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Abstract  

 

Title: Model Adequacy Test for Cox Proportional Hazard Model  

By 

Bowen Zhang 

Cox proportional hazard model has been widely used in survival statistics since it is proposed in 

1972. It is often used to regress hazard rate onto covariates that influence the survival time to 

some hazardous event, such as death. While much effort has been put on development of the 

regression model, a very important question should be answered as well before the model can be 

used for prediction or adopted in other fields. The question is how well the model has explained 

the hazard data? Here comes the issue of model adequacy test. A model adequacy test consists of 

the examination of the model’s fit as well as adherence to model assumptions to check whether 

the fitted model provides an adequate summary of the data. This procedure is as important as 

model development.  

Several effective methods to test model adequacy have been proposed to examine the model’s fit 

(see [1]). One way is to estimate the coefficients for both the true model and incomplete model 

where some covariates are excluded, using the data generated from the true model. Estimates are 

compared to see if the incomplete model estimates well or in other words, to see if the missing 

covariate is influential to the estimation. Another way is to compare the population cumulative 

hazard function with estimated baseline cumulative hazard function to see if covariates are 

influential. These two methods work well when applied to independent covariate in [1]. However, 

when these covariates are dependent, or when interaction and quadratic terms are considered, 

results may be different. Moreover, we also have to apply some effective methods to test the 

adherence to model assumptions. 

In this thesis we first extend the results of [1] through application of the methods mentioned 

above to dependent data and models with interaction and quadratic terms. Then we put forward 

another method to test model’s fit: the likelihood ratio test. After that, we study the test of 

adherence to model assumption. We check whether the proportional assumption is satisfied for 

the true model as well as model of missing covariates by including time-dependent covariate into 

the model. Furthermore, since we assume that the covariates appear in their linear form in the true 

model we also use martingale residuals and Lowess smooth to test if the linear assumption holds 

for incomplete models. We apply all these methods to independence covariates, weakly 

dependent covariates and strongly dependent covariates to see if these methods work well in each 

situation.  
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Chapter 1 

 

Introduction  

 

1.1 Research Objectives  

This thesis is a mathematical support for the European Union project entitled BENERIS. 

BENERIS project focuses on the analysis of health benefits and risks associated with food 

consumption. It aims to develop a comprehensive method that combines both the dose-response 

modeling and a user-friendly graphical model interface. Results of this thesis may be used in the 

BENERIS project in the future. 

This thesis focuses on the Cox hazard proportional model. It was proposed by D.R. Cox in 1972 

([5]). The Cox model is a well-recognized statistical technique to explore the relationship 

between the survival of a subject to some hazardous event of research interest such as death and 

several explanatory variables. In this model the hazard rate (failure rate) is regressed onto 

covariates which have influence on the survival time to some hazardous event, such as death. 

Moreover, the Cox model is built on the proportional assumption that the cumulative hazard 

function over time can be factorized into time dependent part which describes how hazard (risk) 

changes over time and time independent part which describes how hazard relates to other factors. 

The time dependent part is expressed by the baseline hazard function. No particular shape is 

assumed for the baseline hazard and it is estimated by nonparametric estimation. Time 

independent part consists of explanatory covariates, and the coefficients of these covariates are 

estimated by maximizing the partial likelihood.  

The Cox proportional hazard model has been widely used in survival statistics and software such 

as SAS, R, STATA and Splus make it easier to develop the Cox model, in other words, to find the 

relationship between hazard or survival of a subject and explanatory covariates. However, a very 

important question should be answered well before the model can be used for prediction or 

adopted in any other fields. The question is how well the model has explained the hazard data? 

Here comes the issue of model adequacy test. A well-fitted model should provide an adequate 

summary of the data it is based on and a model adequacy test consists of two vital parts. One part 

is the examination of the model’s fit and the other is to check the adherence to model assumptions. 
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This procedure is as important as model development and the aim of this thesis is to study on 

different methods used for model adequacy test. 

 

1.2 Previous Works 

An extensive survey of the research in this area identifies several contributions. For instance, a 

theoretical explanation that missing covariates tend to underestimate the model coefficient was 

given by Bretagnolle and Huber-Carol (1988) ([13]) as well as Keiding et al. (1997) ([15]). 

Hougaard (2000) pointed out that when covariates are excluded from the true model, 

proportional hazard assumption may not be satisfied any more ([11]). Moreover, several effective 

methods have been developed to examine the model’s fit ([1]). They assumed that there is a true 

model and instead of using real life data, they generate sample data from this true model. To 

verify that the true model fits better to the data than others, one way they proposed is to estimate 

the coefficient of the same model covariate for both the true model and some incomplete models 

where covariates are excluded, base on the data generated from the true model. This is done 

independently 100 times. Then the 100 estimates were put in order and the ordered estimates for 

both the true model and model of missing covariates are plotted in the same graph for comparison. 

If these estimates are significantly different, it implies that the missing covariates are influential 

and should be included in the model. This method has already been applied to independent 

covariates and the results imply that missing covariates lead to under-estimation. Moreover, the 

larger the coefficient of the missing covariate is, the more the under-estimation it leads to. 

Another method proposed in [1] is through comparison between population cumulative hazard 

function and the estimated baseline cumulative hazard function. A null hypothesis that these two 

hazard functions are equal is introduced. If this null hypothesis cannot be rejected, then it means 

that the baseline hazard and population hazard are not significantly different and covariates are 

not influential. In this case Cox model is not indicated. This method works well when applied to 

independent covariates, where this null hypothesis fails to be rejected for the incomplete model in 

the examples in [1]. 

However, when these covariates are dependent, or when interaction and quadratic terms are 

considered, results for these methods may be different. Moreover, the adherence to model 

assumptions should also be tested in some effective way. These issues are what we studied in this 

thesis. 
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1.3 Thesis Outline  

As a start we give an explanation of the Cox model, what is a model adequacy test and how we 

make such test in chapter 2. We also illustrate the procedure to generate data for both independent 

and dependent covariates in the same chapter. 

 In chapter 3 we continue with previous work through applying the two methods mentioned in 

section 1.2 to dependent covariates and the case where interaction terms and quadratic terms are 

considered. We also make a distinction between strong dependence and weak dependence and 

study each of them. 

In chapter 4 first we study on the likelihood ratio test. This is another method to test model’s fit. 

In this test two times of the difference between logarithms of partial likelihood of true model and 

some incomplete model is calculated. Then we decide by chi-square test to see if this difference is 

significantly large and if true model is better than the incomplete model with covariates missing. 

Then we focus on test for model assumptions. First we include time dependent variables into the 

model. If the estimates of the coefficient are different for the model with and without the time 

dependent variable, then the time dependent variable is influential and should be included in the 

model. This is in conflict with proportional assumption that all covariates are time independent. 

We also perform Wald test to check if those time dependent variables are significant or not. 

Furthermore we use martingale residuals and Lowess smooth to check if the assumption that 

covariates appear in Cox model in the linear form is satisfied or not. Martingale is the difference 

between the censoring variable and estimated cumulative hazard. We assume there is no 

censoring so censoring variable is equal to one for all subject. In this test we first exclude a 

covariate and fit the model. Then results are used to calculate martingale residual which is plotted 

against the excluded covariate. The shape in this plot indicates the form of this covariate in the 

Cox model. Hence if it is not linear model assumption is not obeyed. Lowess is a smoothing 

method for scattered plot via local regression. An improvement of this method is also discussed in 

this section. As before, in this chapter we sample data from the assumed true model instead of 

using real data. Moreover, we apply all these methods to independence covariates, weakly 

dependent covariates and strongly dependent covariates to see if these methods work well in each 

situation.  
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Chapter 2 

 

Testing adequacy of Cox proportional hazard model 

with simulations  

 

As mentioned in the introduction chapter, the main object of this thesis is to test model adequacy 

for Cox hazard model. Moreover, in this study, we generate data instead of using real-life data. 

As a start, in this chapter we give a discussion about what is Cox proportional hazard model, the 

idea of model adequacy test, as well we the procedure of simulation for both independent 

covariates and dependent covariates. 

