume that the angle θ is equal to π

4
and that λσ is a

normal density function with corresponding mean zero and standard deviation σ > 0.
We expect the model to be symmetric, due to the symmetry of the normal density
around its mean. The above assumptions and relations (4.3) and (4.9) entail that
the joint density function fX,Y (x, y) of variables X and Y is given by the following
expression:

fX,Y (x, y) =





e
−
(

x+y√
2

)
1√

2πσ2
e−

(−x/
√

2+y/
√

2)2

2σ2 for (x, y) ∈ ∆

0 otherwise
(4.20)

where ∆ is given as follows:

∆ = {(x, y) : x + y ≥ 0}

Because fX,Y (x, y) = fX,Y (y, x) then we conclude that the model is symmetric.
The calculations below give the density function fX(x) of variable X. For x ∈ < we
have:

fX(x) =
∫ ∞

−x
e−(x/

√
2+y/

√
2) 1√

2πσ2
e−

(−x/
√

2+y/
√

2)2

2σ2 dy

=
√

2
∫ ∞

−√2x
e−(k+

√
2x) 1√

2πσ2
e−

k2

2σ2 dk

=
√

2e−
√

2xe
σ2

2

∫ ∞

−√2x

1√
2πσ2

e−
(k+σ2)2

2σ2 dk

=
√

2e−
√

2xe
σ2

2

∫ ∞
−√2x+σ2

σ

1√
2π

e−
z2

2 dz

=
√

2e−
√

2xe
σ2

2 [1− Φ((−
√

2x + σ2)/σ)] (4.21)

Then, the distribution function FX(x) of variable X arises form the integration of
expression (4.21):

FX(x) =
√

2e
σ2

2

∫ x

−∞
e−

√
2t[1− Φ((−

√
2t + σ2)/σ)]dt
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Due to the symmetry of the model:

FY (y) =
√

2e
σ2

2

∫ y

−∞
e−

√
2t[1− Φ((−

√
2t + σ2)/σ)]dt

Figure 4.5 presents the density function fX(x) with σ = 2. Now, we would like to
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Figure 4.5: The density function fX(x) when λσ is a normal density function with
mean zero and standard deviation σ = 2.

focus on the conditional density function fY |X=x(y|x) of variable Y |X = x, for x ∈ <.
It is derived as follows. For y ≥ −x:

fY |X=x(y|x) =
fX,Y (x, y)

fX(x)
=

e−(x/
√

2+y/
√

2) 1√
2πσ2

e−
(−x/

√
2+y/

√
2)2

2σ2

∫∞
−x e−(x/

√
2+y/

√
2) 1√

2πσ2
e−

(−x/
√

2+y/
√

2)2

2σ2 dy

After reduction of common terms and rearrangement of variables we obtain:

fY |X=x(y|x) =
e−

(y/
√

2−x/
√

2+σ2)2

2σ2

∫∞
−x e−

(y/
√

2−x/
√

2+σ2)2

2σ2 dy
for y ≥ −x

If we put σ1 =
√

2σ, this can also be written as:

fY |X=x(y|x) =

1
σ1

√
2π

e−[y−(x−σ2
1/
√

2)]2/(2σ2
1)

∫∞
−x

1
σ1

√
2π

e−[y−(x−σ2
1/
√

2)]2/(2σ2
1)dy

for y ≥ −x

Thus, we conclude that function fY |X=x(y|x), for x ∈ < and y ≥ −x, is a left-
truncated normal density function.
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4.4.4 Extension of the Rotation Model with infinite end-
points and θ = π

4

One of the possible extensions of the Rotation Model with infinite endpoints and
θ = π/4 is the introduction of the function σ(x) for x ∈ [0,∞), which is ”responsible”
for the spread of the variables. Hence, we assume that the 2-dimensional Basic Model
is given by the random variables S and T , such that:

fT |S=s(s, t) = λσ(s)(t) for s ≥ 0 and t ∈ <
where λσ is a normal probability density function with the corresponding mean zero
and standard deviation σ > 0. Moreover, we assume that the density function fS(s)
of variable S is given by:

fS(s) = e−s for s ≥ 0

We observe that variables S and T are no longer independent, as it was in the previous
case. This is due to the fact that the conditional density function fT |S=s(t|s) contains
the term σ(s), which is a function of s.
Under the assumption of the angle θ = π/4, the Rotation Model in terms of the
random variables X and Y yields the density:

fX,Y (x, y) =

{
e−(x/

√
2+y/

√
2)λσ(x/

√
2+y/

√
2)(−x/

√
2 + y/

√
2) for x + y ≥ 0

0 otherwise

Figure 4.6 pictures the joint density function fX,Y (x, y) and its contour plot with the
assumption σ(x) = 2 + x/2.
The assumption of the normal density function λσ entails that fX,Y (x, y) is symmetric
as confirmed in the contour plot presented in Figure 4.6. Moreover, since the density
function is symmetric, it immediately follows that the marginal distributions FX(x)
and FY (y) take the same form.

