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Summary & Conclusions - Much operational reliability data available, for example in the
nuclear industry, is heavily right censored by preventive maintenance. The standard methods for
dealing with right censored data (Total Time on Test statistic, Kaplan-Meier estimator, adjusted
rank methods) assume the independent competing risk model for the underlying failure process
and the censoring process, even though there are many dependent competing risk models that
can also interpret the data. It is not possible to identify the “correct” competing risk model from
censored data. A natural question is whether this model uncertainty is of practical importance.
In this paper we consider the impact of this model uncertainty on maintenance optimization
and show that it can be substantial. We present three competing risk model classes which can
be used to model the data, and determine an optimal maintenance policy. Given these models,
we consider the error that is made when optimizing costs using the wrong model. It is shown
that model uncertainty can be expressed in terms of the dependence between competing risks,
which can be quantified by expert judgement. This enables us to reformulate the maintenance
optimization problem to take into account model uncertainty.

1 Introduction

Acronyms

PM preventive maintenance
RC replacement cost
RT replacement time

The standard methods, assuming independent censoring, used to treat right censored
data are non-conservative, in the sense that other dependent censoring models estimate
the underlying failure process more pessimistically (see [Bedford and Meilijson, 1995]).
Without making non-testable assumptions (such as independence of the failure and cen-
soring processes), the true distribution function is not identifiable from the data. Hence,



in addition to the usual uncertainty caused by sampling fluctuation we have the extra
problem of model uncertainty.

In this paper we test the effect of model uncertainty on the problem of optimizing
maintenance. We assume that data is available which contains censors from an existing
PM program, and use this data to estimate an optimal age replacement PM program.

In Section 3, we take three model classes of competing risk. The independent model is
used as the most extreme pessimistic model of existing PM. The another extreme model
is used for the most optimistic model of existing PM. The dependent competing risk
model is used for the general case and the dependence between competing risks is given
by a copula. The minimally informative copula with respect to the uniform distribution
and Archimedean copula are studied - the later will be use to approximate the first one,
due to numerical difficulties in working with the minimally informative copula for strong
dependence between risks. We present a method by which expert judgement may be used
to quantify model uncertainty. In Section 4 we recall the theory of optimal age replace-
ment policies and in Section 5 we will present three numerical examples to determine the
error that is made when optimizing costs using the wrong model. The last section shows
that model uncertainty does lead to substantial uncertainty in the estimation of optimal
maintenance intervals and to excessive costs. This paper extends and develops results
given in [Bedford and Mesina, 2000], in particular by showing how expert judgement may
be used to quantify model uncertainty.

Notation

X lifetime, X > 0; a r.v.
Y PM time, Y > 0; ar.v.
fx(z), Fx(z) [pdf, Cdf] of X
fy(y), Fy(y) [pdf, Cdf] of Y
(x) 1 - Fx(z); the survival function of X
Sy (y) 1 - Fy(y); the survival function of ¥’
V() Pr{X >t,X <Y}: the sub-survival function of X
() Pr{Y > t,Y < X}: the sub-survival function of Y
Fi(z) Pr{X <t,X <Y}: the sub-distribution function of X
Fi(t) Pr{Y < t,Y < X}: the sub-distribution function of Y’
¢y the cost of critical failure
¢o the cost of planned replacement
C(z,y) copula of X and Y
p(x,y) Spearman’s rho
7(z,y) Kendall’s tau
f age replacement time
v expected cost over time 6

Other, standard notation is given in ”Information for Readers & Authors” at the rear
of each issue.



2 Competing Risk

In the competing risk approach we model the data as a renewal process, that is as a
sequence of i.i.d. variables 71, Z,,.... Each observable Z is the minimum of two variables
and the indicator of which variable was smaller. The lifetime of the component is X: this
is the lifetime that the component would reach if it were not preventively maintained.
The PM time of the component is Y: this is the time at which the component would be
preventively maintained if it didn’t fail first. Clearly,

Z = min(X,Y), (X <Y)].