 

2.1 Cox proportional hazard model  

Cox proportional hazard model was introduced by D.R.Cox in 1972. In this model, failure rate, or 

hazard rate is regressed onto explanatory variables. The Cox model is built on the proportional 

hazard assumption that the cumulative hazard function over time can be factorized into two parts: 

a time dependent part and a time independent part. The time dependent part describe how hazard 

(risk) changes over time, which is independent of all model covariates. Time independent part

which depends on model covariates describes how hazard relates to other factors. The Cox 

proportional hazard model we mainly used in our study consists of three covariates X, Y and Z 

and is of the form below. 

0
( , , , ) ( ) AX BY CZh t X Y Z h t e + +=

h (X,Y,Z) is the cumulative hazard function and h0 (t) is the cumulative baseline hazard function of 

the form 

0 0

0

( ) ( )

t

h t u duλ= ∫

where �0 is baseline hazard rate. 

Main assumptions for this project are listed as follows. 
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1. Proportional assumption. All model covariates are assumed to be time independent. 

2. Linear assumption. We assume all covariates appear in the Cox model in the linear form, or in 

other words, we assume that log-hazard function is a linear combination of covariates. 

3. No ties. We assume that there is only one possible death at any time point or in other words we 

exclude the case where more than one subjects could die at the same time.  

4. No censoring. It is assumed that the event of interest occurs for every subject during the study 

period, or in other words, we are aware of the survival time for all subjects. 

 

The cumulative baseline hazard function as well as coefficients A, B and C can be estimated when 

fitting the Cox model to our data. Moreover, the population cumulative hazard can be estimated 

directly from data. We will give a detailed explanation how these items are estimated in the 

following sections. 

 

2.1.1 Estimation of Coefficients A, B and C 

Cox (1972) proposed an expression he called a “partial likelihood function” which only depends 

on parameters of interest. In our case parameters of interest are A, B and C and the partial 

likelihood function is time independent. In the present setting, the partial likelihood function is 

given by 

1

i i i

j j j

j i

x A y B z CN

x A y B z Ci

t t

e

e

+ +

+ +=

≥

∏
∑

. 

The denominator is the sum over all subjects at risk at
i

t , and coefficients A, B and C are 

estimated by maximizing the partial likelihood function or the log partial likelihood function 

which is given as 

11

log( ) ( log( ))
i i i

j j j

j j j j i

j i

x A y B z CN N
x A y B z C

i i i
x A y B z C i t ti

t t

e
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+ +

+ + = ≥=

≥

= + + −∑ ∑∏
∑

The maximum partial likelihood estimator for the coefficients can be obtained using the Matlab 

command coxphfit, which solves the problem through calculations of the first and second 

derivatives of log partial likelihood functions with respect to parameters A, B and C. 
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2.1.2 Estimation of Cumulative Baseline Hazard Function 

As mentioned in [1], if cumulative hazard function 
0( , , ) ( ) AX BY CZ

h X Y Z h t e
+ += holds then the 

survival function for an individual with covariate values (x,y,z) is 

0 0( )exp( ) ( )( , , ) exp( )( ) ( )
h t Ax By Cz h th x y z Ax By CzS t e e e

− + + −− + += = =

Denote 0 ( )

0
( )

h t
S t e

−= then 

exp( )

0
( ) ( ( )) Ax By Cz

S t S t
+ +=

Therefore, 

exp( )
exp( )0 0

exp( )

1 0 1 0 1

( , ) ( ( )) ( )
( )

( , ) ( ( )) ( )

Ax By Cz

Ax By Czi i i
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i i i
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S t x S t S t

+ +
+ +
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− − −

= =

Define the conditional baseline survival probability as  

0
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( )

i
i

i
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−

=

Then 
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is the probability of hazard for subject xi at time ti and 1

j i

i

j

t t

θ

θ

∧

∧

>

−
∑

is the 

probability of survival for subject xi at time ti. Since

( , ) Pr( )
i i i j

j i

S t x x survive at t
≤

= ∏

we have 
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The estimated conditional baseline survival probability 
i

α
∧

can be solved from the expression 

above or through its transformation

exp( )
1 i i i

j i

i
jAx By Cz

t ti

θ θ
α

∧
∧

+ +
>

=
− ∑

Then the estimated baseline hazard rate is 1-
i

α
∧

and the estimated cumulative baseline hazard 

function at ti is the sum of the estimated baseline hazard rate until ti. 

2.1.3 Estimation of Population Cumulative Hazard Function 

The Nelson Aalen estimator is used for the population cumulative hazard function. We denote the 

rank-ordered survival times as t(1)<t(2)<…<t(N) . Let the number at risk of dying at t(i) be denoted 

as ni and the observed number of deaths be denoted as di . Then the population cumulative hazard 

rate at time t(i) is
i

i

d

n
.  Since we do not consider ties, di is always equal to one, so in our case the 

population cumulative hazard rate is just
1

i
n

, and the estimated population cumulative hazard 

function at ti is the sum of the population cumulative hazard rate until ti. 

 

2.2 Model Adequacy Test 

The motivation to perform model adequacy test comes from the requirement that the fitted model 

should provide an adequate summary of the data upon which it is based. In this sense, a complete 

and thorough examination of a model’s fit and adherence to model assumptions is as important as 

model development.  

In our study, we assume the true model to be h(x,y,z) and generate sample data from this true 

model. Furthermore, two other models h(x,y) and h(x) are also considered, from which some 

covariates are excluded. We fit these two models with missing covariates to the data generated by 

the true model. In order to verify that model h(x,y,z) is the true model or the best model, we 

should prove that the two incomplete models where covariates are missing are not proper for the 

data, either that these models do not fit well to the data or model assumptions are violated. To 

examine the model’s fit, we could compare the estimates of coefficients for true model and the 

incomplete model, or compare the population cumulative hazard function with the estimated 
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baseline hazard function for all these models. We can also use the likelihood ratio test to see if the 

true model is significantly better than the others.  Martingale residual and Lowess smooth can be 

used to test adherence to the linear assumption for covariates, while we can include a time 

dependent variable to test if covariates are time independent. All these methods mentioned above 

are further studied in detail in chapter 3 and chapter 4 of this thesis. 

In this thesis, we consider three forms of the true model. The first one is without interaction terms 

or quadratic terms; the second one is with interaction terms but without quadratic terms; the third 

is with both interaction and quadratic terms. 

 

2.3 Data Simulation 

2.3.1 Generating Samples of Data for Independent Covariates 

Instead of using real-life data we generate sample data for both model covariates and survival 

time from the true model used in the thesis. Data for all covariates can be sampled from specified 

joint distribution. Then data for survival times could be generated using sample data for model 

covariates and relation ~ ln( ) / AX BY CZT U e + +− .  Now we give a detailed explanation of this 

expression of relation between survival time and model covariates. 

Cox model used in this thesis is of the following form as mentioned in section 2.1: 

0( , , ) ( ) AX BY CZ
h X Y Z h t e

+ +=

where
0 0

0

( ) ( )

t

h t u duλ= ∫ . 

When the baseline hazard rate �0 is constant and scaled to one we have that h0(t)=t. Moreover, 

when (x,y,z) fixed and t random the survival function 

0( ) exp( ( ) ) exp( )Ax By Cz Ax By Cz
S t h t e te

+ + + += − = −

, as a function of t, is uniformly distributed on [0,1] . Furthermore, when t=0, S(t)=1, when t 

tends to infinity, S(t) tends to zero. 

Therefore we have 

exp( ) ~ [0,1]

~ ln( )

~ ln( ) /

Ax By Cz

Ax By Cz

Ax By Cz

te U

te U

t U e

+ +

+ +

+ +

− ⇔
− ⇔

−

This holds for each subject (sample) and we can rewrite it as 
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~ ln( ) / AX BY CZT U e + +− . 

Now we could summarize the steps of generating data for independent covariates which is on the 

basis of discussion above: 

1. Specify values of A B and C, scale baseline hazard rate to one and choose a distribution for 

(X,Y,Z). 

2. Sample 100 values for (X,Y,Z) since we consider 100 subjects in our study and 100 values from 

uniform distribution on [0,1]. Then use ~ ln( ) / AX BY CZT U e + +− to calculate corresponding value 

of survival time for each subject.  

After data is generated coefficients and baseline hazard can be estimated using the methods 

discussed in section 2.1. 

 

2.3.2 Generating Samples of Data for dependent Covariates 

With the help of normal transformation, we can sample data from arbitrary marginal distributions 

with specified rank correlation matrix. Procedure of sampling dependent data in this way is 

illustrated below. 

