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Abstract: We present an interpretation of belief functions within a pure
probabilistic framework, namely as normalized self conditional expected proba-
bilities, and study their mathematical properties. Interpretations of belief func-
tions appeal to partial knowledge. The self-conditional interpretation does this
within the traditional probabilistic framework by considering surplus belief in
an event emerging from a future observation, conditional on the event occur-
ring. Dempster’s original interpretation, in contrast, involves partial knowledge
of a belief state. The modal interpretation, currently gaining popularity, mod-
els the probability of a proposition being believed (or proved, or known). The
versatility of the belief function formalism is demonstrated by the fact that it
accommodates very different intuitions.

Keywords: belief functions, self conditional expected probabilities, Demp-
ster’s model, probability of modal propositions.

1 Introduction

The interpretation of Dempster-Shafer belief functions continues to be an object
of research and debate. (see the special issues of the Intern. J. Approx. Reason-
ing, vol. 4, 1990 and vol. 6, 1992, (Smets, 1994) and (Gabbay & Smets, 1998))
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160 (BELON) for the second author.




L. Usually, the label Dempster-Shafer is given to a theory where belief functions
‘weight’ sets and where belief functions are combined by the so-called Dempster
rule of combination and conditionalized with the Dempster rule of conditional-
ization. The Dempster Shafer theory does not offer an interpretation of belief
functions. Belief functions can be interpreted as quantified beliefs, as done in
the transferable belief model (Smets & Kennes, 1994; Smets, 1998) or in the
hint model (Kohlas & Monney, 1995). They can also be interpreted as random
sets, probability of provability or convex families of probability measures (Smets,
1994). In some of these interpretations, Dempster’s rules of combination and
conditionalization do not apply.

This article proposes an interpretation of belief functions in terms of ‘self-
conditional expected probabilities’. It focuses on the interpretation of the basic
belief assignment, without considering Dempster rule of combination. Demp-
ster’s original idea was that belief functions reflect constraints on belief-states
(i.e. probabilities) induced by partial knowledge of a special kind. This is
reviewed in the second section. The third section introduces self-conditional
expected probabilities and shows how these capture some of the intuitions sur-
rounding partial knowledge. Necessary and sufficient conditions that a basic
belief mass can be interpreted in terms of self-conditional expected probabilities
emerge. The fourth section briefly reviews the interpretation of belief functions
as probability defined on modal propositions. Section five explores the relation
with the belief functions of section three. A final section draws conclusions.

2 Upper and lower probabilities induced by a
multiple valued mapping

Dempster (1967a, 1967b, 1968b, 1968a, 1969, 1972) studied belief functions while
trying to solve the problem of fiducial inference. Dempster’s approach assumes
two finite spaces X and Y, a probability measure PX on X, and a mapping
M : X — 2Y from X to the power set of Y. PX induces a ‘random set over Y’
whose mass function is P2 (4) = PX({z € X|M(z) = A}) for A € 2¥. Note
that P2 is not a mass function on 2" induced by a mass function PY on Y in
the normal way: P(A) =3_ 4 Py. It is rather a mass function on the powerset
2Y of Y induced by M which need not be constrained in any way be the subset
algebra on 2V, P2 is a basic belief assignment to the subsets of Y. This basic
belief assignment is used to extract information regarding mass functions PY (y)

LAs with any new theory, terminology regarding belief functions is rather volatile. We
suggest the following definitions: Belief Function Theory is the theory of Choquet capacities
monotone of order infinite. Dempster Shafer Theory is Belief Function Theory supplemented
with a combination rule called Dempster’s rule of combination. The transferable Belief Model
is a special case of Dempster Shafer Theory in which the belief function represents quantified
beliefs. It largely extends the model initially presented by Shafer. The Hint Model is a
developed form of Dempster Shafer theory that fits with Probabilistic Argumentation Systems,
where arguments are weighted by probabilities and support sets of hypothesis. It largely
extends the model initially presented by Dempster. There are other theories that enter in
the Belief Function Theory framework, like the Random Sets Theory, the Upper and Lower
Probability theories, the probability theory extended to modal propositions like in the theory
of Probability of Knowing and the Probability of Proving etc... In these theories, Dempster’s
rule is not always appropriate or justified, hence they would not fall under the Dempster
Shafer theory as used here.