4.5 Tail dependence for the 2-dimensional Rota-

tion Model

In this section the upper tail dependence coefficient for the 2-dimensional Rotation
Model will be derived. The tail dependence coefficients will be calculated for the
models discussed in subsections 4.4.1, 4.4.3 and 4.4.4. We refer to Chapter 2, where
the definition and necessary propositions concerning the tail dependence coefficients
are introduced.

4.5.1 Tail dependence for the 2-dimensional Rotation Model
with finite endpoints and θ = π

4

We assume that vector (X, Y ) is related to the Rotation Model with finite endpoints
and θ = π

4
. Our interest is to calculate the lower and upper tail dependence coef-

ficients. We begin with the definition of the lower tail dependence coefficient λL,
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Figure 4.6: The joint density function fX,Y (x, y) and its contour plot under the
assumption σ(x) = 2 + x/2.

namely:
λL = lim

u↓0
P{X ≤ F−1

X (u)|Y ≤ F−1
Y (u)}

then, using the definition of the conditional probability and the fact that P{Y ≤
F−1

Y (u)} = u we obtain:

λL = lim
u↓0

P{X ≤ F−1
Y (u), Y ≤ F−1

Y (u)}
u

(4.22)

We observe that F−1
X (u) ↓ −ye/

√
2 < 0 and F−1

Y (u) ↓ yb/
√

2 < 0 as u ↓ 0. Moreover,
by the definition of the joint density function fX,Y (x, y), P{X ≤ x, Y ≤ y} = 0 for
x < 0 and y < 0. This implies that for some δ > 0, the numerator of (4.22) becomes
0 for all u < δ, see Figure 4.7 as an illustration of this fact. Therefore, we conclude
that λL = 0.
Let us recall that the upper tail dependence coefficient λU can be computed from the
following formula:

λU = lim
u↑1

(P{X > F−1
X (u)|Y = F−1

Y (u)}+ P{Y > F−1
Y (u)|X = F−1

X (u)})

Let us denote x = F−1
X (u) and y = F−1

Y (u). Using relations (4.10) and (4.13) we first
compute the probability:

P{X > x|Y = y} =
∫ ∞

x
fX|Y =y(k|y)dk =

∫ ∞

x

fX,Y (k, y)

fY (y)
dk

=
1

fY (y)

∫ ∞

x
e−(k/

√
2+y/

√
2)λσ(−k/

√
2 + y/

√
2)dk
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Figure 4.7: Lower tail dependence for the 2-dimensional Rotation Model with finite
endpoints and θ = π

4
.

=
1

fY (y)

√
2e−

√
2y

∫ −x/
√

2+y/
√

2

−∞
ezλσ(z)dz

=
1

fY (y)

√
2e−

√
2y

∫ −x/
√

2+y/
√

2

yb

ezλσ(z)dz

=

∫−x/
√

2+y/
√

2
yb

ezλσ(z)dz
∫ min{√2y,ye}
yb

ezλσ(z)dz

=

∫−x/
√

2+y/
√

2
yb

ezλσ(z)dz

E(eZ)
(4.23)

where in the last step we assumed
√

2y > ye, which will be fulfilled for u sufficiently
close to 1.
Now, we focus on the limit:

lim
u↑1

√
2

2
(y − x) (4.24)

In order to deal with (4.24), we consider the distributions FX(x) and FY (y) for x ≥
−yb/

√
2 and y ≥ ye/

√
2, because we are interested in large values of x and y. The

small values are ”forgotten” while the limit is taken. Thus, Remarks 24 and 25 entail:

lim
u↑1

√
2

2
(y − x) = lim

u↑1

√
2

2
(F−1

Y (u)− F−1
X (u))

= lim
u↑1

√
2

2

(
− 1√

2
ln

(
1− u

E(eK)

)
+

1√
2

ln

(
1− u

E(e−K)

))
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=
1

2
ln

(
E(eK)

E(e−K)

)
(4.25)

Let us define the following quantity:

y0 =
1

2
ln

(
E(eK)

E(e−K)

)

The result (4.25) allows us to compute the following limit:

lim
u↑1

P{X > x|Y = y} =

∫ y0
yb

ezλσ(z)dz

E(eK)
(4.26)

Using relations (4.10) and (4.11) we compute the probability:

P{Y > y|X = x} =
∫ ∞

y
fY |X=x(k|x)dk =

1

fX(x)

∫ ∞

y
f(x, k)dk

=
1

fX(x)

∫ ∞

y
e−(x/

√
2+k/

√
2)λσ(−x/

√
2 + k/

√
2)dk

=
1

fX(x)

√
2e−

√
2x

∫ ye

−x/
√

2+y/
√

2
e−zλσ(z)dz

=

∫ ye

−x/
√

2+y/
√

2
e−zλσ(z)dz

∫ ye

max{−√2x,yb} e−kλσ(k)dk

=

∫ ye

(−x/
√

2+y/
√

2)
e−zλσ(z)dz

E(e−K)

where in the last step we assumed −√2x < yb, which will be fulfilled for u sufficiently
close to 1. Now, using this and result (4.25) we obtain:

lim
u↑1

P{Y > y|X = x} =

∫ ye
y0

e−zλσ(z)dz

E(e−K)
(4.27)