1. Specify a rank correlation matrix � r, and then apply Pearson Theorem to get the corresponding 

product moment correlation coefficient matrix � . Pearson Theorem is described as follows: 

Let (X, Y) be random vectors with joint normal distribution then 

( , ) 2sin( ( , ))
6

i j r i j
πρ ρ=

Where ( , )i jρ and ( , )r i jρ  are the (i,j)th cell of matrices ρ and rρ respectively. 

Proof of Pearson Theorem is given in Appendix 1.

2. Let W1, W2, W3 be independent standard normal variables and sample 100 times independently 

for (W1, W2, W3). Apply Cholesky decomposition to � , denote �=LL
T and then put V=LW, where 

V=(V1 V2 V3)’and W=(W1 W2 W3)’. Here (V1 V2 V3) is joint normally distributed with standard 

normal margins and rank correlation � r. 

3. Specify invertible marginal distribution F1 F2 and F3. Moreover denote � as standard normal 

distribution function. For each of the 100 subjects, put xi=F1
-1

(�(v1i)),  yi=F2
-1

(�(v2i)),  zi=F3
-

1
(�(v3i)), i=1,…,100. Then (X,Y,Z) has marginal distribution F1 F2 and F3 and rank correlation 

matrix � r. 
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Chapter 3 

 

Further Study of Previous Methods 

 

In this part, we give a review and further study on two methods put forward in [1] to test model 

adequacy based on data simulation discussed in section 2.3. 

 

3.1 Comparison between Ordered Estimated Coefficients 

 

3.1.1 Review of the Method 

The first method to test model adequacy we study in this thesis is to fit both the true model and 

the model with missing covariates to the data generated by the true complete model 100 times 

([1]). Then the 100 ordered estimates of model coefficient are plotted for comparison. If the 

estimates of a coefficient for the incomplete model (with missing covariates) is significantly 

different from the estimates of the same coefficient for the true complete model, it implies that 

the missing covariates are significantly influential and should not be excluded from the true 

model, or in other words, the incomplete model for which some covariates are excluded is wrong. 

Here three models are compared: true model, denoted as h(x,y,z), the model for which covariate Z  

is excluded, denoted as h(x,y), as well as the model where both Y and Z are excluded, denoted as 

h(x). All these three models were fit 100 times to the data generated by the true model and the 

resulting 100 ordered estimates of the coefficient of X, i.e. A, for all models were plotted into the 

same graph for comparison.  

This method has been proved effective when applied to independent covariates without 

interaction or quadratic terms ([1]).  Figure 3.1 is the plot of 100 ordered estimates of A for model 

h(x,y,z) h(x,y) and h(x) where (A,B,C)=(1,1,1) while in figure 3.2 coefficient C, which is the 

coefficient of missing covariate Z, increases from 1 to 5. From these two graphs we see that 

missing covariates result in under-estimation. Moreover when the coefficient of missing covariate 

is larger, the under-estimation is more pronounced.  
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Now we continue with a further study of this method. First we apply this method to dependent 

covariates. Then interaction terms and quadratic terms are discussed. 

 

3.1.2 Study of Dependence 

As a start, let us look at the situation where covariate X is dependent on Y and Z to check whether 

the estimated coefficient of X will be influenced by such dependence.  

 

Figure 3.3 is the graph of 100 ordered estimates of A for h(x,y,z), h(x,y), and h(x), where the rank 

correlations between X and Z is 0.9 and the rank correlation between X and Y is 0.4. It is 

suggested not to set the rank correlation between each pair of covariates all very high, in order to 

avoid the situation that after Pearson Transformation the product moment correlation matrix is 

not positive definite and Cholesky decomposition cannot be performed. In this example, we put 

zero to the rank correlation between Y and Z. 
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As shown in the title of figure 3.3, corrcoef is short for product moment correlation coefficient, 

which depends on both the specified rank correlation matrix and sampling. From this plot, we see 

that unlike the case for independent covariates where incomplete model tends to under-estimate 

the coefficient, as shown in figure 3.1 and 3.2, in this case both incomplete models over-estimate 

the value of coefficient, which implies the significant influence of missing covariate and 

incorrectness of the incomplete models.  

Now we give two examples where rank correlation between Y and Z are not zero. Results are 

demonstrated in figure 3.4 and figure 3.5. Figure 3.4 is for the situation where Y and Z are weakly 

correlated while figure 3.5 is a result of the case that Y and Z are stronger correlated. 
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From both figure 3.4 and figure 3.5 we see that when Y and Z are also rank correlated with each 

other, the ordered estimates for incomplete models deviate more from the ordered estimates for 

the true model. In other words, the coefficient is over-estimated by incomplete models to a 

greater extent. However, the similarity of the two graphs also tells us that how strongly or weakly 

Y and Z are correlated has little influence on the result. 
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However, while studying on the situations where all covariates are weakly correlated (here we put 

rank correlation for each pair of covariates 0.1), we notice from figure 3.6 that the incomplete 

models tend to under-estimate the coefficient, as in the cases of independent covariates, instead of 

over-estimation, as in the cases of strong dependence between X and the missing covariates.  

Moreover, when compared figure 3.3 with figure 3.6, we notice that strong dependence leads to 

larger variance of estimates for the true model. Moreover, when covariates are strongly dependent, 

variance of estimates for the true model is larger than that of the incomplete models. 
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As shown in figure 3.7 and figure 3.8, when we set the coefficient of missing covariate Z as C=5 

at the beginning of simulation, then in the case where X is strongly corrected with Z (here in 

figure 3.7 we still set rank correlation of X and Z as 0.9 and that of X and Y as 0.4), the over-

estimation for incomplete models are more obvious. However, when all covariates are weakly 

dependent on each other, for instance when all rank correlation are 0.1, as shown in figure 3.8, 

then incomplete models tend to under-estimate the coefficient just like in the case of independent 

covariates, and here under-estimation is more obvious than in the case when C=1 and all 

covariates of the same rank correlation (which is the case illustrated in the figure 3.6). 
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Now we have a look at the influence of negative dependence. From figure 3.9 we see that when X 

and missing covariate Z are negatively and strongly dependent, missing covariates results in 

under-estimation of coefficient of X. This is different from the situation when they are strongly 

but positively dependent as shown in figure 3.7 (rank correlation matrices we set in figure 3.7 and 

3.9 are only different in the sign). Hence in the case of strong dependence, the sign of correlation 

between covariates, or in other words, whether covariates are positively or negatively dependent 

is also influential to the estimates. 
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As a contrast, let us look at figure 3.10. Here covariates are negatively and weakly dependent. In 

this case rank correlation between covariates only different from figure 3.8 in the sign. From this 

plot we see that missing covariates results in under-estimation. Note that this is the same as in 

figure 3.8 where covariates are positively dependent. Therefore for weakly dependent covariates 

whether they are positively or negatively dependent is not influential to the estimates. 

When comparing figure 3.9 and figure 3.10 we also notice that for negatively dependent 

covariates, strong dependence leads to more profound under-estimation and larger variance of 

estimates for the true model. 
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3.1.3 Study of Interaction and Quadratic terms 

 

Let us move on to study the interaction and quadratic terms. First we assume that there are no 

such terms in the true model as in the previous cases and check if such terms are influential in the 

model or not via the same method as before. Then we assume that the true model contains such 

terms and give a similar discussion for model adequacy.   

3.1.3.1 No Interaction or Quadratic Terms in the True Model 

In this case we compare the ordered estimates of coefficient of X for the true model with those 

estimated for the models with extra term x
2
, xy, xz, xyz respectively. We study both the cases 

where C=1 and C=5. Moreover, various dependence situations are also studied. When all 

covariates are independent and C=1, result is illustrated in figure 3.11. From this figure we notice 

that all the extra interaction or quadratic terms are not significant for the Cox proportional hazard 

model since the estimates of A are almost the same for the models with and without those terms. 

Therefore these terms are not necessary to be included in the true model h(x,y,z). In other 

situations results are similar and all the extra terms are not influential either. Plots for dependent 

covariates and for the case of C=5 are shown in Appendix 2. 
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3.1.3.2 True Model with Interaction Terms   

Now let us discuss about the case that the true model is assumed to have interaction terms. We 

follow the same way to test model adequacy, the only different is that here the three models for 

comparison are the true Cox proportional hazard model h(x,y,z,xy,yz,xz) and two incomplete 

models h(x,y,xy) and h(x).   