on the elements y of Y. We write PY for the probability measure on Y ... not
to be confused with the mass function P2* on 2Y. All that can be stated about
the probability PY (A4) that the actual (but unknown) value yo of Y isin A C Y
is that

PY(yo € A) € [bel™ (A),pl" (4)]

where
bel” (4) = Pu(A)=PXOLA) = S P¥@),
M(z)CA
pli¥(4) = PA)=PY(M*(A)= > P¥@);
M (z)NAZD
and where
M*(A) = {z:zeX,M(z)nA#0D}
M.4) = {o:2€X,M(z)C A M) # 0}

By construction, these functions P, and P* so defined on Y are indeed belief
and plausibility functions, respectively. This mathematical analogy explains
why Shafer’s theory of evidence (Shafer, 1976) was often understood as a special
form of upper and lower probability theory.

This can be looked at in a different way. We are interested in a probability
measure PXY on the product space X xY. The marginal measure PX is known
and PXY is constrained to satisfy PXY (z,y) = 0if y ¢ M(x). The conditional
measures PY (y) = PXY (x,y)/PX(x) which can arise in this way, for fixed =,
are denoted

M(x) = {P)|P; (M(x)) = 1}.

It is easy to see that

> min Rfempxy (AP¥(z)= > P¥(z)=Pu(A) =bel” (A).

zeX z:M(z)CA
Similarly

> maxpfemPf (APY@)= > P¥@) =P (4) =p"(4).
zeX z:M(z)NAZD

This suggests an analogy with upper and lower probabilities. However, it
must be noted that the minimum resp. maximum in the above equations can
be realized in many ways.

We note that Dempster’s approach requires a very particular partial knowl-
edge of the belief state PXY. From a strict’ subjectivist’ viewpoint, degree of
belief in every event can be quantified, and it is difficult to imagine circum-
stances in which one would know PX and the function M (z) but would not
know anything more. This is not to say that such situations cannot be con-
structed (see e.g. the hint models of (Kohlas & Monney, 1995)). The function
M (x) is not given a concrete interpretation. In the following section we propose
an interpretation of belief functions which is purely probabilisitc, that is, which
does not invoke partial knowledge of a belief state.



2.1 Conditioning

There are two obvious ways of conditionalizing in the context of Dempster’s
belief functions; conditioning on Z C X or conditioning on ¥ C Y.

If one learns that the actual value of X belongs to = C X, one computes the
conditional probability function PX(.|Z) on X given Z, and then recomputes
bel and pl from this conditional probability function.

If one learns that the actual value of Y belongs to ¥ C Y, then the M

relation is changed into My with Mg (z) = M (z) N. In that case, for A C Y
bel (A|¥) = bel (AU W) — bel (P) pl(A|T) = pl(ANW)).

on which case m((}) can be positive. If one further conditions PX on the z’s
such that Mg (z) #Z (), one gets

bel(AU W) — bel (V)
1 — bel (W)

This second conditioning rule is the classical Dempster’s rule of conditioning,
in which case m(()) = 0. Dempster’s rule of combination has been proposed to
combine two belief functions induced by two distinct pieces of evidence. Using
the concept of specialization, other rules for combination have been described
in order to cope with arbitrary pieces of evidence, Dempster’s rule of combi-
nation being just a special case of these (Smets, 1998). Furthermore, all these
combination rules correspond to conditioning on an uncertain event (Smets,
1993a).