The combination of (4.26) and (4.27) yields the upper tail dependence coefficient λU :

λU =

∫ y0
yb

ezλσ(z)dz

E(eK)
+

∫ ye
y0

e−zλσ(z)dz

E(e−K)

Proposition 15 If K is a random variable with a symmetric density function λσ

defined on a domain [yb, ye] with finite endpoints and yb = −ye then:

1. E(e−K) = E(eK)

2.
∫ 0
yb

ekλσ(k)dk =
∫ ye
0 e−kλσ(k)dk
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Proof Using the definition of the expected value and the above assumptions we prove
the first part of the proposition:

E(e−K) =
∫ ye

yb

e−kλσ(k)dk =
∫ ye

yb

e−kλσ(−k)dk

=
∫ −yb

−ye

ezλσ(z)dz =
∫ ye

yb

ezλσ(z)dz

= E(eK)

The assumptions entail the proof of the second part of the proposition:

∫ 0

yb

ekλσ(k)dk =
∫ 0

yb

ekλσ(−k)dk

= −
∫ 0

−yb

e−zλσ(z)dz =
∫ ye

0
e−kλσ(k)dk

Hence, both parts of the proposition have been proved.

Thus, under the assumptions of symmetry of function λσ and yb = −ye the upper tail
dependence coefficient λU becomes:

λU =
2

∫ ye
0 e−kλσ(k)dk

E(eK)

4.5.2 Tail dependence for the Rotation Model with infinite
endpoints and θ = π

4

We consider the 2-dimensional Rotation Model with infinite endpoints, where λσ is a
normal density function with mean zero and standard deviation σ > 0, and θ = π

4
.

The argument in the derivation of the lower tail dependence coefficient λL is analogous
as for the Rotation Model with finite endpoints and θ = π

4
. Thus, we observe that

F−1
X (u) → ∞ and F−1

Y (u) → ∞ as u → 0. By definition, the ”positive” domain of
the random vector (X,Y ) is {(x, y) : x + y ≥ 0}. Hence, P{X ≤ x, Y ≤ y} = 0 for
x < 0 and y < 0. This entails that λL = 0. Figure 4.8 depicts this situation.
In order to calculate the upper tail dependence coefficient we recall that the considered
model is symmetric, what entails the usage of Corollary 1. Let us denote x = F−1

X (u)
for u ∈ [0, 1], then we observe that x →∞ as u ↑ 1. Hence, computation of the upper
tail dependence coefficient λU diminishes to:

λU = lim
u↑1

2P{X ≥ x|Y = x} = lim
u↑1

2
∫ ∞

x
fX|Y =x(k|x)dk = lim

u↑1
2

fY (x)

∫ ∞

x
fX,Y (k, x)dk

= lim
u↑1

2

fY (x)

∫ ∞

x
e−(k/

√
2+x/

√
2)λσ(−k/

√
2 + x/

√
2)dk

= lim
u↑1

2

fY (x)

√
2e−

√
2x

∫ 0

−∞
ezλσ(z)dz
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Figure 4.8: Lower tail dependence for the 2-dimensional Rotation Model with infinite
endpoints and θ = π

4
.

= lim
u↑1

2e−
σ2

2

Φ((
√

2x− σ2)/σ)

∫ 0

−∞
ezλσ(z)dz

= 2e−
σ2

2

∫ 0

−∞
ezλσ(z)dz = 2e−

σ2

2

∫ 0

−∞
ez 1√

2πσ2
e−

z2

2σ2 dz

= 2e−
σ2

2

∫ 0

−∞
1√

2πσ2
e−

(z−σ2)2

2σ2 e
σ2

2 dz = 2
∫ −σ

−∞
1√
2π

e−
w2

2 dw

= 2Φ(−σ) (4.28)

We observe that the resulting upper tail dependence coefficient is less than 1. Since
Φ(−σ) < Φ(0) = 1/2, we have:

λU = 2Φ(−σ) < 2Φ(0) = 1

Thus, if σ is equal to ε > 0, which is assumed to be a very small number, then λU

becomes close to 1. It means that in the tail the variables X and Y then become
”almost” completely dependent.

4.5.3 The tail dependence for the extension of the Rotation
Model with infinite endpoints and π

4

In this subsection the tail dependence coefficients for the generalization of the Rota-
tion Model with infinite endpoints and θ = π/4 will be derived. In addition to the

100



assumptions of subsection 4.4.4, we assume that function σ(x) satisfies the following
conditions:

1. σ(x) is an increasing function and σ(0) = σ0 > 0

2. limx→∞ σ(x) = σ1 < ∞
Clearly, the lower tail dependence coefficient λL is 0. The explanation is analogous to
that for the lower tail dependence coefficient for the Rotation Model discussed in sub-
section 4.4.3, and follows from the definition of the joint density function fX,Y (x, y).
In order to derive the upper tail dependence coefficient λU , we recall that the con-
sidered model is symmetric, what entails the usage of the Corollary 1. Let us denote
x = F−1