Figure 3.12 results from independent covariates. We see that although here interaction is 

considered, missing covariates still lead to under-estimation of the coefficient, like in the case 

where there is no interaction in the model. Figure 3.13 also shows similar results to the case of no 

interaction. In this plot, over-estimation can be seen due to strongly dependence between X and 

missing covariates. In both figures C=5. 

Plots for the cases of weak dependence and C=1 are demonstrated in Appendix 2. From these 

figures, as well as figure 3.12 and figure 3.13, we see that including interaction in the model 

results in similar performance of the estimates. That is, when covariates are independent or 

weakly dependent, missing covariates result in under-estimation of the coefficient, while for 
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strong dependence, over-estimation will be the consequence. Moreover, over-estimation or under-

estimation will be more significant if coefficient of missing covariate Z is larger. 
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3.1.3.3 True Model with Both Interaction Terms and Quadratic Terms  

In this section, we consider both interaction and quadratic terms. In this case, the true model is 

h(x,y,z,x
2
,y

2
,z

2
,xy,yz,xz). Model adequacy test is performed through comparison between ordered 

estimates of coefficient A for true model and two incomplete models with missing covariates, 

h(x,y,x
2
,y

2
,xy) and h(x,x

2
). As before, different situations such as independence, strong 

dependence and weak dependence between covariates are studied and compared. We also vary 

the value of C which is the coefficient of missing covariate Z. Results for all these situations are 

similar to those obtained from the model with no interaction or quadratic terms and the model 

with only interaction terms, where missing covariates results in under-estimation if independent 

or weakly dependent, and over-estimation otherwise.  

For instance let us look at figure 3.14. This plot results from strongly dependent covariates where 

product moment correlation coefficient between X and missing covariate Z is 0.9140. Over-

estimation is obvious as a consequence. Note that none of the estimates of A for the two 

incomplete models is close to 1which is the value of A. Actually, as shown in the plot, estimates 

for model h(x,x
2
)are all above 2, while estimates for model h(x,y,x

2
,y

2
,xy) are all above 4. 
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Figure 3.15 implies under-estimation for weak dependence. Here, most of the estimates for the 

two models with missing covariates are below 1. In both figure 3.14 and figure 3.15 we have C=5. 

Plots for independent covariates and for the case of C=1 are shown in Appendix 2. 

Studies in this section imply that the method to test model adequacy through comparison between 

ordered estimates of coefficient works well for dependence covariates, for models with 

interaction terms and models with both interaction and quadratic terms. 

 

3.2 Comparison between Estimated Cumulative Baseline Hazard 

Function and Population Cumulative Hazard Function 

 

Another method used to test model adequacy is through comparison between estimated 

cumulative baseline hazard function and population cumulative hazard function ([1]). This is the 

main focus of this section. 
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3.2.1 Review of the Method 

From the form of Cox proportional hazard model
0( , , ) ( ) AX BY CZ

h X Y Z h t e
+ += , we see that if all 

covariates are excluded, or all coefficients are equal to zero, then the cumulative baseline hazard 

function is equal to the population cumulative hazard function, which can be put as a null 

hypothesis to test model adequacy. If this hypothesis can be rejected, in other words, if the 

estimated cumulative baseline hazard function significantly deviates from the population 

cumulative hazard function, it implies that effect of covariates is significant and covariates should 

be included in the Cox model. Otherwise, the Cox model is not appropriate if this null hypothesis 

cannot be rejected. Two-sigma (variance) bands of population cumulative hazard function are 

applied to show whether the estimated cumulative baseline hazard function is significant different 

from the population cumulative hazard function. The variance estimator for the Nelson-Aalen 

estimator for the population cumulative hazard function used here is ([4], P25)  

3

( )
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j j j

t t j

d n d
V t

n

∧

≤

−
=∑  

where nj and dj are the same as defined in section 2.1.3. Since we assume no ties, 1
j

d ≡ .  

Applications of this method to independent covariates were already discussed ([1]). Results are 

shown in figure 3.16 and figure 3.17. 
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From figure 3.16 and figure 3.17 we see that when C=1, the null hypothesis fails to be reject for 

model h(x), since the estimated cumulative baseline hazard for this model is within the 2-sigma 

bands of the population cumulative hazard; when C=5, the null hypothesis cannot be rejected for 

both h(x,y) and h(x) and the estimated cumulative baseline hazard for these two model is almost 

the same as the population cumulative hazard. As shown in the legend, cumbase (xyz), cumbase 

(xy) and cumbase (x) stand for the estimated cumulative baseline hazard for model h(x,y,z), h(x,y) 

and h(x) respectively. Moreover, popcumhaz stands for population cumulative hazard and 

pch+2sigma, pch-2sigma are 2-sigma bands for the population cumulative hazard. 

In our thesis, we first extend this method to dependent covariate. Then we present a further study 

on the models with interaction terms. Here we use the same method as before when sampling data 

from dependent covariates.  

 

3.2.2 Study of Dependence 

3.2.2.1 Strong Dependence 
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Our discussion begins with the case that X is dependent on Y and Z. First, strong dependence 

between X and missing covariate Z is studied. We consider both the situations where C=1 and 

C=5 .Results are shown in figure 3.18 and figure 3.19 respectively. 

Figure 3.18 results from the situation of C=1. Unlike figure 3.16, in this case the estimated 

baseline cumulative hazard functions for both incomplete models are close to that of the true 

model, instead of the population cumulative hazard function. Since the estimated cumulative 

baseline hazard for all models are different from the population cumulative hazard, the null 

hypothesis that the cumulative baseline hazard function is equal to the population cumulative 

hazard function can be rejected for all models. 

 

Let us move on to the situation of C=5. As C increases from 1 to 5, when all covariates are 

independent, as shown in figure 3.17, the estimated cumulative baseline hazard functions for 

models h(x,y) and h(x)  move closer to and actually is not significantly different from the 

population cumulative hazard function. However, from figure 3.19, we see that when X is highly 

correlated with the missing covariates, although the estimated cumulative baseline hazard 

functions for the two incomplete models are not so close to that function of the true model as in 

figure 3.18, they are still significantly different from the population cumulative hazard function. 

Therefore the null hypothesis can be rejected for both incomplete models. 

Moreover, when C=5 we notice from figure 3.19 the difference in values of survival time (the 

horizontal axis). This is due to the heavier loading of covariate Z.  
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3.2.2.2 Weak Dependence 

 

Furthermore, from figure 3.20 and figure 3.21 we see that when covariates are dependent, but 

weakly dependent, the resulting performances of the estimated cumulative baseline hazard 

functions for all models are similar to the case of independence. Figure 3.20 is the result of C=1, 

where the estimated cumulative baseline hazard functions for h(x,y)  and h(x) are close to the 

population cumulative hazard function, unlike the case of strong dependence. 

As C increases to 5, from figure 3.21 we see that the estimated cumulative baseline hazard 

functions for h(x,y)  and h(x) are almost the same as the population cumulative hazard function, 

and the null hypothesis cannot be rejected for neither h(x,y)  nor h(x). This implies that using Cox 

model would not be indicated for these two models with missing covariates. 
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3.2.3 Study of Interaction  

In this section interaction terms are included in the model and the true model will be 

h(x,y,z,xy,yz,xz). Furthermore, the two incomplete models with missing covariates for comparison 

are h(x,y,xy) and h(x). 

 

3.2.3.1 Covariates Independent of Each Other 

We start with the assumption that all covariates are independent of each other. When C=1, as 

shown in figure 3.22, the estimated cumulative baseline hazard functions for h(x) is not different 

from the population cumulative hazard function and the null hypothesis fails to be rejected for 

model h(x). Hence using the Cox model for this model with two missing covariates is not 

appropriate. 