(In fact, usually X will be the minimum of several variables giving the time to failure
by a particular failure mode: we shall just consider the case of one failure mode.) The
observable data will allow us to estimate the sub-survival functions,

Sxt)=Pr{X >t,X <Y} and Sy (t)=Pr{Y >tY <X},

but not the true survivor functions of X and Y. Hence we are not able to estimate
the underlying failure distribution for X without making additional, non-testable, model
assumptions. A characterization of those distributions for X that are possible for given
subsurvival functions was made in [Bedford and Meilijson, 1997].

By specifying a copula for the underlying joint distribution of X and Y one can
identify the marginals (and the full joint distribution) [Zheng and Klein, 1995]. However
the choice of such a copula is difficult to make: Bedford [Bedford, 1998] suggests doing
this by specifying the Spearman’s rank correlation between X and Y, and then using the
copula with minimum information with respect to the independent copula (that is, the
“most independent” copula with the given Spearman rank correlation).

3 Three Models for Competing Risk

In this section we present three competing risk models in which the marginal distribution
functions are identifiable. Two of them are the “extreme” cases - independent model and
high correlated censoring model and the third one assumes that the dependence between
competing risks is given by a copula.

3.1 Model 1: Independence
If Fix has a density function fx(t), then the failure rate rx(t) of X is

rx(t) = fx(t)/Sx(t) = —(dSx(t)/dt)/Sx(t).

Since

we have

S (t) = exp{— /0 ry(s)ds).



But from competing risk data we observe a different rate of failure for X. The observed
failure rate for X is defined as

_dSk (t)/dt

Sx(t) + Sy (t)
For the most frequently made assumption in the literature, that of probabilistic indepen-
dence between X and Y, we have

Sh(t) + Si(t) = Pr{X > .Y > t} = Pr{X > t}Pr{Y > t} = Sx(£)Sy(t).

Using the above results Cooke [Cooke, 1996] showed that if the competing risks X and Y’
are independent with differentiable survival functions, then the failure rate is equal with
the observed failure rate

obry(t) = (lsiL%PT{X >t, X <Y, X e (tt+0)|Z>t}/d=

rx(s) = obrx(s).
Now, the underlying marginal distributions of X and Y can be identified in terms of the
observable subsurvivor functions,

Sx() = exn( [ gt o) ()

3.2 Model 2: Highly Correlated Censoring

Clearly, independent censoring does not capture the notion that preventive maintenance
is carried out when the equipment has given some sign of future failure.

The most extreme case is described as follows: Preventive maintenance aims to prevent
the failure of the component at a time immediately before failure. If that aim is not
achieved then the PM action is applied immediately after failure. The PM is unsuccessful
with probability p and successful with probability 1 — p, independently of the time at
which the failure occurs. We model this by taking Y = X + e, where € > 0 is very small
but depends on X, and § = {1, —1} with probability p respectively 1 — p is independent
of X. For very small ¢ Model 2 gives the following relationships:

Sx@)=Pr{X >t X <Y}=Pr{X >t0=1}=Pr{é =1} Pr{X >t} = pSx(1),
and
Sy(t) =Pr{Y >t,Y < X} = Pr{o =—-1}Pr{Y >t} = (1-p)Pr{X >t} = (1—p)Sx(1).

Hence the normalized subsurvivor functions (normalized so that they take that value 1
at t = 0) are approximately equal,

Sk(1) , St o)
p 1—p’
and both are equal to Sx(¢). Now, this condition can be checked from the data. If it does
not hold then Model 2 is not correct. An example is shown in Figure 1 where we have
taken
Sx(t) = exp(—t"?).
We took a sample 1000 times for the model above with p = 1/3 and then we plot the
SYONEI0

empirical functions =X, 2% and the theoretical Sy (£).
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Figure 1. Highly correlated censoring

If Equation 2 does hold then the model might be correct, but the independent model
might also hold with the same observable data. Assuming Model 1 (independence) when
Model 2 holds would lead to an incorrect assessment of the marginals. The following
proposition is obtained by using Equation 1 [Bedford and Mesina, 2000]:

Proposition 1 Suppose X and Y have a joint distribution described by Model 2. Let X
and Y be independent with

Sy (t) = S}((t) and Sy (t) = S;’f/(t).
Then
Sx(t) =[Sx (D) and Sy (t) = [Sx(t)]'".