It is evident that these notions of conditioning refer essentially to partial
knowledge of the belief state PXY . In the interpretation proposed below, there
is no appeal to partial knowledge of a belief state, and the interpretation is not
based on a mapping M : X — 2Y. Hence these notions of conditioning, and their
generalization as combination rules, do not apply. Rather, combination and
conditionalization would proceed within the normal probabilistic framework,
but these issues are not pursued further here.

pl(AN W)

bel(A|¥) = =)

Pl(A[Y) =

3 The self conditional interpretation

In this section we propose a probabilistic reconstruction of intuitions underlying
the notion of a basic belief assignment. S denotes the set of possible worlds or
possible outcomes, and is assumed finite and A C S. The ‘basic belief mass’
m(A) associated with A is glossed as (Smets & Kennes, 1994) (C denotes strict
subset).
m(A) is the mass that supports A, and does not support any A* C A.
m(A) is a mass that could freely be given to any subsets of A if we were given
new information.

The basic belief assignment m : 2% — [0, 1] satisfies

> m(4) =1.
ACS
The degree of belief bel(A) is defined as
bel(A) = ) m(X). (1)

XCA



P(4) 05
PAX =21) | 0.1
PAX =) | 03
P(A|X = x3) | 0.85

Table 1: Probabilities and conditional probabilities for figure 1.

We propose to interpret the ‘new information available to a subset of A ’ as
an observation in the normal probabilistic sense. If A were true, then m(A4) is
the additional belief in A which we expect from the performing the observation.
The key notion is termed a self-conditional expected probability. It is defined
in section 3.1 below and its mathematical properties are explored in section
3.3. In section 3.4 we relate the self-conditional probabilities to the basic belief
masses m(A). While it is not the case that every basic belief assignment can
be represented in this way, it does seem to capture properties of the underlying
intuition.

3.1 Self conditional expected probabilities

The basic notion in the interpretation proposed below is the probability of an
event A given some observation X, conditional on A. To explain this notion, let
X be an observation taking one of 3 values x1, z2, z3. The set of possible worlds
is pictured in figure 1. The event A is the shaded area, and the sets X = z; are
pictured as columns.

H = L LA

Al AL Al

Figure 1: Example of event A with observation taking values x1, s, x3.

Suppose the values of the probabilities and conditional probabilities are as
given in table 1.



Clearly, the posterior probability of A given X is a random variable whose
value depends on the value of X. Of course, the expectation of this variable is
just the probability of A:

3
E(P(A|X)) =Y P(A|X = 2;)P(X = z;) = P(A).
i=1
However, if we consider this expectation conditional on A occurring, then we
compute :

E(PAXIM) = Y PUl)Pl4) = 30 P(A)*P) /P(A) - (2)

_ 06T, (3)

By definition E(P(A|X)|A) = 0 if P(4) = 0. Supposing that A holds, we
expect our probability of A to rise upon performing an observation X.

Assume that one given observation, say X, is being contemplated, but not
yet performed. Supposing A to hold, E(P(A|X)|A) then reflects a surplus in
belief, beyond the current degree of belief P(A), which we expect to become
available to subsets of A, ‘if we were given new information’, i.e. the informa-
tion obtained by performing observation X. The quantity E(P(A|X)|A), af-
ter standardization, will be proposed as a probabilistic interpretation of m(A).
E(P(A|X)|A) is not a belief state after observing X, but it does play a role in
deliberating about possible observations, prior to deciding which observation to
perform. This is illustrated in the following example.

3.2 Example

Suppose A is the event that a tumor is malignant. The complement A is the
event that the tumor is benign. The a priori probability of A based on popula-
tion data is 0.1. A diagnostic test X with values 0,1 may be performed. From
clinical trials on patients whose tumors are known to be malignant resp. benign,
it is determined that

P(X =1]4) =0.9; P(X =0]4) = 0.1
P(X =1|4) =0.2; P(X = 0[A) =0.8.