X (u), then we observe that x →∞ as u ↑ 1. Consider first the following limit:

lim
u↑1

P{Y ≤ x|X = x} = lim
u↑1

∫ x

−x
fY |X=x(k|x)dk

= lim
u↑1

1

fX(x)

∫ x

−x
fX,Y (x, k)dk

= lim
u↑1

∫ x
−x e−(x/

√
2+k/

√
2)λσ(x/

√
2+k/

√
2)(−x/

√
2 + k/

√
2)dk

∫∞
−x e−(x/

√
2+y/

√
2)λσ(x/

√
2+y/

√
2)(−x/

√
2 + y/

√
2)dy

= lim
u↑1

∫ 0
−√2x

√
2e−(

√
2x+z)λσ(

√
2x+z)(z)dz

∫∞
−√2x

√
2e−(

√
2x+z)λσ(

√
2x+z)(z)dz

= lim
u↑1

∫ 0
−√2x e−zλσ(

√
2x+z)(z)dz

∫∞
−√2x e−zλσ(

√
2x+z)(z)dz

=

∫ 0
−∞ e−zλσ1(z)dz∫∞
−∞ e−zλσ1(z)dz

= Φ(σ1)

In the above calculations we have used Lebesgue’s dominated convergence theorem,
which was introduced in subsection 3.4.4. The procedure is the same as in case of the
Variable Spread Model and will not be repeated. Then, the upper tail dependence
coefficient λU is:

λU = 2 lim
u↑1

(1− P{Y ≤ x|X = x}) = 2(1− Φ(σ1)) = 2Φ(−σ1)

Remark 27 Suppose that:

lim
x→∞σ(x) = ∞

Then we may intuitively expect that λU = 0, although we have not given a mathe-
matically rigorous proof. The lower tail dependence coefficient would remain equal to
zero, by the same reasoning as before.
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4.6 The 3-dimensional Basic Model

The aim of this section is to provide the theoretical background which will help us
to understand the 3-dimensional Rotation Model. We start with the description of
the 3-dimensional Basic Model, which is the generalization of the 2-dimensional Basic
Model.
We assume that S, T and W are three random variables, such that the density function
fS(s) of random variable S is given as follows:

fS(s) = e−s for s ≥ 0 (4.29)

whereas, the conditional density function fT,W |S=s(t, w|s) of variable (T, W )|S = s is:

fT,W |S=s(t, w|s) =

{
λσ(t, w) for (t, w) such that t2 + w2 ≤ σ2

0 otherwise
(4.30)

where λσ is a density function and σ > 0. (We note that σ is no longer the standard
deviation of λσ.)
Hence, the joint density function fS,T,W (s, t, w) of random vector (S, T, W ) arises from
(4.29) and (4.30):

fS,T,W (s, t, w) = fS(s)fT,W |S=s(t, w|s) =

{
e−sλσ(t, w) for s ≥ 0, t2 + w2 ≤ σ2

0 otherwise
(4.31)

Figure 4.9 illustrates the construction of this model. This model is the natural gener-
alization of the 2-dimensional Basic Model. The above assumptions state that S is an
exponential random variable and that vector (T, W ) does not depend on the random
variable S. These facts are analogous to the 2-dimensional Basic model.

4.7 Rotation in 3 dimensions

In this section a rotation in the 3-dimensional space will be described - that will be
used to formulate the 3-dimensional Rotation Model.
Roughly speaking, the rotation of the 3-dimensional system of coordinates is based
on fixing one axis and performing a 2-dimensional rotation of the remaining two axis.
We assume that the space (x, y, z) is our basic system of coordinates. We start with
a rotation about the z axis through an angle α = π

4
counterclockwise relative to

(x, y, z) to give the new system of coordinates (x′, y′, z′). The rotation matrix R1

that describes this operation is given by:

R1 =




cos α sin α 0
− sin α cos α 0

0 0 1


 and we have




x′

y′

z′


 = R1




x
y
z


 (4.32)

Next, the system (x′, y′, z′) is rotated about the y′ axis through an angle β coun-
terclockwise to generate the new coordinate system (s, t, w). Analogous to the first
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Figure 4.9: The 3-dimensional Basic Model.

rotation, this mixes the coordinates along x′ and z′, while the coordinate along y′

remains unaffected. The angle β is chosen such that:

cos β =

√
2

3

The rotation matrix R2 that corresponds to the above operation is given as follows:

R2 =




cos β 0 sin β
0 1 0

− sin β 0 cos β


 and we have




s
t
w


 = R2




x′

y′

z′


 (4.33)

The rotation matrix R, that straightforwardly connects system (x, y, z) with (s, t, w),
arises as a product of matrices given by formulas (4.33) and (4.32). The resulting

matrix R is then (with α = π
4

and cos β =
√

2/3, sin β =
√

1/3) given by:

R = R2R1 =




1√
3

1√
3

1√
3

−
√

2
2

√
2

2
0

− 1√
6
− 1√

6

√
2
3


 and we have




s
t
w


 = R




x
y
z


 (4.34)

Figure 4.10 illustrates the 3-dimensional rotation. The above relation is indispensable
in the next sections
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Figure 4.10: The rotation in 3 dimensions.