Model 2 is a special case of the random signs model of Cooke [Cooke, 1993]. This
model can be used when the subsurvivor functions satisfy the inequality

Sk (t Sy (t
p L—=p
The random signs model says that ¥ = X — &, where £ is a random variable, £ < X,

Pr{¢ =0} = 0, whose sign is independent of X. The failure is observed with probability
Pr{X <Y}=Pr{{>0}=np.

3.3 Model 3: Dependent Competing risks

In this model we assume that the dependence structure between X and Y is given by a
copula. As defined by [Schweizer and Wolff, 1981] the copula of two random variables X
and Y is the distribution C' on the unit square [0,1]* of the pair (Fx(X), Fy(Y)) (recall
that for a continuous random variable X with pdf Fx, the random variable Fx(z) is
always uniformly distributed on [0, 1]). The functional form of C': [0,1]> — R is

C(u,v) = H(Fx' (u), Fy ' (v),



where H is the joint distribution function of (X,Y) and Fy' and Fy' are the right-
continuous inverses of Fx and Fy. Under independence of X and Y the copula is C'(u,v) =
uwv = 11, and any copula must fall between M (u,v) = min(u,v) and W (u,v) = max(u +
v — 1,0), the copulas of the upper and lower Fréchet bounds [Nelsen, 1995]. As we saw
in the first model, under the assumption of independence of X and Y, the marginal
distribution functions of X and Y are uniquely determined by the sub-survival functions
of X and Y. Zheng and Klein [Zheng and Klein, 1995] showed the more general result
that, if the copula of (X,Y) is known, then the marginal distributions functions of X and
Y are uniquely determined by the competing risk data. This result is captured in the
following theorem:

Theorem 1 Suppose the marginal distribution functions of (X,Y) are continuous and
strictly increasing in (0,00). Suppose the copula C is known and the corresponding prob-
ability measure for any open set of the unit square is positive. Then Fx and Fy, the
marginal distribution functions of X and Y, are uniquely determined by the subdistribu-
tion functions.

In the Appendix we show briefly why the marginals are identifiable when the densities
and subdensities exist.

We now discuss the problem of choosing a copula. There are many measures of asso-
ciation for the pair (X,Y’), which are symmetric in X and Y. The best known measures
of association are Kendall’s tau and Spearman’s rho (we will use the more modern term
“measure of association” instead of the term “correlation coefficient” for a measure of
dependence between random variables).

Kendall’s tau for a vector (X, Y") of continuous random variables with joint distribution
function H is defined as follows: Let (X;,Y]) and (X3, Ys) be i.i.d. random vectors, each
with joint distribution H, then Kendall’s tau is defined as the probability of concordance
minus the probability of discordance:

7(X,Y) = Pr{(X; — Xo)(Y1 — Y3) > 0} — Pr{(X; — X3)(Y1 — Y32) < 0}
7(X,Y) = Pr{sgn(X; — Xy) = sgn(Y1 — Y3)} — Pr{sgn(X; — X3) # sgn(Y; — Y3)}.

The other measure of association (Spearman’s rho) is defined as follows: Let X and
Y be continuous random variables then the Spearman’s rho is defined as the product
moment correlation of Fy(X) and Fy(Y):

pr(x,y) = p(Fx(X), Fy (Y)) = \/VS:LE?(()(())(})VZ:EQ}(Y)}

Simple formulae relating the measures of association to copula density are given in the
Appendix.

