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Applications in various domains often lead to high dimensional dependence modelling.
Whereas independence is a well defined concept, various dependence measures have been
studied, e.g. the product moment correlation, Spearman’s rank correlation r, Kendall’s
τ . Our focus is on Spearman’s rank correlation. A population version of Spearman’s
rank correlation has been defined in the case of continuous variables. We propose a
correction of the ”classical” population version of Spearman’s rank correlation coefficient
(r̄), which can be applied to discrete ordinal variables (i.e. variables which can be written
as monotone transforms of uniform variables).

Consider a population distributed according to two variates X and Y. Two members
(X1, Y1) and (X2, Y2) of the population will be called concordant if:

X1 < X2, Y1 < Y2 or X1 > X2, Y1 > Y2.

They will be called discordant if:

X1 < X2, Y1 > Y2 or X1 > X2, Y1 < Y2.

The probabilities of concordance and discordance are denoted with Pc, and Pd respec-
tively. The population version of Spearman’s r is defined as proportional to the difference
between the probability of concordance, and the probability of discordance for two vec-
tors (X1, Y1) and (X2, Y2), where (X1, Y1) has distribution FXY with marginal distribution
functions FX and FY and X2, Y2 are independent with distributions FX and FY ; moreover
(X1, Y1) and (X2, Y2) are independent (e.g., Joe, 1997):

r = 3 · (P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0]). (1)

The above definition is valid only for populations for which the probabilities of X1 = X2

or Y1 = Y2 are zero. The main types of such populations are an infinite population with
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both X and Y distributed continuously, or a finite population where X and Y have disjoint
ranges (Hoffding, 1947). In order to formulate a population version of Spearman’s r for
discrete variables, one will have to correct for the probabilities of X1 = X2 and Y1 = Y2.
This correction is similar to the correction for ties for the sample version of the rank
correlation.

In order to define the sample version of Spearman’s r we consider N samples of the
random vector (X, Y ). Suppose the samples for both variables are ranked such that in
the rankings of each variable there are sets of u and v tied ranks, respectively. We first
define:

U =
1

12

∑
(u3 − u); V =

1

12

∑
(v3 − v).

We will denote with d the differences between the ranks of each pair. Then, the rank
correlation for samples, when ties are present, rst

† can be computed as follows (Kendall
and Gibbons, 1990):

rst(X, Y ) =
1
6
(N3 −N)−

∑
d2 − U − V√

[1
6
(N3 −N)− 2U ][1

6
(N3 −N)− 2V ]

. (2)

Let us now consider the discrete random vectors (X1, Y1), (X2, Y2), where X2 and Y2

are independent with the same marginal distributions as X1 and Y1, respectively; moreover
(X1, Y1) and (X2, Y2) are independent. The states of Xi are ranked from 1 to m; the states
of Yi are ranked from 1 to n. The joint probabilities of (X1, Y1) and (X2, Y2) are given in
terms of pij and qij, i = 1, ..,m; j = 1, .., n, respectively.

X1 \ Y1 1 2 ... n
1 p11 p12 ... p1n p1+

2 p21 p22 ... p2n p2+

... ... ... ... ... ...
m pm1 pm2 ... pmn pm+

p+1 p+2 ... p+n

X2 \ Y2 1 2 ... n
1 q11 q12 ... q1n p1+

2 q21 q22 ... q2n p2+

... ... ... ... ... ...
m qm1 qm2 ... qmn pm+

p+1 p+2 ... p+n

Table 1: Joint distribution of (X1, Y1) (left); Joint distribution of (X2, Y2) (right)

In Table 1, pi+, i = 1, ...,m represent the margins of X1 and X2, and the margins of
Y1 and Y2 are denoted p+j, j = 1...n. One can rewrite each qij as qij = pi+p+j, for all
i = 1, ...,m, and j = 1, ..., n. Using this terminology we calculate:

Pc − Pd =
m∑

i=1

n∑
j=1

(
pij

(∑
k 6=i

∑
l 6=j

sign(k − i)(l − j)qkl

))
(3)

Spearman’s rank correlation coefficient of two discrete variables can be calculated as in
the following theorem:

†The index s indicates that this is a sample version, and the t comes from ”ties”.