With Bayes’ theorem we compute P(A|X = 1) = 0.333, P(A|X = 0) =
0.013 E(P(A|X)|A) measures the belief in A which we expect to have after
performing test X, given A:

E(P(A)X)|A) = P(A|X = 1)P(X = 1]A) + P(A|X = 0)P(X = 0]4) = 0.301

In reasoning about the value of test X for diagnosing A, it is natural to
consider the difference E(P(A|X)|A) — P(A) = 0.201. If we had to choose
between X and another equally expensive test Y with E(P(A|Y)]|A) = 0.5, we
should certainly prefer Y. If the tumor is malignant, then our expected increase
of belief in A is greater for test Y than for test X. Self-conditional expected
probabilities afford a natural way to compare different observations.



3.3 Mathematical properties

We explore some properties of E(P(A|X)|A). Throughout, all random variables
are finite; that is, they take finitely many possible values. A denotes the com-
plement of A : A =S — A. The proof of proposition (3.1) is similar to a proof
in Savage (1954).

Proposition 3.1 Let A C S and let X be a random variable, then
E(P(A]X)|4) > P(4).

Equality holds if and only if A is independent of X.

Proof. To prove the inequality it suffices to show

P(A]X)

E( PlA) |A) > 1.

This is equivalent to

P(A|X)
P(A)

which by Jensen’s inequality is entailed by

(AIX))|A)

log(E(

|4)) = 0;

E(log(

v

0;

PA)
oy P
E(=108( 5 14

AV

0;

Again, by Jensen’s inequality (— log is convex), this is entailed by

~loB(E g 140) 2 0.
Now,
P(4) on
e 14 ;P(Almz)
B P($Z|A)P ;)
= Z Pl AP(A) -
Hence,
~log(E( 5y 1) = — log(1) =0.

Independence of A and X is clearly sufficient for equality. To show that this
is also necessary, note that equality holds in the first application of Jensen’s
inequality only if

log(E(“pegy JA)) = (Elog(T e ) IA)) =o.

Since the logarithmic function is nowhere linear, this holds only if P(A|z)
P(A) for all .

ol



Corollary 3.1 Let X and Y be random variables, then :

1>3 P(Y =y|X =2)P(X =z|Y =y) > P(Y =y)
with the upper bound holding if X =Y and the lower bound holding if X and Y
are independent.

Information from observations X and Y are combined by simply consider-
ing the joint observation (X,Y). The next proposition gives an obvious but
important property of combined information.

Proposition 3.2 Let X and Y be random variables, then

E(P(AX,Y)|A) > B(P(A|X)]A).

Proof. With Bayes’ theorem it suffices to show:

P(A,m,y)2 P(A,m)2
2 Py 2P

We look at this term-wise in x, it suffices to show:

ZP(A,x,y)2 S P(A z)?

P(z,y) =  P(a)
>, P(4,2,y)]?
>, Plz,y)
For y € {y1,...yn} write:
d; = (P(l'?yz)) :
S P(A,z,y;)
(2 dZ )

then it suffices to show

-d.1?

SNdd e > cidi)?

which is the Cauchy Schwarz inequality. O

v

Self-conditional expected probabilities are sub-additive, as shown in the fol-
lowing proposition.

Proposition 3.3 If ANB =0, and X a random variable, then:
E(P(AU B|X)|AU B) < E(P(A|X)|A) + E(P(B|X)|B);

with equality holding if and only if (i) A is independent of X and B is indepen-
dent of X, or (ii) P(X = z|A) = P(X = z|B), for all x.



Proof. Term-wise in X, it suffices to show that

P(AUBJa)® _ P(A2)*  P(Blr)?

P(AUB) — P(A) P(B)
Write da = +/p(A),dp = /p(B), ca(z) = p(A|X = z)/da,cp(z) =

p(B|X = z)/dp, then the above becomes
(ca(@)da + cp(2)dp)? < (cA(2)? + cp(x)*)(d) + di)

which is just the Cauchy Schwarz inequality. Equality holds if and only if
ca(z) = B(x)d4 and ep(x) = B(x)dp for some non-zero function 3. Case (i) for
equality is trivial. For case (ii), substitution and Bayes’ theorem give

B(x) = P(AIX = 2)/P(4) = P(X = 2]A)/p(X = &) = P(X = «|B)/P(X = 2.)