When C=5, as shown in figure 3.23, the null hypothesis fails to be rejected for both h(x,y,xy) and 

h(x) which means that Cox model is not indicated for neither of them.  
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3.2.3.2 Dependence Covariates 

As shown in figure 3.24, when X is highly correlated with missing covariate Z the null hypothesis 

can be rejected for all models, since all of the estimated baseline cumulative hazard functions are 

significantly different from the population cumulative hazard function. However, when X is 

weakly dependent on the missing covariates which is the case of figure 3.25, the estimated 

cumulative baseline hazard functions for the incomplete models are almost the same as the 

population cumulative hazard function. As a consequence, the null hypothesis fails to be rejected 

for both h(x,y) and h(x). Figure 3.24 and figure 3.25 demonstrate the results for C=5. When C=1, 

null hypothesis can be rejected for both incomplete models in the case of strong dependence 

while for the situation where covariates are weakly dependent null hypothesis fails to be rejected 

for model h(x). Relevant plots are shown in Appendix 3. 
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Chapter 4 

 

Other Methods for Model Adequacy Test 

 

In this chapter, we investigate three other methods used to test model adequacy for the 

Cox proportional hazard model. Our discussion starts with likelihood ratio test to see if 

the true complete model fit the data significantly better than the model with missing 

covariates. Moreover, by including time dependent variables we can check if the 

proportional hazard assumption that covariates are independent of time is satisfied. In the 

end, we use the Martingale residual to test if the model with missing covariates still 

satisfies the assumption that the form of covariates in the Cox model is linear. 

 

4.1 Likelihood Ratio Test 

In this part, the main focus is likelihood ratio test which will tell us if one model is better than 

another model through comparison of the log-likelihood of them. In this thesis likelihood ratio 

test is applied to check if the true model is better than the model with missing covariates. This is 

done through the following way. We calculate the log-likelihood of both the true model and the 

model with missing covariates and check if the difference between them is significantly large, or 

in other words, if the log-likelihood of the true model is significantly larger than the incomplete 

model. If so then we can say that true model is better than the incomplete model. In this section 

we discuss about the influence of independence, weak dependence and strong dependence 

between covariates. Moreover, for each situation we consider three kinds of true model: model 

without interaction terms or quadratic terms, model with interaction terms but not quadratic terms 

together with the model with both interaction and quadratic terms. 

 

4.1.1 Introduction 

Idea of likelihood ratio test is as follows. As a start the likelihood ratio test statistics, denoted as G, 

is calculated as twice the difference between the log partial likelihood of two models. This 

difference will be asymptotically �2
 distributed with degrees of freedom equal to the difference in 

dimensionality between these two models. Then Pr (� 2 
(n) ≥ G) is calculated where n is the 

degrees of freedom of �2
 distribution. If this probability is smaller than some threshold value, say 
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0.05, then it implies that G or in other words, the difference in log-likelihood between two models 

is significantly large and one model is significantly better than the other. In this section, we use 

the likelihood ratio test to check if the true model fits the data better than the models with missing 

covariates. First we calculate the log-likelihood of the true model, of all the models with one 

missing covariates, and of all the models with two missing covariates. Then we pick up the best 

2-covariate model (where one covariate is excluded) which has the largest log-likelihood among 

all 2-covariate models and also the best 1-covariate model (where two covariates are excluded). 

First, G is calculated as twice the difference between the log partial likelihood of the true model 

and the best 2-covariate model. If Pr (� 2 
(1) ≥ G) is significantly small then it implies that the true 

model is better than the best 2-covariate model and no covariate should be excluded. The same 

procedure will be applied to check if the true model is better than the best 1-covariate model. 

However, this time degrees of freedom of �2
 distribution will be 2. As a start let us have a look at 

the situation of independent covariates. 

 

4.1.2 Independent Covariates 

In this section six tests are performed as follows: 

G1 is the likelihood ratio test for the true model and the best 2-covariate model while G2 is the 

test for the true model and the best 1-covariate model. For these two tests interaction between 

covariates and quadratic terms are not considered. 

Test G3 and test G4 are similar to G1 and G2 respectively. The only difference lies in the 

inclusion of interaction terms in the true model which has the form h(x,y,z,xy,yz,xz). Moreover, in 

this case 2-covariate models are h(x,y,xy), h(y,z,yz) and h(x,z,xz) while 1-covariate models are h(x), 

h(y) and h(z) . 

Test G5 and test G6 are for the situation when both interaction terms and quadratic terms are 

considered.  In this case, true model is of the form h(x,y,z,x
2
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2
). G5 is the likelihood ratio test for the true model and the best 2-covariate model 

while G6 is the likelihood ratio test for the true model and the best 1-covariate model. 

For all the six tests X, Y, Z are sampled from centered uniform distribution on [-1, 1] and (A, B, C) 

takes the value (1, 1, 5). 10 simulations are performed for each test and in each simulation 

probability Pr (� 2 
(n) ≥ G) for all the tests is calculated.  From the results which are shown in 

Appendix 4, we see that in each simulation for all tests, probability of � 2
(n)≥G are all much 

smaller than 0.05. The largest value of that probability appears in the fourth simulation when we 

compare true model with the best 2-covariate model without consideration of interaction or 

quadratic terms and the value is 2.2206e-003. This implies that true model is better than all other 

models, whether interaction terms and quadratic terms are in the model or not. 
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 4.1.3 Covariates Strongly Dependent 

Here we consider strong dependence between some covariates. We put rank correlation between 

X and Z as 0.9 while rank correlation between X and Y is set as 0.4. Similarly to section 4.1.2, we 

perform six tests as below: 

G7: test between full model and the best 2-covariate model, true model without interaction or 

quadratic terms. 

G8: test between full model and the best 1-covariate model, true model without interaction or 

quadratic terms. 

G9: test between full model and the best 2-covariate model, true model with interaction terms.  

G10: test between full model and the best 1-covariate model, true model with interaction terms. 

G11: test between full model and the best 2-covariate model, true model with interaction and 

quadratic terms. 

G12: test between full model and the best 1-covariate model, true model with interaction and 

quadratic terms. 

Here marginal distribution of X, Y, Z are still U [-1, 1] and we set (A, B, C) as (1, 1, 1). Results 

obtained from 10 simulations are shown in Appendix 4.  

From our results we notice that when strong dependence exists between some covariates, log-

partial likelihood of the true model is not always significantly larger than that of the best 2-

covariate model. This is especially obvious for the true model without interaction or quadratic 

terms, where the values of Pr(� 2
(n)≥G)  are larger than 0.1 in all simulations. For simulation 7 

and 8, this probability is even larger than 0.5. However, in the case of strong dependence, true 

model is significantly better than the best 1-covariate model, since the resulting Pr (� 2
(n)≥G)  is 

very small in each simulation. Actually when we compare true model with the best 1-covariate 

model the largest value of Pr (� 2
(n)≥G)  appear in simulation 8 for the model without interaction 

or quadratic terms and the value is only 6.4418e-006, which is much smaller than the frequently 

used significance level 0.05. 

 

4.1.4 Covariates Weakly Dependent 

When we apply the tests in section 4.1.3, denoted in this section as test G13-G18 respectively, to 

weakly dependent covariates (here rank correlations between X and Y as well as X and Z are both 

set as 0.1), results are similar to that obtained in section 4.1.2. In all simulations and for all tests 

true model is better than all the other models since the difference between log partial likelihood of 
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them are significantly large in each case. As shown in the end of Appendix 4 the largest value of 

Pr (� 2
(n)≥G)   is only1.9149e-003 .  

 

4.2 Inclusion of Time Dependent Variable 

 

4.2.1 Introduction 

In this part time dependent variable ln(t)*covariate is introduced. We compared the estimates of 

coefficient for the models with and without this time dependent variable.  As in section 3.1, we 

simulate 100 times and compare the ordered estimates in plots.  If the 100 ordered estimates for 

models with and without this time dependent variable are different, or if this time dependent 

variable can help better fit the data, then this time dependent variable is significant to the Cox 

model thus should be included. If so, then it is in conflict with the proportional assumption that 

all covariates are time independent. In addition to the method above, at the end of this section we 

perform Wald test on the coefficients of the time dependent variables to check if time dependent 

variables are significant. True model used in this section is h(x,y,z). 

 

4.2.2 True Model h(x,y,z) 

At first let us have a look at the true model. Here we compare the 100 ordered estimates of A for 

models h(x,y,z) and h(x,y,z,xlnt), the 100 ordered estimates of B for models h(x,y,z) and 

h(x,y,z,ylnt) and the 100 ordered estimates of C for models h(x,y,z) and h(x,y,z,zlnt). In this way 

we can test if all these three covariates are time independent or not. 