2



Theorem 1. Consider a population distributed according to two variates X and Y. Two
members (X1, Y1) and (X2, Y2) of the population are distributed as in Table 1. Let Pc−Pd

be given by formula (3). Then the population version of Spearman’s rank correlation
coefficient of X and Y is:

r̄ =
Pc − Pd√√√√(∑

j>i

pi+pj+ −
∑

k>j>i

pi+pj+pk+

)
·

(∑
j>i

p+ip+j −
∑

k>j>i

p+ip+jp+k

)

Proof: We start from the sample version of the rank correlation when ties are present,
given in formula (2). Dividing by N (the number of samples), we give an interpretation
of this formula in terms of frequencies.

r̄(X, Y ) =
−
∑

d̄2 − Ū − V̄√
(−2Ū)(−2V̄ )

. (4)

Without loss of generality we will consider n = m. In order to recalculate the numerator of
formula (4) we will denote RX(i), i = 1, ..,m the ranks of variable X and RY (j), j = 1, ..,m
the ranks of variable Y. We obtain:

RX(i) = 1 +
i−1∑
k=1

pk+

2
−

m∑
k=i+1

pk+

2
and RY (j) = 1 +

j−1∑
l=1

p+l

2
−

m∑
l=j+1

p+l

2

If we calculate −Ū , we obtain:

−Ū = − 1

12

(
p3

1+ − p1+ + p3
2+ − p2+ + . . . + p3

m+ − pm+

)
=

1

12

(
(p1+ + p2+ + . . . + pm+)3 +

(
p3

1+ + p3
2+ + . . . + p3

m+

))
(5)

=
1

4

(
m∑

i=1

∑
i6=j

p2
i+pj+ + 2

∑
k>j>i

pi+pj+pk+

)

In the same manner we obtain the following for −V̄ :

−V̄ =
1

4

(
m∑

i=1

∑
i6=j

p2
+ip+j + 2

∑
k>j>i

p+ip+jp+k

)
(6)

We can also rewrite
∑

d̄2 as follows:

∑
d̄2 =

m∑
i,j=1

pij (RX(i)−RY (j))2

=
1

4

m∑
i,j=1

pij

((
i−1∑
k=1

pk+ −
m∑

k=i+1

pk+

)
+

(
m∑

l=j+1

p+l −
j−1∑
l=1

p+l

))2
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∑
d̄2 =

1

4

m∑
i,j=1

pij

(
i−1∑
k=1

pk+ −
m∑

k=i+1

pk+

)2

+
1

4

m∑
i,j=1

pij

(
m∑

l=j+1

p+l −
j−1∑
l=1

p+l

)2

(7)

+
1

2

m∑
i,j=1

pij

(
i−1∑
k=1

pk+ −
m∑

k=i+1

pk+

)(
m∑

l=j+1

p+l −
j−1∑
l=1

p+l

)
One can recalculate the first term of the above sum and, using formula (5), show the
following:

1

4

m∑
i,j=1

pij

(
i−1∑
k=1

pk+ −
m∑

k=i+1

pk+

)2

=
1

4

m∑
k=1

p2
k+ ·

m∑
i=1

∑
k 6=j

pij −
1

2

∑
k<j<l

pk+pl+pj+

+
1

2

∑
k<l<j

pk+pl+pj+ +
1

2

∑
j<l<k

pk+pl+pj+ (8)

=
1

4

(
m∑

k=1

∑
k 6=j

p2
k+pj+ + 2

∑
k<l<j

pk+pl+pj+

)
= −Ū

Recalculating the second sum and using (6) we obtain:

1

4

m∑
i,j=1

pij

(
m∑

l=j+1

p+l −
j−1∑
l=1

p+l

)2

=
1

4

(
m∑

l=1

∑
l 6=j

p2
+lp+j + 2

∑
l<k<j

p+kp+lp+j

)
= −V̄ (9)

The last term of (7) can be also rewritten as:

−1

2

m∑
i,j=1

pij

(∑
k 6=i

∑
l 6=j

sign(k − i)(l − j)qkl

)
(10)

Using relations (8), (9) and (10) in equation (7) we can write:∑
d̄2 = −Ū − V̄ − 1

2
(Pc − Pd)

Therefore formula (4) becomes:

r̄(X, Y ) =
1
2
(Pc − Pd)√

(−2Ū)(−2V̄ )
.

If we further calculate −Ū , we obtain:

−Ū =
1

4

(
m∑

i=1

∑
i6=j

p2
i+pj+ + 2

∑
k>j>i

pi+pj+pk+

)
=

1

4

(∑
j>i

pi+pj+ −
∑

k>j>i

pi+pj+pk+

)
(11)

Using (11) and a similar formula calculated for −V̄ , we obtain:

r̄ =
Pc − Pd√√√√(∑

j>i

pi+pj+ −
∑

k>j>i

pi+pj+pk+

)
·

(∑
j>i

p+ip+j −
∑

k>j>i

p+ip+jp+k

)

4



One can express
∑
j>i

pi+pj+ as P (X1 < X2) where X1, X2 are independent and have the

same distribution; and, similarly
∑

k>j>i

pi+pj+pk+ as P (X1 < X2 < X3) where X1, X2 and

X3 are independent with the same distribution. When m,n → ∞, the denominator of
the formula given in Theorem 1 goes to 1/3. Hence, in this case, r̄ is equivalent to r for
continuous variables.