Since the measure of association is to be treated as a primary parameter, it is necessary
to choose a family of copulae which are as “smooth” as possible and which model all
possible measures of association in a simple way. Bedford [1997] proposed using the
unique copula with the given Spearman’s rho that has minimum information with respect



to the independent distribution, and also he gave a method to calculate numerical this
copula. Now, due to the difficulty of the interpretation of Spearman’s rho by a non-
specialist and due to the difficulty of quantifying it, we will use as a primary parameter
Kendal’s tau. Kendall’s tau has the advantage of a definition which can be explained
to a non-specialist, but the value can not be estimated using only the competing risk
data , because of “identifiability problem”. Thus we need to use some prior knowledge
or subjective information to obtain information about the value of tau. To model the
uncertainty over tau we will use expert judgement. This will be discuss later in this
paper, but for now it remains to clarify the way that we obtain the copula.

Work of Zheng and Klein [Zheng and Klein, 1995] suggests that the important factor
for an estimate of the marginal survival function is a reasonable guess at the strength
of the association between competing risks and not the functional form of the copula.
For this reason we will choose a class of copula with which it is easy to work from the
mathematical point of view. A such class is Archimedean copula. First, we recall some
definitions about the Archimedean copula and some properties of Kendall’s tau for a
certain Archimedean family of copula.

Let X and Y be continuous random variables with joint distribution A and marginal
distribution F'y and Fy. When X and Y are independent, we have H(z,y) = Fx (z)Fy (y),
and this is the only case when the joint distribution is write into a product of Flx
and Fy. But, there are some families of distributions in which we have A(H(z,y)) =
AMFx(z))A(Fy(y)), see [Nelsen (1999)]. Using the function ¢(t) = —log A(t) (A must be
positive on the interval (0,1)), we can also write H as a sum of the marginals Fx and Fy,
o(H(z,y)) = ¢(Fx(x)) + o(Fy(y)), or in terms of copula o(C(u, v)) = ¢(u) + ¢(v). Cop-
ulas of this form are called Archimedean copulas. The function ¢ is called an additive gen-
erator of the copula. If p(0) = oo, ¢ is a strict generator and C'(u,v) = ¢ (p(u) + ¢(v))
is a strict Archimedean copula. For our goal we choose an one-parameter family of copulae
which has a strict generator. The Gumbel family is defined as follows:

Col(u, v) = exp(—[(—logu)® + (= logv)*]/*) for a € [1,00).

The generator is the function ¢, (t) = (— logt)®.
As shown in the Appendix, we can directly write v as a function of Kendall’s tau,

a,=1/(1-1).

It remains now to quantify the uncertainty in Kendall’s tau using expert opinion. Ex-
perts can not be directly asked to quantify their uncertainty over tau, instead they are
asked to give uncertainties over physically realizable quantities [Bedford and Cooke, 2001].
Consider two sockets with failure times X; and X, and the PM times Y; and Y;. The
expert can be asked for the probability that an attempt to preventively maintain socket
one would occur before the PM for socket two, given that the failure of socket one occurs
before the failure of socket two. Let this probability be g. By symmetry we have the same
probability for the occurrence of the PM for socket two before the PM for socket one if
the failure time of socket one is greater than the failure time of socket two. Also we get
that the probability of occurrence of the PM for socket two before the PM for socket one
if the failure time of socket one is smaller than the failure time of socket two is equal to

1—q.



If the experts can give a distribution over ¢ = Pr{Y; > Y3|X; > X,}, then we can
this translate to a distribution over Kendall’s tau. Indeed, after a little simple algebra we
have:

PT{(Xl—XQ)(Yi—)/Q) > 0} = P?"{(Xl > XQ)ﬂ(Yi > YVQ)}‘FPT{(XI < Xz)m()/l < YVQ)} =

= PT{(X1 > XQ)}PT‘{(K > )/2|X1 > XQ} + P?"{(Xl < XQ)}PT‘{(E < )/2|X1 < XQ} =q.

Similarly we find:

and so
T=2q—1.

Note that ¢ can be considered an observable quantity because ¢ is the approximate
average rate for which {Y{™ > V™| X™ > Xx{”} holds when a large sample of pairs
(XM vy (xlM v ™) is observed.