Figure 4.1 is obtained from independent covariates and in this example C=5. From this figure we 

see that for the true model the ordered estimates are almost the same for the model with and 

without the time dependent variable. This implies that for the true model the proportional hazard 

assumption is satisfied. When some covariates are strongly dependent or in the case of weak 

dependence results are similar which we put in Appendix 5 and proportional hazard assumption is 

satisfied in those cases. 
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4.2.3 Models with two covariates missing 

As a contrast we see from figure 4.2 that for the incomplete model h(x) where two covariates are 

excluded, the ordered estimates for the model with time dependent variable are different from 

those for the model without the time dependent variable. Moreover, we notice from figure 4.2 that 

inclusion of the time dependent variable actually help make smaller the under-estimation due to 

missing covariates. Although estimates for both models are smaller than 5, estimates which 

include the time dependent variable are generally larger. Therefore this time dependent variable is 

significant to the model and should be included for instance as a covariate and this is in conflict 

with the assumption that all covariates are time independent. Similar results are obtained for the 

model where X, Y and Z are weakly dependent (see Appendix 5). However, when data is sampled 

from strongly dependent covariates, as shown in figure 4.3, the difference between ordered 

estimates for the two models is not as obvious as in figure 4.2 where the same values of 

coefficients (5,5,5) are set for simulations. It is hard to say from figure 4.3 whether the time 

dependent variable is influential or not.  
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Therefore for the model with two covariates excluded proportional assumption does not hold for 

weakly dependent or independent covariates. However, when it comes to strong dependence this 

method does not work well and it is advisable to use other ways for model adequacy test. 
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4.2.4 Models with one covariate missing 

 

Figure 4.4 is obtained from independent covariates. It shows that when taking the same 

coefficient values (5,5,5) as in figure 4.2 where two covariates are excluded from the model, there 

is difference between the ordered estimates for models with and without the time dependent 

variables but the different is not as large as in figure 4.2. As shown in figure 4.5, when covariate 

X is strongly dependent on missing covariate Z (here product moment correlation coefficient 

between these two covariates is larger than 0.9), difference between estimates from the model 

with and without the time dependent variables is small and it is hard to judge from the graph if 

the difference is significant or not.  In other words, apart from the graphic method, it is important 

for us to use some statistical test to check if time dependent variables are significant or not. This 

is what we will do in the next section. 
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4.2.5 Wald Test 

Wald statistic is used to test significance of coefficient. It is the ratio of the estimated coefficient 

to its estimated standard error. The estimator of the standard error is the positive square root of 

the variance estimator which is calculated in the following way. 

Denote the coefficient we need to test as β and the corresponding covariate as x. Support there 

are m subjects 1,... mx x with survival times
(1) (2) ( )...

m
t t t≤ ≤ ≤ . First we calculate the observed 

information as follows

( )

2

2

2
1

( )
( ) ( )

i

j i

m
p

wij j

i t t

L
I w x x

β
β

β = ≥

∂
= − = − −

∂ ∑ ∑

( )
p

L β is the log partial likelihood. 
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Then the estimator of variance can be calculated by 

1( ) ( )Var Iβ β
∧ ∧ ∧

−=

Under the null hypothesis that the coefficient is equal to zero, along with other mathematical 

conditions, the Wald statistics will follow a standard normal distribution and the equation for the 

Wald statistics is 

( )

z

SE

β

β

∧

∧ ∧=

( )SE β
∧ ∧

is the estimated standard error and two-tailed test is applied here.

First assume that covariates are independent. We regress the hazard onto both the covariates and 

time dependent variables and then apply Wald test to check if the time dependent variables are 

significant or not. Tables 4.1, 4.2 and 4.3 are summaries of Wald test for the true model and 

models with missing covariates. Here Beta is the estimated coefficient of the time dependent 

variable, se is its estimated standard error, z is the Wald statistics and p is the two-tailed p-value. 

Significance level applied here is 0.05. If the p-value is smaller than 0.05 then the null hypothesis 

that the coefficient is zero is rejected. Moreover, the time dependent variable is significant and 

the proportional hazard assumption is not satisfied. 

From table 4.1 we see that for the true model, p-values for all time dependent variables are all 

larger than 0.05. Hence in the true model all the time dependent variables are not significant and 

proportional hazard assumption is satisfied. 

 Beta se z p 

Xlnt 0.0273 0.0844     0.3229     0.7468 

Ylnt 0.0906     0.0742     1.2218     0.2218 

Zlnt 0.0482     0.0762     0.6320     0.5274 ����� ������� ��� 
� ���� �������� �������� �
� �
��� �������� ����� ����������
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As we include time dependent variables Xlnt and Ylnt into the model h(x,y), it is shown in 

table 4.2 that the p-value of Xlnt is smaller than the significance level 0.05, which implies 

that this time dependent variable is significant and proportional assumption is not 

satisfied.  

 Beta se z p 

Xlnt -0.1489     0.0527    -2.8241     0.0047 

Ylnt 0.0670     0.0501     1.3381     0.1809 ����� ������� ��� 
� ���� �������� �������� �
� �
��� ������� ����� ����������
 

When it comes to the model with two covariates missing, we see from table 4.3 that p-

value of Xlnt is much smaller than 0.05 hence it is very influential to the model and 

proportional hazard assumption is not obeyed.

 

 Beta se z p 

Xlnt -0.1630     0.0452    -3.6084     0.0003 ����� ������� ��� 
� ���� �������� �������� �
� �
��� ����� ����� ����������
 

Now, let us have a look at strong dependence between covariates. In this case,   

( , ) 0.4742, ( , ) 0.8970, ( , ) 0.5589,X Y X Z Y Zρ ρ ρ= = =  

 Beta se z p 

Xlnt -0.0182     0.1003    -0.1819     0.8557 

Ylnt 0.0371     0.0574     0.6461     0.5182 

Zlnt -0.0129      0.0995    -0.1294     0.8971 
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From table 4.4 we see that for the true model, in the case of strong dependence, none of the time 

dependent variables is significant. However this is also the case for model h(x,y), as shown in 

table 4.5, which is identical to the results shown in figure 4.4 and figure 4.5. 

 

 Beta se z p 

Xlnt -0.0328     0.0663    -0.4955     0.6202 

Ylnt  0.0295     0.0524     0.5637     0.5730 ����� ������� ��� 
� ���� �������� �������� �
� �
��� ������� ����� ��
���� ��������
 

 Beta se z p 

Xlnt -0.0591     0.0392    -1.5079     0.1316 ����� ������� ��� 
� ���� �������� �������� �
� �
��� ������� ����� ��
���� ��������
In table 4.6 for model h(x), p-value of Xlnt is also larger than the significance level 0.05 but much 

smaller than that in model h(x,y) and h(x,y,z). Therefore time dependent variable Xlnt is much 

more significant for the model h(x), than the other two models, but still not significant enough 

that we can reject the null hypothesis and claim that proportional hazard assumption is violated. 
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4.3 Martingale Residual 

 

In this section we test model adequacy by checking if the linearity assumption still holds for the 

incomplete model where covariates are missing. True model used here is h(x,y,z). Linearity 

assumption tells us that covariates appear in the Cox model in the linear form, or in other words, 

log-hazard function is linear to all covariates. First let us review definition of Martingale residual. 

 

4.3.1 Martingale Residual and Lowess Smooth 

As a start of this section we review the definition of martingale residual and Lowess smooth then 

we show how to apply this method to test model adequacy. 

The martingale residual for the ith subject at the end of follow-up is of the form 

( , , )
i i i i i

M c h c h t x β
∧ ∧ ∧ ∧

= − = −

i
M

∧
is the estimated martingale residual for the ith subject and 

i
c is the censoring variables for the 

ith subject. Since we assume no censoring all 
i

c are equal to 1. Moreover, 
i

h
∧

is the estimated 

cumulative hazard and in this section it is estimated in the following way. 

The expression for the cumulative baseline hazard is 

0 0( ) ( )
j i

i j

t t

h t tλ
≤

= ∑

The value of the baseline hazard at ti is expressed as (for the full model) 

0

( ) ( )

1
( )

exp( ) exp( )
i i

i
i

i i i i i i

j R t j R t

c
t

A x B y C z A x B y C z

λ
∧ ∧ ∧ ∧ ∧ ∧

∈ ∈

= =
+ + + +∑ ∑

Note that in our paper we assume that there are no ties. 

Then the cumulative hazard 
i

h
∧

is estimated as 
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0 ( ) exp( )
i i i i i

h h t A x B y C z
∧ ∧ ∧ ∧

= + +

ti is the survival time, x represents the covariates which in our case are X,Y, and Z, and β
∧

is the 

estimated coefficient. In our model the estimated coefficients are ,A B
∧ ∧

andC
∧

. 