Remark 28 Note that (s, t, w) = (1, 0, 0) corresponds to (x, y, z) = (1, 1, 1)/
√

3, from
which easily follows cos(x, s) = cos(y, s) = cos(z, s) = 1/

√
3, where cos(a, b) denotes

the cosine of the angle between axis a and b. So the s axis makes the same angle with
each of the axis x, y and z. The axis t and w are lying in a plane perpendicular to
the s axis.

4.8 Functions of three random variables

Let:

u = u(x, y, z), v = v(x, y, z) and r = r(x, y, z) (4.35)

be continuous functions defined on a set D with continuous first order partial deriva-
tives. Assume, that (4.35) - treated as a system of equations - has exactly one
solution:

x = x(u, v, r) , y = y(u, v, r) z = z(u, v, r) (4.36)

with continuous first order partial derivatives and that:

D(x, y, z)

D(u, v, r)
=

∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂r

∂y
∂u

∂y
∂v

∂y
∂r

∂z
∂u

∂z
∂v

∂z
∂r

∣∣∣∣∣∣∣
6= 0 for (u, v, r) ∈ ∆ (4.37)

where ∆ is obtained by applying the relations (4.35) on set D.
If fX,Y,Z is a density function of random vector (X,Y, Z), then the density fU,V,R of
vector the (U, V,R), such that U = u(X, Y, Z), V = v(X, Y, Z) and R = r(X, Y, Z),
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is given by:

fU,V,R(u, v, r) =

{
fX,Y,Z(x(u, v, r), y(u, v, r), z(u, v, r))

∣∣∣D(x,y,z)
D(u,v,r)

∣∣∣ for (u, v, r) ∈ ∆

0 otherwise
(4.38)

4.9 The 3-dimensional Rotation Model with the

restricted support

In this section, we will generalize the 2-dimensional Rotation Model to the 3-variate
case. Moreover, we will prove that the resulting marginal distributions are exponen-
tial. This fact is consistent with the results of the 2-dimensional Rotation Model.
Let us assume that random vector (S, T,W ) follows the 3-dimensional Basic Model
described in subsection 4.6. The Rotation Model is represented by random vector
(X,Y, Z), such that the relation (4.34) connects it with vector (S, T, W ). This fact
together with (4.38) yield that the density function fX,Y,Z(x, y, z) has the following
form:

fX,Y,Z(x, y, z) = e−(x/
√

3+y/
√

3+z/
√

3)λσ(−
√

2x/2 +
√

2y/2,−x/
√

6− y/
√

6 +
√

2/3z)(4.39)

This form is valid for (x, y, z) ∈ ∆, where set ∆ is given by:

∆ = {(x, y, z) : x/
√

3+y/
√

3+z/
√

3 ≥ 0, (−
√

2x/2+
√

2y/2)2+(−x/
√

6−y/
√

6+
√

2/3z)2 ≤ σ2}

The other choice of (x, y, z) yields fX,Y,Z(x, y, z) = 0. Thus, the model is defined. Figure
4.11 visualizes the construction of this model. From the picture we can suspect the behavior

Figure 4.11: The 3-dimensional Rotation Model.

of the distribution in the tail.
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The aim of this section is the calculation of the density functions fX(x), fY (y) and fZ(z)
of variables X, Y and Z, respectively. As for the 2-dimensional model with finite endpoints
and θ = π

4 , we will show that the mentioned density functions become exponential from
some point.
The density function fX(x) of random variable X can be derived as follows:

fX(x) =
∫ ∫

∆x

fX,Y,Z(x, y, z)dydz

where fX,Y,Z(x, y, z) is given by equation 4.39 and ∆x is:

∆x = {(y, z) : x/
√

3+y/
√

3+z/
√

3 ≥ 0, (−
√

2x/2+
√

2y/2)2+(−x/
√

6−y/
√

6+
√

2/3z)2 ≤ σ2}

Substituting y =
√

2k + x and z =
√

3/2u +
√

2k/2 + x with the Jacobian J =
√

3 results
in:

fX(x) =
√

3e−
√

3x
∫ ∫

∆′x
e−(
√

3/2k+u/
√

2)λσ(k, u)dkdu (4.40)

where ∆′
x is:

∆′
x = {(k, u) :

√
3/2k + u/

√
2 +

√
3x ≥ 0, k2 + u2 ≤ σ2} (4.41)

We observe that for x ≥ √
2/3σ, the set ∆′

x becomes equal to:

∆′
x = {(k, u) : k2 + u2 ≤ σ2}

Hence, function fX(x) appears to be:

fX(x) =
√

3e−
√

3xE

(
e−
√

3/2K−U/
√

2
)

what entails that X is shifted exponentially distributed for x ≥ √
2/3σ with scale parameter