This gives the second case in which equality holds. a

Corollary 3.2 Let A and B be disjunct subsets of {X = z}, then equality holds
in Proposition 3.3.

Proof. P(z|A) = P(z|B) = 1; if 2’ # z, P(«'|A) = P(z'|B) = 0. O

Considering the observation X to be fixed, it is convenient to introduce the
notation

n(A) = E(P(A|X)|4). (4)
Proposition 3.4 If P(A4) > 0, then

P(A)A - p(4))

Proof. This follows immediately from
P(A) = E(P(A|X)) = E(P(A|X)|A)P(4) + BE(P(A|X)[A)P(A).

O

We now consider that the field F' of events whose ‘basic belief’ is to be
measured is possibly smaller than the set of subsets of S. F' is sometimes called
the ‘frame of discernment’. If X is an observation, then F'x denotes the smallest
field on which X is measurable. Fx is generated by the events X = x;, where
i indexes the (finitely many) possible values of X. In Figure 1, Fx is the field
generated by the columns.

Proposition 3.5 If F is a field with n atoms, then for any probability P on F:
Yaep P(A) =271

Proof. The set of probabilities for which the proposition holds is clearly convex.
If P is concentrated on an atom, then the proposition holds, since exactly half
of the events in F' contain any given atom. Any probability can be expressed as
a convex sum of measures concentrated on atoms. O



3.4 Basic belief assignments

Definition 3.1 For a given frame of discernment F with n atoms and a given
observation X, the basic belief mass generated by X is defined for all A € F' as:

m(a) = MOy, 6
mx(@) = 1-— Y mx(A). (6)
ACF,A#£0D

From a remark to proposition (3.6) it follows that mx (@) > 0. We say that
a basic belief assignment m is derived from self-conditional probabilities if there
is a random variable X such that m = mx, i.e. if there is a random variable
which generates m.

Note that

mx (4) = 5o > (P(Alz) = P(A)P(x|A)
zeX

so mx(A) may be regarded as the expected increased in ‘information on A’

given A. Note also that mx(S) = 0. There is an interesting analogy with the

Kullback-Leibler relative information I(P(e|z), P(e)) with respect to a partition

{Ay,.. Ay} of S 2

I(P(e|z), P(e)) = > P(A;|)(InP(4;]z) — InP(A;)). (7)

i=1

Note that the above is defined with respect to a given partition, and the sum-
mation goes over the elements of this partition. In comparison, the summation
in (5) goes over the values of X. mx(A) is not restricted to a partition of S,
but is defined for all subsets A.

Proposition 3.6 If F'x is independent of F then mx(0) = 1; if Fx = F, then
mx(0) =1—27"FL,

Proof. The first statement follows from the corollary to Proposition 3.1. If
Fx = F, then by the corollary to Proposition 3.1, u(A4) = 1 and

AEF;A#) AEF;A#D
T P(A) 2l P
gn—1 gn—1 ’
AEF;A#£D

O

Remark If equality in the first equation is replaced by <, then the statement
holds generally, and shows that mx (@) > 0

2We are grateful: to an anonymous referee for drawing our attention to this fact
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The first statement of proposition 3.6 says that if F' is independent of Flx,
then there is no belief available to subsets of A € F after observing X, since X
can tell us nothing new about A. Hence, all mass is assigned to the empty set.
The second statement says that if F' = Fx, then the empty set gets minimal
mass. Significantly, this statement does not depend on P.

Proposition 3.7

mx(4) > 0, (8)
G PAmx() o
P(4) = mx(d) if P(A) > 0. (10)

mx(A) —|—mx(A)

Proof. The first statement is immediate. The third is an equivalent form of
the second. For the second statement, Proposition 3.4 gives:

e 1 P .
W) = PA) = 1= T u() - P(T) =
P(A) _ P -
W(H(A) -1+ P4 = W(H(A) -1+ P(4))
_ P _
= P ) - P,

Proposition 3.8 Let P and P be probability measures defined on F. Let w(A
and [i(A) be defined as above, and suppose that the sets A € F such that p(A) =
1 generate a strict subfield F' of F. Suppose further that for all A € F, u(A) =
f(A); then P = P.