The residual 

( , , )
i i i i i

M c h c h t x β
∧ ∧ ∧ ∧

= − = −  

has also been called the Cox-Snell  or modified Cox-Snell residual ([3]), also see Cox and Snell 

(1968) and Collett (1994). This terminology is due to the work of Cox and Snell. 

Lowess smooth is used here in addition to the martingale residual. It is a weighted scatter plot 

smoothing method which fits simple models to localized subsets of the data to build up a function 

that describes the deterministic part of the variation in the data, point by point. The smoothing 

parameter, denoted as �, is the proportion of data used in each fit and the subset of data used in 

each weighted least squares fit hence comprises the n� (n is the number of points in the plot) 

points whose values are closest to the point at which the response is being estimated. Large 

values of � produce the smoothest functions while for smaller � the regression function will be 

closer conform to the data. However, when using a too small � the regression function will 

eventually start to capture the random error in the data. When we take �=0.5 the Lowess 

regression function is smooth enough for our study and we keep this setting all through this 

section. We use the Matlab command ‘smooth’ to make Lowess smooth. 

To use martingale residual and Lowess smooth to test model adequacy, Therneau, Grambsch and 

Fleming (1990) suggest fitting a model that excludes the covariate of interest. The results are used 

to calculate the martingale residual and to generate Lowess smoothed values. These are then 

plotted against the values of the excluded covariate and the shape of the plot, especially the 

smooth, provides an estimate of the functional form of the covariate in the model. Hence, if the 

shape of martingale residual and Lowess smooth turns out to be linear then it implies that the 

model satisfies the linearity assumption and vice versa.  

In this part we apply this method to model h(x,y z) and h(x,y), the covariate of interest or in other 

words, the excluded covariate will be X. We exclude X and fit both models and then plot the 

calculated martingale residual and Lowess smooth values versus the excluded covariate X. Then 

we can check if the linearity assumption holds in each case, in other words, to see if the 

assumption that log-hazard function is linear to covariate X  holds for both true model h(x,y z)and 

the incomplete model h(x,y). 
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4.3.2 An Improvement of This Method 

Grambsch, Therneau and Felming (1995) expand on their earlier work and suggest that one begin 

with a fit of the model containing all covariates and then plot the log of ratio of a smoothed c to a 

smoothed H
∧

versus the covariate of interest. They found out that in this way it has greater 

diagnostic power than their earlier proposed method which has been described in section 4.3.1. 

In our paper this method is applied in the following way. We fit models h(x,y,z), h(x,y) and h(x), 

all including the covariate off interest, X. Then the cumulative hazard iH
∧

is estimated using the 

way introduced in section 4.3.1. The values of iH
∧

are plotted versus X and a Lowess smooth was 

calculated and saved, denoted as smoothH
∧

. Moreover, smoothed c is always one since in our case 

we do not consider censoring hence all 
i

c are one. The smoothed values were then used to 

calculate 

1
ln( ) ln( )smooth

i i i

smooth smooth

c
f A x A x

H H

∧
∧ ∧

∧ ∧= + = +

For models h(x,y,z), h(x,y) and h(x)we plot fi against xi, if the resulting plot is not linear then it 

implies that X is not of the linear form in the model, which is in conflict with the linearity 

assumption . 

 

4.3.3 Independent Covariates 

Let us first have a look at the situation where all covariates are independent. Figure 4.6 is the 

martingale residual and Lowess smooth plot for model h(x,y,z) versus X. Figure 4.7 is the plot of 

fi for model h(x,y,z)against X. From these two graphs we see that for the true model, both of them 

show a linear shape which implies that the true model satisfies the linear assumption.  

 

Figures 4.8 and 4.9 are the corresponding plots for model h(x,y). Both plots have a non-linear 

shape which implies that covariate X appears as non-linear in the model. This is a violation of the 

linear assumption. Similar result is shown in Figure 4.10 which is the plot of fi for model h(x). 

From the non-linear shape of this figure we see that h(x) do not obey the linearity assumption of 

the model either.  
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4.3.5 Dependent Covariates 

First let us talk about the influence of strong dependence. Figure 4.11 and figure 4.12 are plots of 

the martingale residuals and fi for model h(x,y). Although non-linear shape can still be seen from 

both these two graphs which implies violation of linear assumption for covariate X, deviation 

from linearity is not as much as in the case of independence as shown in figure 4.8 and figure 4.9.  

This is also the case for model h(x) as shown in figure 4.13. There is deviation from linear at the 

beginning, but it seems when X takes values from -0.6 to 1, a linear shape can be seen within this 

interval.  

Similar to the situation of independence, when we look at figures for weakly dependent 

covariates (figures 4.14, 4.15, 4.16), non-linear shapes are obvious in the martingale residuals for 

h(x,y) and in the plots of  fi for both h(x,y)and h(x). This implies covariate X does not appear in its 

linear form in the model hence linear assumption is not satisfied. Furthermore, plots of martingale 

residuals and fi deviate more from linearity in the case of weak dependence than in the case of 

strong dependence. 
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In all situations of dependence, model h (x,y,z) satisfies the linear assumption since all plots 

demonstrate a linear shape. Relevant plots for h(x,y,z) are put in Appendix 6. 
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At the end of this chapter we give a talk about the Schoenfeld residual which is commonly used 

as a way to test model adequacy. More precisely, it is used to test adherence to the proportional 

hazard assumption. Schoenfeld (1982) proposed the first set of residuals for use with a fitted 

proportional hazard model and these residuals are referred to as Schoenfeld residuals. These 

residuals are based on the individual contribution to the derivative of log partial likelihood. 

Suppose there are p covariates and n subjects. The derivative of log partial likelihood with respect 

to the kth covariate is give below. Note that we assume no censoring, all ci equal to one. 
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The estimator of the Schoenfeld residual for the ith subject on the kth covariate is obtained by 

substituting the partial likelihood estimator of the coefficient, denoted as β
∧

: 
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If these residuals have a trend over time, or there is some slope on the plot of these residuals, then 

it implies that time has influence on the residuals and the assumption that all covariates are time 

dependent is not satisfied. The figure below is the Schoenfeld residuals for covariate X calculated 

from model h(x,y,z), h(x,y) and h(x). None of them have a slope or some trend over time, but on 

the other hand there is no significant difference between results of these three models. In this 
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sense this method is not as powerful as inclusion of time dependence variables to test adherence 

of the proportional hazard assumption. Therefore we did not use this method in our study. 
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Chapter 5  

 

Conclusion 

 

The aim of this thesis is to test modal adequacy, which includes the test of how well the 

model fits the data and the test of whether model assumptions are satisfied. As in [1], we 

generate data from the assumed true model, and fit both the true model and models with 

covariates excluded to the generated data. Results of regression for each model are used 

in different methods designed to test model adequacy. In this thesis plenty of further 

study of [1] has been done by applying two methods proposed in [1] to test model’s fit to 

dependent covariates, to interaction and to quadratic terms. We also applied another 

method, likelihood ratio test to check model’s fit. Moreover, methods to test adherence to 

model assumptions are also studied. We include time dependent variables to test 

adherence to proportional assumption. Furthermore, martingale residual and Lowess 

smooth plots are used to test if the linearity assumption holds for true model and models 

with missing covariates. Results of simulations are summarized as follows. 

When covariates are independent or weakly dependent, missing covariates result in 

under-estimation of coefficient. However, when covariates are strongly dependent, 

missing covariates result in over-estimation of coefficient. Larger value set for coefficient 

of missing covariate when generating data results in greater under-estimation or over-

estimation. Models with interaction terms and models with both interaction and quadratic 

terms have similar results. 

As for the null hypothesis that the estimated baseline cumulative hazard function is equal 

to the population cumulative hazard function, when covariates are strongly dependent on, 

this null hypothesis is rejected for h(x,y) and h(x) since the estimated baseline hazard 

functions for these two models of missing covariates are close to that of h(x,y,z), instead 

but not the population cumulative hazard. When covariates are weakly dependent, results 

are similar to independent case, that is, when C=1, this null hypothesis fails to be rejected 

for h(x), and when C=5, it is failed to be rejected for both h(x,y) and h(x).When 

interaction is considered results are similar in each situation. 
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As for the likelihood ratio test, when covariates are independent or weakly dependent, 

true model is significantly better than models with one or two missing covariates. This is 

also the case when interaction and quadratic terms are considered. However, when 

covariates are strongly dependent, true model is not so significantly better than the 

models with one missing covariate, and this is especially the case for the model with no 

interaction or quadratic terms. But the true model is still significantly better than model 

with two missing covariates and this is also the case when interaction and quadratic terms 

are considered. 