1/
√

3 and location parameter ln(E(e−
√

3/2K−U/
√

2))/
√

3.
Let us consider the density function fY (y) of random variable Y . It is computed as follows:

fY (y) =
∫ ∫

∆y

fX,Y,Z(x, y, z)dxdz

where the set ∆y is:

∆y = {(x, z) : x/
√

3+y/
√

3+z/
√

3 ≥ 0, (−
√

2x/2+
√

2y/2)2+(−x/
√

6−y/
√

6+
√

2/3z)2 ≤ σ2}

Substituting x = y −√2k and z =
√

3/2u−√2k/2 + y with the Jacobian J =
√

3 entails:

fY (y) =
√

3e−
√

3y
∫ ∫

∆′y
e−(−

√
3/2k+u/

√
2)λσ(k, u)dkdu (4.42)

where the set ∆′
y is given as follows:

∆′
y = {(k, u) : −

√
3/2k + u/

√
2 ≥ 0, k2 + u2 ≤ σ2} (4.43)
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We note that for y ≥ √
2/3σ, the set ∆′

y becomes equal to:

∆′
y = {(k, u) : k2 + u2 ≤ σ2}

Hence, function fY (y) appears to be:

fY (y) =
√

3e−
√

3yE

(
e
√

3/2K−U/
√

2
)

what entails that variable Y is shifted exponentially distributed for y ≥ √
2/3σ with scale

parameter 1/
√

3 and location parameter ln(E(e
√

3/2K−U/
√

2))/
√

3.
Consider the density function fZ(z) of random variable Z. It is computed as follows:

fZ(z) =
∫ ∫

∆z

fX,Y,Z(x, y, z)dxdy

where the set ∆z is:

∆z = {(x, y) : x/
√

3+y/
√

3+z/
√

3 ≥ 0, (−
√

2x/2+
√

2y/2)2+(−x/
√

6−y/
√

6+
√

2/3z)2 ≤ σ2}

Substituting x = −√2k/2 −√
3/2u + z and y = −√

3/2u +
√

2k/2 + z with the Jacobian
J =

√
3 gives:

fZ(z) =
√

3e−
√

3z
∫ ∫

∆′z
e
√

2uλσ(k, u)dkdu (4.44)

where ∆′
z is:

∆′
z = {(k, u) :

√
3z −

√
2u ≥ 0, k2 + u2 ≤ σ2} (4.45)

We remark that for z ≥ √
2/3σ, the set ∆′

z becomes equal to:

∆′
z = {(k, u) : k2 + u2 ≤ σ2}

Hence, function fZ(z) appears to be:

fZ(z) =
√

3e−
√

3zE
(
e
√

2U
)

what entails that variable Z is shifted exponentially distributed for z ≥ √
2/3σ with scale

parameter 1/
√

3 and location parameter ln(E(e
√

2U ))/
√

3.

4.10 Case study - the 2-dimensional Rotation Model

with infinite endpoints

In this section a bivariate case study will be performed using the same dataset as in section
2.6. Thus, given the dataset we will try to find the appropriate Rotation Model. First, by
estimating the unknown parameters and later on by applying the percentile lines method.
The theoretical background is provided in the previous chapter. As before, we will use
the transformation of random variables given by (3.1), which will allow us to model the
bivariate density function of the considered dataset.
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4.10.1 Assumptions

In this subsection we list the assumptions, that have been made to carry out the case study:

1. We consider the dataset introduced in subsection 2.6.1, (Vi,Wi), i = 1, ..., n, where
n = 89. Observations Vi, i = 1, ..., n, denote the water levels, and observations Wi, i =
1, ..., n denote the wind speeds.

2. We assume that the distribution functions FV (v) and FW (w) of variables V and W
are given and of the form described in subsection 2.6.3.

3. For the 2-dimensional Rotation Model with infinite endpoints and constant standard
deviation (Model RC) we assume that λσ is a normal density function with mean zero
and standard deviation σ > 0. Moreover, we assume that σ is constant in this model.
Clearly, σ is our parameter of interest and has to be estimated from the data.

4. For the 2-dimensional Rotation Model with infinite endpoints and varying standard
deviation (Model RV) we assume that λσ is a normal density function mean zero
and standard deviation σ > 0. Moreover, we assume that function σs(x) takes the
following form:

σs(x) =

{
σ
5 x + σ for 0 ≤ x ≤ 5
2σ for x > 5

(4.46)

The parameter σ > 0 is unknown and has to be estimated from the data.