Proof. : From proposition 3.4 we have for A ¢ F' 0 < P(4) < 1:

1-u(@) P
—ud) P

1—p(A) +1—p(A)

Since P satisfies the same relation, P(4) = P(A) for A ¢ F'. Since F' # F,
there must be an atom « of F' which is not an element of F’'. For any distinct
atom C of F',a ¢ C, we have CUa ¢ F' since otherwise C'N(CU«a) = a € F".
Since

P(aUu(C) - P(a) = P(C).

It follows that P(C') = P(C) and hence P = P. |

It is instructive to compare myx with the basic belief assignment in Demp-
. . . 5Y oY R
ster’s basic belief assignment P2° . We observe that P2° may be an arbitrary

11



mass function on 2V, whereas m x is constrained as indicated in the above propo-
sitions. Since P2 is arbitrary, we can set S = Y and find some construction
such that P2 (A) = mx(A) for all A. The point of the self-conditional inter-
pretation of the basic belief assignment, however, is that we do not need to do
this. We have only one space S equipped with a probability mass function, and
the basic belief mass emerges from the self conditional expected probabilities.

The function bel may be computed according to (1); however it does not
yield a probability bound. To see this, it suffices to consider A C X = z. It is
not difficult to verify that

S~ 4lB) = P(B) _ 2#APLAP(X #2)
gn—1 mPIX =x)

BCA

This may of course be greater than P(A). It does not appear possible to recover
mx from this probability and some mapping from S to 2°. The next section
addresses the question when a basic belief assignment can be derived from self
conditional expected probabilities.

3.5 Conditions for m = my

Although self-conditional probabilities yield basic belief assignments which seem
to capture something of the intuitive meaning of ‘basic belief assignment’, it is
not true that every basic belief assignment can be represented as mx for some
random variable X . Indeed, it suffices to note that mx (S) = 0 whereas this need
not hold for an arbitrary basic belief assignment. Further, if A is independent
of X, then mx(A) = mx(A4) = 0 and mx can yield no information about P(A).
It is therefore appropriate to restrict attention to basic belief assignments m for
which m(A) = 0 entails A = S.

We consider a finite set S with n elements and a basic belief assignment m
satisfying m(A) =0 < A = S. We say that m is derived from a self-conditional
probability if we can define a probability mass function P on S and random
variable X such that m = mx. Fx denotes the field generated by sets of the
form {X = z}.

If A € Fx then pu(A) =1; hence for A # S, mx(A) must satisfy

2" lmx(4) = 1 — P(A) = P(A)

A similar equation must hold for mx(A4). Adding these two equations yields
the first condition below. The second condition is just equation (10).

{A C Smx(A) + mx(A) =2'""} U {S, 0} is a field. (11)
P(A4) = % for A # 0; P(D) = 0; is a probability. (12)

Suppose that m satisfies (11). Let Fx denote the corresponding field, and
define a random variable X assigning distinct constants to the elements of dis-
tinct atoms of Fx. The above conditions are clearly necessary for m = mx.
To obtain sufficient conditions, the P given by (12) may be substituted into (2)
and the result into (4), and this finally into (5).

12



The definition of mx refers to one observation X. An evident generalization
would consider mixtures of measures my, by introducing lotteries over possible
observations. This will not be pursued further here.

4 Probability functions extended to modal propo-
sitions.

4.1 The probability of believing

Conventionally, probabilities are allocated to sets. This is easily adapted in
order that probability be defined on propositions. Indeed, in the finite case,
propositions and subsets are in one to one correspondence. So using one or the
other approach is a matter of convenience. Nevertheless, once one considers
propositions, one can as well start considering what would become probability
theory if the domain was no more classical propositions, but modal propositions.