As for the test of proportional assumption, for the true model, no matter whether 

covariates are independent of each other, strongly dependent or weakly dependent, no 

matter what value C takes, proportional assumption is always satisfied. For models with 

two missing covariates, proportional assumption does not hold any more in each case. 

When only one covariate is excluded, the estimates for models with and without time 

dependent variable are different but not so much as when two covariates are excluded, 

especially when covariates are strongly dependent. 

When covariates are independent or weakly dependent, plots of martingale residual and 

the smoothed censoring over smoothed hazard both imply linear form of covariates for 

model h(x,y,z), and non-linear form for incomplete models. When covariates are strongly 

dependent, violation of the model with missing covariates from linearity is not as much 

as for the case of independence and weak dependence, but both models with covariates 

excluded do not satisfy the linear assumption any more. 

In summary, the method that compares the ordered estimates for the true model and 

models of missing covariates works well for both independent and dependent covariates. 

It can also be applied to models with interaction terms and quadratic terms. However, the 

comparison between the estimated cumulative baseline hazard function and the 

population cumulative hazard function does not work well for strongly dependent 

covariates. Moreover, in the case of strong dependence, likelihood ratio test does not 

work well when comparing the true model with the best 2-covariate model, especially 

when there is no interaction or quadratic terms in the model. Hence when covariates are 

strongly dependent, it is advisable to test the model’s fit through comparison of ordered 

estimates of coefficients. As for the tests of adherence to model assumptions, inclusion of 

time dependent variables, which is used to test if the proportional assumption is satisfied, 

works better for independent covariates and weakly dependent covariates than for 

strongly dependent covariates. Furthermore, the method we used to test adherence to the 

linear assumption through martingale residuals and Lowess smooth works well in each 

situation.  
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Appendix 1 

Pearson Theorem 

Let (X, Y) be random vectors with joint normal distribution then 

( , ) 2sin( ( , ))
6

X Y r X Y
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Proof of Pearson Theorem 

Density function of the standard normal vector (X, Y) with product moment correlation 

ρ is the following 
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Then we have that the rank correlation is 
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Moreover we can show that 
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By a partial integration with respect to x we obtain 
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Again by a partial integration with respect to y we get 
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which can be written in the following form 
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Applying substitution  
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With Jacbian 
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Appendix 2 

Additional plots for Section 3.1 
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Appendix 3 

Additional plots for Section 3.2 
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Appendix 4

Tables for Section 4.1 

 

Pr(� 2
(n)≥G)   G1 G2 G3 G4 G5 G6 

Simulation1  1.3415e-

006 

2.3548e-

013 

1.7529e-

008 

5.9960e-

012   

9.1381e-

008 

1.8059e-

012 

Simulation2 7.7231e-

008 

4.0251e-

012 

4.9890e-

010   

5.2125e-

013   

1.8379e-

011 

1.7764e-

015 

Simulation3 2.3599e-

006 

1.8258e-

011 

2.9640e-

012 

6.6613e-

016 

7.2525e-

011 

1.1102e-

015 

Simulation4 2.2206e-

003 

2.9128e-

007 

1.7361e-

005 

1.8773e-

010 

8.7909e-

007 

6.3607e-

012 

Simulation5 1.4966e-

007 

1.1102e-

015 

3.2687e-

008 

6.4393e-

015 

3.4579e-

008 

2.2315e-

014 

Simulation6 1.6544e-

005 

8.2868e-

009 

8.9964e-

008 

3.1288e-

010 

3.6310e-

008 

5.6234e-

012 

Simulation7 2.1681e-

004 

3.8520e-

009 

1.1252e-

006 

5.7676e-

013 

4.7510e-

008 

6.5048e-

013 

Simulation8 2.7987e-

005 

2.0100e-

008 

5.5872e-

010 

1.1335e-

012 

1.0898e-

010 

3.4717e-

013 

Simulation9 8.1895e-

006 

1.9696e-

011 

2.4526e-

005 

6.3114e-

011 

1.6577e-

007 

2.4860e-

011 

Simulation10 4.6840e-

006 

9.2930e-

011 

3.7270e-

006 

1.4997e-

008 

2.3297e-

004 

8.1172e-

006 

             

Likelihood Ratio Test for Independent covariates 
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Pr(� 2
(n)≥G)   G7 G8 G9 G10 G11 G12 

Simulation1  2.5901e-

001 

1.3053e-

007   

3.0026e-

003   

1.0031e-

012   

2.0035e-

002 

1.3940e-

009 

Simulation2 1.5331e-

001   

2.0546e-

010 

1.5878e-

002   

1.9207e-

014   

5.3600e-

003 

8.6553e-

013 

Simulation3 2.0945e-

001   

4.6584e-

009   

7.1778e-

002   

2.1538e-

014   

1.8493e-

002 

9.7700e-

015 

Simulation4 2.1293e-

001 

5.5865e-

010   

2.8448e-

003   

4.2633e-

014   

4.2701e-

002 

4.5286e-

013 

Simulation5 2.9425e-

001 

4.2245e-

009 

1.0234e-

004 

3.6926e-

013   

1.3295e-

002 

3.9541e-

011 

Simulation6 2.8013e-

001 

6.3442e-

007   

2.6363e-

002   

3.7818e-

011 

1.7017e-

002 

9.2381e-

010 

Simulation7 5.3966e-

001 

4.4694e-

011   

1.6541e-

002   

1.4988e-

014   

1.6124e-

001 

3.5527e-

015 

Simulation8 5.2999e-

001   

6.4418e-

006   

5.7771e-

002   

1.1940e-

012   

2.4034e-

002 

4.8591e-

010 

Simulation9 4.6604e-

001   

6.4418e-

008 

9.8655e-

002   

3.4084e-

014   

1.4403e-

001 

2.1118e-

012 

Simulation10 3.5509e-

001   

4.3317e-

007   

1.9452e-

004   

6.4837e-

014   

8.3254e-

005 

3.2032e-

012 

Likelihood Ratio Test with Strong Dependence between Covariates 
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Pr(� 2
(n)≥G)   G13 G14 G15 G16 G17 G18 

Simulation1  4.5819e-

006 

5.3557e-

013   

4.2481e-

008   

5.5511e-

016 

1.1840e-

007 

1.2546e-

014 

Simulation2 8.8171e-

007   

2.4114e-

013   

1.4465e-

009   

2.6201e-

014   

1.0287e-

010 

8.5487e-

015 

Simulation3 1.8026e-

006   

1.8562e-

010   

1.0288e-

009   

7.8137e-

013   

6.0133e-

011 

1.8319e-

014 

Simulation4 5.3727e-

005   

1.6965e-

008   

4.2787e-

008   

4.9574e-

012   

4.3013e-

010 

3.6637e-

015 

Simulation5 1.0055e-

004   

1.3514e-

011   

6.7195e-

009   

2.5435e-

013   

4.2951e-

010 

4.4409e-

016 

Simulation6 5.4273e-

005   

1.3717e-

011   

2.0629e-

005   

9.2226e-

013   

6.0984e-

006 

4.3322e-

012 

Simulation7 1.9149e-

003   

1.2750e-

006   

4.6106e-

005   

6.4430e-

008   

1.5335e-

007 

8.0461e-

012 

Simulation8 8.2769e-

004 

1.1795e-

009   

3.2055e-

008   

2.1965e-

011   

1.5458e-

008 

1.0466e-

012 

Simulation9 3.2331e-

004   

4.7785e-

009   

1.0890e-

006   

2.8092e-

009   

2.3362e-

007 

7.4496e-

014 

Simulation10 1.7482e-

005   

7.8251e-

012   

4.0866e-

009   

3.0642e-

014   

5.7860e-

009 

1.5654e-

014 

Likelihood Ratio Test with Weak Dependence between Covariates 
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Appendix 5 

Additional plots for Section 4.2 
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Appendix 6 

Additional plots for Section 4.3 
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