4.10.2 Estimation of the unknown parameters - Part 1

In this subsection we present results of the Maximum Likelihood Method of estimation of
the unknown parameters, when the whole dataset is taken into consideration. The Figures
4.12 and 4.13 illustrate the likelihood functions.
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Figure 4.12: The likelihood function
for Model RC
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Figure 4.13: The likelihood function
for Model RV
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Clearly, we cannot observe a unique maximum point, since the likelihood functions are
constant and take the value zero. The reason of such a ”behavior” is associated with the
fact that after the transformation some points have fallen outside the region D = {(x, y) :
x + y ≥ 0}, where the joint density function fX,Y (x, y) takes value zero. Moreover, the
number of points that fall in the region D vary with respect to the value of parameter σ.
This is shown in the Figures 4.14 and 4.15.
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Figure 4.14: The number of the data
points in the region D versus the value
of parameter σ - Model RC
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Figure 4.15: The number of the data
points in the region D versus the value
of parameter σ - Model RV

We observe that the functions decrease. Hence, the larger parameter σ, the more points will
fall outside region D. We note that a point (Xi, Yi) for which fX,Y (Xi, Yi) = 0 corresponds
to a point (Vi,Wi) for which fV,W (Vi,Wi) = 0. This shows that the Rotation Model does
not provide a good fit to the data. In fact, it provides a bad fit, at least to the data lying
in the lower left corner of the (V, W )-plane. In the next section, we investigate the fit to
the data in the upper right corner of the plane.

4.10.3 Removing the data points

We decide to remove some data points, that are ”responsible” for the zero-constant likeli-
hood functions. Hence, we remove the data points that obtained fV,W (Vi,Wi) = 0 after the
transformation of the dataset to the model space. For Model RC, we decide to remove the
points that fall outside the region D for σ = 3.5 and for Model RV, we decide to remove the
points that fall outside the region D for σ = 2.8. As a result, the size of the dataset dimin-
ishes to 49. The new dataset used for Model RC is the same as for Model RV, therefore it
will be possible to compare the results for both models. Removing the points is presented
in Figures 4.16 and 4.17.

4.10.4 Estimation of the unknown parameters - Part 2

Having the new dataset, we can derive the estimation of the unknown parameter σ for Model
RS and Model RV by using the Maximum Likelihood Method. The resulting estimations
are presented in the following table:
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Figure 4.16: The removing of points, σ = 3.5 - Model RC
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Figure 4.17: The removing of points, σ = 2.8 - Model RV

Model RS σ̂ Model RV σ̂

0.6 0.5

Figures 4.18 and 4.19 illustrate the log-likelihood functions.

4.10.5 Results with percentile lines

In this subsection we present results for the original, transformed (model) and copula space
using percentile lines, after removing the data points. See Figures 4.20 and 4.21. The
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Figure 4.18: The log-likelihood func-
tion for Model RC - maximum is
reached for σ̂ = 0.6

0 1 2 3 4 5
−600

−500

−400

−300

−200

−100

0

100

The log−likelihood function
σ(x), Case 2

σ

Lo
g−

lik
el

ih
oo

d

Figure 4.19: The log-likelihood func-
tion for Model RV - maximum is
reached for σ̂ = 0.5 Observe that numerical
errors occur at the beginning of this plot.
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Figure 4.20: The original, transformed and copula space with the percentile lines
(10%, 50%, 90%) for σ̂ = 0.6, Model RC There is 1 data point below the percentile line 10% and 5
points above the percentile line 90% when we consider the whole dataset. Recall that there should be approximately
7 points below and above the 10% and 90% percentile lines, respectively, when we consider the whole dataset.

resulting plots are not satisfactory, since the data points do not satisfy the criterion of the
percentile lines. To be more precise, the number of data points below the percentile lines
p = 10% and above the percentile lines p = 90% do not agree with the theory. We will not
discuss the results any further. The overall conclusion is that the Rotation Model cannot
be used in practice.
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Figure 4.21: The original, transformed and copula space with the percentile lines
(10%, 50%, 90%) for σ̂ = 0.5, Model RV There are no data points below the percentile line p = 10%
and approximately 6 data points above the percentile line 90% when we consider the whole dataset. Moreover, we
observe that numerical errors occur when the Model RV is applied, causing disturbance in the upper right corner of
the plot in the original space.

4.11 Conclusions

This chapter was devoted to the construction of the Rotation Model. The construction of
this model is very elegant in the 2-dimensional case. In the first part of this chapter we
provided explicit formulas for this model and derived some useful properties. We showed
that the margins of this model are shifted exponential (in case of restricted support) and
we derived explicit formulas for the tail dependence coefficients. We concluded that lower
tail independence and upper tail dependence occur.
At the end of this chapter we performed a case study, which revealed a serious drawback
of this model. Because of the form of the marginal distributions, there is a possibility that
some points after the transformation of the dataset to the model space will end up in the
area where the probability density is zero. This is of course very unrealistic and we can
exclude this model from further considerations.
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Chapter 5