Ruspini (1986, 1987) has proposed to consider bel%t(A) as the probability
that the agent Y knows at time ¢ that A holds. Pearl (1988) proposed to un-
derstand it as the probability that A is provable. Both approaches fit essentially
with the same ideas. Smets (1991, 1993b) takes Pearl’s approach, but discusses
at length the nature of the conditioning process. More recently Tsiporkova
et al. (1999b, 1999, 1999a) also study the extension of probability to modal
propositions.

Let Op denote the modal proposition where the O operator, called the box
operator, denotes that proposition p is necessary, known, proved, etc. . . depending
on which modal theory one is interested in. Our discussion will use the modality
‘believing’ as it is simple. We prefer ‘believing’ as we do not want to force the
T axiom : Op — p that is usually introduced when knowing and proving are
considered. Further one should not confuse this modality ‘believing’, which is
categorical, with the weighted beliefs encountered in the subjective probability
theory and in the transferable belief model. Here, Op means the agent believes
.

Let O satisfies the classical KD system (Chellas, 1980):

K :0O(p— q) — (Op — Oq)

Axiom D states that if you believe p, you do not believe its negation. Axiom
K states: if you believe an implication and its antecedent, then you believe its
consequent.

Under KD, one deduces:

AND :O(pAq) =0OpAQdgq

that states that believing the conjunction of two propositions is equivalent to
believing each of them individually.
The behavior of O when the modal operators are nested are not considered
here as regards the probability over sets of worlds, as they are not used.
Formally, let L be a finite propositional language, supplemented by the tau-
tology and the contradiction. Let SL be the sentences of L formed by repeated
applications of the connectives V, A, —.

13



Let © be the set of worlds that correspond to the interpretations of L. For
any p € SL, let [p] C Q be the set of worlds identified by p, i.e., those worlds

where p is true:
Pl = {w:we Qw ke p).

Suppose the language L is enriched with the modal operator O with the
meaning of ‘believing’ (other meanings like ‘proving’ or ‘knowing’ could as well
be considered). So each world is not only characterized by what is true in it, but
also by what is believed in it. Formally, it means that there is an ’accessibility
relation” R on Q x Q so that:

w | Op iff Vo' such that (w,w') € R,w' | p.

where p is a non-modal proposition in L (nested modalities are not considered).
We define the set [!Op] C Q as the set of worlds where all the agent believes
is p (and thus nothing more ‘specific’). So:

[Op] ={w:we€ N wl=Opand Vg #p,qg=pAq,wk Oq}.

By construction, if p,q € SL, then either [!Op] = [!Oq] (when p = q) or
[Op]N[!Og] = 0. The sets [!Op] for p € SL constitute a partition of Q. We also

have:
opl=  |J [o9g

q€SL,q=pNq

Let P be a probability measure on Q. Then define bel : 2% — [0, 1] such
that:

bel([p]) = P({w : w € ©,w |= Bp}) = P([Op)).

This function is indeed a belief function on (.
To see this, it is sufficient to find the basic belief assignment that corresponds
to bel. Let the basic belief assignment m : 2° — [0, 1] be defined by:

m([p)) = P{w:w e Q,w [=!0p}) = P(['Op]).

The m([p]) terms are non negative. As the sets [!Op] are the elements of a
partition of €2, their sum is 1. Therefore m is indeed a basic belief assignment
on €.

Then

bellp) = P(Fp) = > P(IOg)= Y. m(q)

[a]C€Q,[q]C[p] [a]C€Q,[q]C[p]

what is just the relation linking bel to its basic belief assignment m. So bel is
indeed a belief function.

We note that this interpretation links the belief functions with a much
broader domain of potential application than the interpretation in the previous
section; namely, the domain of modal discourse. However, for this interpreta-
tion to work, we need more than simply a probability measure P on (2, we need
the relation R providing the semantic interpretation of the modal operator.