One class of discrete distributions can be obtained as monotone transforms of uniform
variables. These distributions can be constructed by specifying the marginal distributions
and a copula, i.e. a distribution on the unit square with uniform marginals (Nelsen, 1999).
Each term pij from Table 1 (left) can be written in terms of the chosen copula, as follows:

pij = C

(
i∑

k=1

pk+,

j∑
l=1

p+l

)
+ C

(
i−1∑
k=1

pk+,

j−1∑
l=1

p+l

)
(12)

− C

(
i−1∑
k=1

pk+,

j∑
l=1

p+l

)
− C

(
i∑

k=1

pk+,

j−1∑
l=1

p+l

)
Each copula can be parametrized by its rank correlation r, so we will use the notation Cr

instead of C. Further, we will establish the relation between the rank correlation of the
discrete variables and the rank correlation of the underlying uniforms.

Theorem 2. Let Cr be a copula and (X,Y) a random vector distributed as in Table1(left),
where each pij is given by formula (12) . Then the rank correlation of X and Y is denoted
r̄C and it has the same expression as r̄, where:

Pc − Pd =
m−1∑
i=1

n−1∑
j=1

(
pi+ + p(i+1)+

) (
p+j + p+(j+1)

)
Cr

(
i∑

k=1

pk+,

j∑
l=1

p+l

)
−

m−1∑
i=1

n−1∑
j=1

pi+p+j

Moreover, if Cr is a positively ordered copula (Nelsen, 1999), then r̄C is an increasing
function of the rank correlation of the underlying uniforms.

Idea of the Proof. For simplicity, all further calculations will be done for the case
n = m. In order to prove the expression of Pc − Pd from the theorem, we first acquire an
intermediate result:

Pc − Pd =
m−1∑
i,j=1

pij(pi+ + 2
m−1∑

k=i+1

pk+ + pm+)(p+j + 2
m−1∑

l=j+1

p+l + p+m)−
m−1∑
i,j=1

pi+p+j (13)

We start from equation (3) and rewrite the double sum in terms of pij, pi+, p+j with
i, j = 1, ..,m − 1. Collecting like terms and performing a number of calculations we
obtain equation (13). Now we can use the expression for pij from (12) to rewrite the first
part of the equation (13). After algebraic manipulations of the terms we obtain:

Pc − Pd =
m−1∑
i=1

n−1∑
j=1

(
pi+ + p(i+1)+

) (
p+j + p+(j+1)

)
Cr

(
i∑

k=1

pk+,

j∑
l=1

p+l

)
−

m−1∑
i=1

n−1∑
j=1

pi+p+j
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Let Cr be a positively ordered copula. Then r̄C is a linear combination, with positive
coefficients, of positively ordered copulas. Hence the rank correlation of two discrete
variables is an increasing function of the rank correlation of the underlying uniforms.

If we look at the limiting case, when m,n → ∞, the expression for Pc − Pd given in
Theorem 2 is equivalent to:∫∫

4fX(x)fY (y)Cr(FX(x), FY (y))dxdy − 1.

where fX , fY are the marginal densities of X and Y, respectively, and FX and FY are the
marginal distributions of X and Y, respectively. If we denote FX(X) = U and FY (Y ) = V ,
then:

lim
m,n→∞

(Pc − Pd) = 4

∫∫
Cr(u, v)dudv − 1

which is equal to Pc − Pd for continuous variables (Nelsen, 1999).

The class of discrete ordinal distributions which are obtained as monotone transforms
of uniform variables using formula (12) can be used in various uncertainty analysis mod-
els such as: dependence trees, vines, and Bayesian belief nets (Kurowicka and Cooke,
2006). In these models, the marginal distributions of the variables must be transformed
to uniforms on [0, 1] and the dependence structure must be defined (via rank correlations)
with respect to the uniform variates. The rank correlation of two discrete variables and
the rank correlation of their underlying uniforms are not equal. Theorem 2 describes the
relationship between them.

There are still open issues related to this topic, and one of them is the rank correlation
between a discrete variable and a continuous one.
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