Now for each replacement time # and measure of association 7 we can calculate the
long term specific cost and furthermore we can optimize this replacement cost finding the
minimal one. This is discussed in the next section.

4 Maintenance Optimization

We consider the effect of uncertainty about the underlying lifetime distribution on the
selection of the maintenance policy. To keep things simple we just consider the age
replacement policies. Recall that an age replacement policy is one for which replacement
occurs at failure or at age 6, whichever occurs first. Unless otherwise specified, € is taken
to be a constant.

In the finite time span replacement model we will try to minimize expected cost C(6)
experienced during [0, 6], where cost may be computed in money units, time, or some
appropriate combination. For a infinite time span, an appropriate objective function is
expected cost per unit of time, expressed as

_ . C9)
0=ty
Letting N;(6) denote the number of failures during [0, #] and N(6) denote the number of
planned preventive maintenance during [0, f], we may express the expected cost during
0,0] as
C(0) = E{N1(0)} + coE{Nz(0)},

where ¢ is the cost of critical failure and c; is the cost for planned replacement. We only
consider non-random age replacement in seeking the policy minimizing the specific cost
v(@) for an infinite time span.

Starting from the definition of the specific cost

102 o B0 10




[Barlow and Proschan, 1965] showed that

el F(0) + 25(0)
7 S(t)dt

(0) =

where F' and S are the lifetime distribution function respectively the lifetime survival
function.
Then v(0) = oo and 7y(o0) = ¢/ f: S(t)dt. Differentiating v to find the optimum,

d?j_(;) = 0, we obtain the equation

C2

r(6) /OQS(t) it — P () =

C1 — Cy '
When Fy(z) has an increasing failure rate, the optimal replacement time 6y is the unique
solution of the above equation. For a r.v. with constant failure rate or decreasing failure
rate the specific cost has not an optimum (sign(dzl—(f)) is constant), thus this type of
maintenance policy is not appropriate for a such r.v.

When we have as primary parameter Kendall’s tau and the information over 7 is given
by a distribution function F,(7) with density f.(7), the specific cost is dependent on 7
and 6:
a1 F(1,0) + c25(7,0)

J3S(r,t)dt

(T, 0) =

So the long term specific cost given 6 is

+(6) = / C(r,0)f, (r)dr

and the optimal replacement time 6 is obtaining minimizing ().

5 Numerical Examples

We now give the results of three sets of numerical experiments to show the effect of using
Model 1 when Model 2 actually holds, to show the dependence of replacement cost with
the measure of association (Kendall’s tau) and finally to find the optimal replacement
time of the average specific cost.

For the first part of numerical computations, we consider two underlying distributions
for X. The first, Distribution 1, is that X has failure rate rx () = 3/2. The second,
Distribution 2, assumes a failure rate of rx (¢) = ¢2, while Distribution 3 assumes a failure
rate rx(t) = t*. Both failure rates are continuous and increasing, and correspond to
Weibull distributions.

Since the costs of critical failure can be much higher than those of planned maintenance
(because of other consequences to the system beyond the need simply to replace the
failed unit), we assume that ¢; is much larger than c,. Since actual plant data shows
a considerable number of preventive maintenance actions we assume that p is small.
Specifically we take ¢;/co = 10 and ¢; /¢y = 20, and also p = 0.3 and p = 0.1, thus giving
us 4 different cases on which the two models are compared. Both replacement times (RT)



c1/co 10 20

D 0.3 0.1 0.3 0.1

RT | RC RT [RC |RT |RC RT | RC

Dist 1, Model 1 | 0.8280 | 10.9217 | 1.2849 | 9.8756 | 0.6127 | 18.8850 | 0.9508 | 21.6988
Dist 1, Model 2 | 0.3860 | 7.5921 | 0.3860 | 7.5921 | 0.2574 | 9.9433 | 0.2574 | 9.9433
Dist 2, Model 1 | 0.8687 | 4.9674 | 1.5047 | 6.5283 | 0.5950 | 7.2682 | 1.0305 | 10.1017
Dist 2, Model 2 | 0.4758 | 4.2823 | 0.4758 | 4.2823 | 0.3259 | 6.1916 | 0.3259 | 6.1916
Dist 3, Model 1 | 0.3393 | 3.3011 | 0.3353 | 3.3280 | 0.2322 | 4.6522 | 0.2303 | 4.6821
Dist 3, Model 2 | 0.3556 | 3.2006 | 0.3556 | 3.2006 | 0.2393 | 4.5459 | 0.2393 | 4.5459