14



5 Comparison of Modal and Self-conditional in-
terpretations

The intuitions underlying the self-conditional and modal interpretations are
quite different. This may be illustrated by considering a simple, though generic,
realization of the modal interpretation. Consider a formal propositional calculus
generated by n logically independent propositional constants p1,...p,. We con-
sider the free algebra generated by these; this is an algebra with 2" atoms, each
atom being a conjunction A,_, , 7, where r; = p; or r; = —p;, the negation of
pi- A model of this language is just an ultrafilter in this algebra; in this case
that is the set of propositions entailed by a single atom. For model w, denote
this atomic proposition as a,,.

Suppose that the 'accessibility relation’ R is symmetric. This is obtained by
adding schema B : =p — O-0Op, that states: ‘if p is false, You believe that You
do not believe p’. For w € €, call the set of models accessible from w, the orbit
of w,0(w). Then w' € O(w) = O(w') = O(w). The orbits partition 2. Define

qu = \/ Q!

w'€0(w)

Each orbit is the set of models satisfying the disjunction of the atoms of models
in the orbit, and g, is the strongest proposition with that property.

Let A(R) be the subalgebra (or equivalently subfield) generated by the orbits.
It is easy to verify the following facts. The modal basic belief assignment assigns
zero belief to any proposition which is not an atom of A(R). To atoms of A(R),
the basic belief assignment is just the probability antecedently defined over €2 .

The difference with the self-conditional basic belief assignment mx is strik-
ing. According to proposition 1, mx(B) = 0 only if B is independent of X, i.e.
if B is independent of all sets of the form {X = z}. In particular, mx (S) = 0;
that is, new information can never yield more belief in S. On the other hand,
in the modal interpretation with symmetric accessibility, m(B) = 0 for any B
which is not an atom of A(R). If the relation R is empty, such that no world is
accessible from any other, then the orbits are just the singletons {w}, and only
the atomic propositions have non-zero basic belief mass. If the trivial proposi-
tion has positive basic belief mass, then Q2 must be an orbit of R, and since the
orbits partition {2, this is the only orbit. In other words, every world is accessi-
ble from every other. In this case the basic belief mass of the trivial proposition
is one.

6 Conclusions

Belief functions model partial knowledge. We have argued that the original
interpretation of belief functions suggested by Dempster is restricted in so far
as it models only one very particular state of partial knowledge of a belief state.
The self-conditional expected probability interpretation does not invoke partial
knowledge of a belief state. Instead, it interprets the basic belief assignment as
new belief becoming available from new information via an observation. The
modal interpretation models the probability that a proposition is believed.
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The intuitions underlying these interpretations all find expression within the
Dempster Shafer formalism, but in many respects they are antithetical. This
is illustrated by the basic belief mass assigned to the trivial proposition. In
Dempster’s interpretation this mass can take any value between zero and one. In
the self-conditional interpretation this mass is zero. In the modal interpretation
with symmetric accessibility, the trivial proposition has basic belief mass zero or
one. In the same vein, any event can have basic belief mass zero in Dempster’s
approach, in the self conditional approach zero basic belief mass is equivalent
with independence with respect to the observational field F'x. In the symmetric
modal approach, every proposition which is not an atom of the orbit algebra
has zero basic belief mass.

It emerges that the belief function formalism allows expression of very dif-
ferent intuitions having very different properties. Probability theory also has
different interpretations, e.g. the frequency interpretation, the subjective in-
terpretation, the logical interpretation and the propensity interpretation. The
formal properties of probability are not identical in these interpretations. For
example, subjective probabilities are sometimes said to be finitely and not count-
ably additive, propensities are said to be Renyi spaces rather than normalized
probabilities. Nonetheless, these formal differences are not great and have no
impact on applications. With regard to belief functions, in contrast, the basic
belief assignments in different interpretations have very different formal prop-
erties. In general, it is impossible that a 'Dempster basic belief mass’ could be
a self-conditional basic belief mass, and neither could be a modal basic belief
mass. Appreciating this fact may help clarify the debate surrounding belief
functions.
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