Summary and conclusions

In this report, we focused on the probabilistic modeling of two and three random variables
(such as loads) and their dependencies. For this purpose the following three types of de-
pendency models were studied: the bivariate copula function, bivariate conditional models
and the Rotation Model. The purpose of these mathematical models is the modeling of
bivariate distribution functions - if they are not known.
The notion of a copula function was intensively studied in Chapter 2. The copula model is
a distribution function defined on the unit square with uniform margins and it describes the
margin-free dependency of two random variables. We introduced the necessary definitions
and propositions related to this concept. Moreover, we described the Archimedean class of
copulas, which is known from its useful properties. We also provided statistical inference
methods for fitting and testing the goodness-of-fit for copulas. In a case study we considered
a dataset of 89 bivariate observations of water levels and wind speeds - the aim was to fit a
copula model to this data. We applied two methods of estimation of the copula parameter
and five methods of the evaluation of the fit. We concluded that the best model is provided
by the Gumbel copula, although the results depend on the estimation methods and the
assumptions concerning the marginal distributions. It turned out that visually judging the
fit, by using the percentile lines, in the extreme region of the copula space (on unit square)
is difficult, because the copula focuses on the entire dataset.
In Chapter 3, bivariate conditional models were discussed: the Constant Spread Model, the
Variable Spread Model and the Constant Symmetric Spread Model. These models are con-
structed as a product of the conditional distribution and the distribution of the conditioning
variable. The construction of these models is straightforward and makes it possible to pre-
dict the tail behavior of the distribution in the model space (the space in which the model
is stated). The characteristic feature of this model is a constant spread parameter, which
characterizes the spread of one random variable given the value of the other. An extension
of this model is the Variable Spread Model, which allows for the spread to be dependent on
the conditioning variable. The Constant Symmetric Spread Model entails symmetry with
respect to the two random variables. We investigated the concept of the tail dependence
coefficients and proved lower tail independence and upper tail dependence for each model.
We also considered the concept of copula functions that arise for these models. It turned
out that the copula functions related to the Constant Spread and Variable Spread Model
are not Archimedean, since they do not satisfy the symmetry property. For the Constant
Symmetric Spread Model, numerical experiments ”suggest” that the corresponding copula
belongs to the Archimedean class. Unfortunately, we were not able to find a mathematical
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proof. At the end of this chapter, a case study was performed using the Maximum Like-
lihood Method and percentile lines method of visual evaluation of the fit. Moreover, we
provided pictures of the percentile lines in the corresponding copula space, which simplified
the comparison between the model space and copula space. We concluded that the visual
evaluation of the fit, by using percentile lines, in the extreme region is easier in the model
space than in the copula space.
In Chapter 4, we constructed the Rotation Model in the bivariate and 3-variate case. This
model arises from the rotation of the coordinate system and can be seen as a modification
of the conditional models. This models is newly proposed and has not been studied in the
literature before. We considered some modifications of the 2-dimensional Rotation Model
and calculated the tail dependence coefficients. In addition, we proved that the marginal
distributions are shifted exponential in case of a restricted support. The performed case
study revealed a serious disadvantage of this model. It may happen that after the transfor-
mation of the dataset to the model space some data points would fall in the region where
the probability density is zero. More research should be performed to find out whether this
drawback can be overcome.
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Appendix A

Test statistic for Method 3

Consider the test statistic Sn = n
∫ 1
0 |Kn(t) − K(t; θ̂)|2k(θ̂, t)dt. It can be simplified as

follows:

Sn =
n

3
+ n

n−1∑

j=1

K2
n

(
j

n

) {
K

(
j + 1

n
; θ̂

)
−K

(
j

n
; θ̂

)}

− n
n−1∑

j=1

Kn

(
j

n

) {
K2

(
j + 1

n
; θ̂

)
−K2

(
j

n
; θ̂

)}

We will show this below.
Recall that Kn(t) is a step function taking some nonnegative constant value c on the interval
[a, b] ⊂ [0, 1], then:

n

∫ b

a
|c−K(t; θ̂)|2k(t; θ̂)dt = n

∫ b

a
(c2 − 2cK(t; θ̂) + K2(t; θ̂))k(t; θ̂)dt

= nc2
∫ b

a
k(t; θ̂)dt− 2nc

∫ b

a
K(t; θ̂)k(t; θ̂)dt + n

∫ b

a
K2(t; θ̂)k(t; θ̂)dt

= nc2(K(b; θ̂)−K(a; θ̂))− nc(K2(b; θ̂)−K2(a; θ̂)) +
n

3
(K3(b; θ̂)−K3(a; θ̂))

Let us now partition interval [0, 1] into the subintervals [i/n, (i + 1)/n], for i = 0, ..., n− 1.
Additionally, we assume that Kn(t) takes nonnegative constant values on each subinterval.
Then, the test statistic Sn can be written as follows:

Sn = n
n−1∑

i=0

∫ (i+1)/n

i/n
|Kn(i/n)−K(t; θ̂)|2k(t; θ̂)dt

=
n−1∑

i=0

{
nK2

n(i/n)[K((i + 1)/n; θ̂)−K(i/n; θ̂)]− nKn(i/n)[K2((i + 1)/n; θ̂)−K2(i/n; θ̂)]

+
n

3
[K3((i + 1)/n; θ̂)−K3(i/n; θ̂)]

}

= n
n−1∑

i=1

K2
n(i/n)[K((i + 1)/n; θ̂)−K(i/n; θ̂)]− n

n−1∑

i=1

Kn(i/n)[K2((i + 1)/n; θ̂)−K2(i/n; θ̂)]

+
n

3
(K3(1; θ̂)−K3(0; θ̂))︸ ︷︷ ︸

=1

where we used the fact that K(0; θ̂) = Kn(0) = 0 and K(1; θ̂) = Kn(1) = 1.
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