Table 1: Optimal maintenance times and costs

and replacement costs (RC) are given in Table 1. The replacement times are the optimal
replacement times calculated under the assumption that the model under consideration is
correct. For Model 2 the replacement costs are equal to the optimal replacement costs. For
Model 1 they are equal to the replacement costs of Model 2 (which is actually the correct
model), evaluated with the optimal replacement time calculated for Model 1. Hence the
costs given for Model 1 are always higher than those of the true Model 2. Table 2 gives
the ratio of the two model outcomes (Model 1 divided by Model 2) for the time and costs
of each of the distributions.

For the second part, we consider three sub-survival functions for X which for the
extreme cases (independence and high correlation) take the same failure rates for X as in
the first part, and for every sub-survival function of X, we take other three sub-survival
functions Y in such a way that Inequality 3 is satisfied (for Weibull distributions with
the same shape parameter of S5 and S5, the scale parameter of S5, ay, must be greater
then the scale parameter of S%, ax). Specifically we take ax/ay = 1/2, ax/ay = 1/4,
ax/ay = 1/8 and for p and ¢; /co we take the same values as in the first numerical example.

Figure 2, 3 and 4 show the way in which the RC (normalized by RC for the independent
case) depends on Kendall’s tau.

To obtain a distribution for Kendall’s tau we ask an expert to give quantiles for the
probability ¢ defined in the previous section. If the expert gives 5% and 95% quantiles then
we can fit a beta distribution. Specifically if Pr{q < 0.7} = 0.05 and Pr{q < 0.95} = 0.95,
then the 5% and 95% quantiles for 7 are Pr{r < 0.4} = 0.05 and P{r < 0.9} = 0.95.
Taking the beta distribution as appropriate for 7, we easily obtain the parameters of this
distribution a and b given the above quantiles by Newton’s method as: a = 5.6705 and
b= 2.7322.

The specific costs for different values of Kendall’s tau are shown in Figure 5 and the
average specific cost with optimal replacement time are shown in Figure 6.



c1/co 10 20

P 0.3 0.1 0.3 0.1
RT |RC |RT |RC |RT |RC |RT | RC

Dist 1215|144 (33313 |238]19 |3.69]2.18

Dist 2 | 1.83(1.16 | 3.16 | 1.52 | 1.83 | 1.17 | 3.16 | 1.63

Dist 31 0.95|1.030.94 | 1.04| 0.97 | 1.02 { 0.96 | 1.03

Table 2: Ratio’s of maintenance times and costs
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Figure 2. Dependence between RC and the measure of association for the pairs of the
sub-survivals for X and Y given by the first sub-survival for X and the other three for
Y ;a) p=0.3and ¢3/c; =0.1; b) p=0.3 and ¢3/¢; = 0.05; ¢) p=0.1 and ¢3/c; = 0.1;
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Figure 3. Dependence between RC and the measure of association for the pairs of the
sub-survivals for X and Y given by the second sub-survival for X and the other three
for Y ;a) p=0.3 and ¢3/c; = 0.1; b) p=0.3 and ¢3/c; = 0.05; ¢) p = 0.1 and
co/c1 = 0.1;d) p=0.1 and cz/c¢; = 0.05;
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Figure 4. Dependence between RC and the measure of association for the pairs of the
sub-survivals for X and Y given by the third sub-survival for X and the other three for
Y ;a) p=0.3and ¢3/c; =0.1; b) p=0.3 and ¢3/¢; = 0.05; ¢) p=0.1 and ¢3/¢; = 0.1;
d) p=10.1 and ¢y/¢; = 0.05;

18F

16

14r

12F

1k

0.8

06

04

0.2F 4

0 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 5. Specific cost for three values of Kendall’s tau: 0.1, 0.5 and 0.9
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Figure 6. Average specific cost and optimal replacement time

6 Discussion

The results presented in Table 1 and 2 show that the “optimal replacement interval” and
“optimal replacement costs” can be dramatically non-optimal when the wrong model is
used to estimate the underlying failure distribution from censor data. The difference is
least when the failure rate increases quickly. when the failure rate increase more slowly,
the difference is larger. For one case calculated here the specific costs obtained by using
the independent model would be more than twice the best possible specific costs using
the correct model. In the second part we consider the effect of model uncertainty due
to impossibility of identifying the “correct” competing risk model from censored data.
Using the expert judgement to quantify the dependence between competing risks , we
have shown that the replacement cost is highly sensitive to the measure of association
Kendall’s tau. Figure 1, 2 and 3 show that sensitivity is higher for the first model and
for a certain case RC can be twice than RC for independent case. Figure 4 shows also
that the difference between optimal replacement costs and optimal replacement time can
be more than twice and Figure 5 presents the long term specific cost and the optimal
replacement time.

The work carried out here demonstrates the importance of using good expert judge-
ment from experts with insight into the maintenance process. If the experts are able to
select the correct correlation level then this will aid model selection considerably.
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9 Appendix

9.1 Part1l

We show briefly why the marginals are identifiable in the case that densities and subden-
sities exist. By definition we have that the subdistribution function of X is

Fi(t)= P{X <t, X <Y}

After a straightforward calculation we get:

F3(t) :/Ut/:oh(x,y)dxdy:/UtHX(x,oo)—HX(x,x)dx:

:FX(t)—/O HX(x,x)dx:FX(t)—/O C(Fy (), Fy (2)) fx (x)dz,

where h(z,y) is the joint density function of X and Y and Hx (z, 0o) respectively Hx (x, x)
denote the first order partial derivative %H (x,y) calculated in (x,00) respectively in
(z,z). We obtain an analogous formula for Fy:. From this formula it follows that the
marginal distributions functions F'x and Fy are solutions of the following system of ordi-

nary differential equations:

{ {1 = Cu(Fx (1), Fy (1)} Fx (1) = Fx (1)
{1 = Cu(Fx (), Fy (1))} Fy () = Fy (1)

with initial conditions Fx(0) = Fy(0) = 0, where C\,(Fx(t), Fy(t)) and C,(Fx(t), Fy(t))

denote the first order partial derivatives £C(u, v) and £C (u,v) calculated in (Fx(t), Fy (t)).

9.2 Part 2

To see which are the relations between the measures of association and copula we will
recall three theorems (see [Nelsen, 1995]).

Theorem 2 Let X and Y be continuous random variables whose copula is C'. Then
Kendall’s tau for X andY (which we will denote by either 7(X,Y) or 17¢) is given by

H(X,Y) = 4/01/01C(u,v)d0(u,v) Y

Theorem 3 Let X and Y be continuous random variables with copula C. Then Spear-
man’s rho for X and'Y (which we will denote by either p(X,Y) or pc) is given by

1
p(X,Y) = 12/ / uvdC'(u,v) — 3,
0 Jo

1ol
p(X,Y) = 12/ / C(u,v)dudv — 3.
o Jo



Recall also from [Nelsen, 1995] the following theorem which enables us to determine
the parameter « (and implicitly the copula) when we know Kendall’s tau.

Theorem 4 Let X and Y be random variables with an Archimedean copula C' generated
by ¢ € Q. Kendall’s tau for X and Y is given by

a0
TC:1+4A go'(t)dt'

If C, is a member of the Gumbel family, then for a > 1,

o(t) 5t = tlogt,
©'(t) a

so that 7(«) =1 — 1/a. Now it is easy to see that

a, =1/(1—r1).



