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Abstract: We study the relationship between partial correlation and constant
conditional correlation with particular attention to copulae used in high dimen-
sional graphical models. Sufficient and, in some cases, necessary conditions for
equality are obtained. Numerical results show that the difference between par-
tial and conditional correlation is small for the minimum information copula.
When approximate equality holds, regular vines enable us to specify a correla-
tion structure without algebraic constraints (e.g. positive definiteness) and to
translate this structure into an on-the-fly sampling algorithm.
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1.1 Introduction

Mathematical models such as reliability diagrams, fault trees, accelerated life
testing models, etc, rely on parameters whose values cannot always be perfectly
measured. Nowadays, even elementary texts in risk and reliability prescribe
uncertainty analysis for such models and present elementary methods (see eg
Andrews and Moss 1993). Elementary methods inevitably assume that the un-
certainties over different parameters are independent. This is often unrealistic.
Methods for uncertainty analysis with dependence are currently an active re-
search topic. This article develops tools for representing dependence in high
dimensional distributions, such as those arising in uncertainty analysis of large
fault trees.

1On leave from Gdynia Technical University
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The Markov tree method for specifying dependence in high dimensional distri-
butions permits on the fly sampling and has attractive theoretical features (see
section 1.3). However, it is limited by the fact that only a ‘treefull’ of con-
straints can be specified. Another popular approach (Iman and Conover 1982)
abandons on the fly sampling. A large sample matrix is held in memory and
transformed to realize a given (rank) correlation matrix. For large problems,
many cells of the correlation matrix will typically be unspecified, and this ap-
proach encounters the so called matrix completion problem (Laurent 1999): can
a partially specified matrix be extended to a positive (semi) definite matrix? If
an extension is possible, which extenions should be used? Furthermore, for large
problems, holding a sample matrix in memory imposes unwelcome tradeoffs be-
tween speed and accuracy. Vines promise to combine the advantages of both
approaches while avoiding the matrix completion problem. The key element is
this: when conditional rank correlation is held constant, the partial correlation
and mean conditional product moment correlation are approximately equal.

We first discuss partial and conditional correlation, and the graphical models
in which these are used. We then study conditions under which these two
correlations are identical. After introducing the Fréchet, the diagonal band and
the minimum information copulae, we present numerical results.

1.2 Partial and conditional correlation

For variables X; and X5 with zero mean and standard deviations o1 and o,
let b;2 be the number which minimizes

E(X| — b2 Xy)?.

The product moment or Pearson correlation p(Xi, X2) between X; and X5 is
defined as

p(X1, Xo) = (512521)%-

It is easy to show that p(Xi, X3) = w. Consider variables X; with
zero mean and standard deviations o;,71 =1,...,n.
Let the numbers b12.3 .. n,..., 0153, n—1 Minimize

E(X1 —bi23, .nXo— oo — bins,..n—1Xn)%

then the partial correlations are defined as (Yule and Kendall 1965):
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1
2, etc.

p12:3,..0n = (b12:3,..n0213,..n)
Partial correlations can be computed from correlations with the following re-
cursive formula:

£12:3,...n—1 — Pln;3,...n—1 " P2n;3,...,n—1
P123,..n. = . (1.1)

2 2
\/1 - pln;3,...,n—1\/1 - :02n;3,...,n—1

The conditional correlation of Z and Y given X;

pyzix = pY|X,Z|X).
is the product moment correlation computed with the conditional distribution
given X. In general this depends on the value of X, but it may be constant.

Letting F'x, Fy denote the cumulative distribution functions of X and Y’; the
rank correlation between X and Y is:

r(X,Y) = p(Fx(X), Fy(Y)).

For the joint normal distribution, partial and conditional correlations coincide.

We define the mean absolute difference between partial and conditional corre-
lation or conditional rank correlation as

A(YZ|IX) = Elpyzx —pyzx|),
A(YZIX) = Ellpyzx —ryzxl)-

IfY and Z are independent conditional on X, then of course ry z|x = py zjx =0
and we write

A(Y Z|X) = A.

We shall see in section 1.4 that A may be quite large, though a sharp upper
bound is not known at present.
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1.3 Trees, Vines and Copula’s

Trees and vines are graphical modelling tools for specifying dependence struc-
tures in high dimensional distributions. We restrict attention to variables with
a uniform distribution on [0, 1] and present the main concepts informally. A tree
on N variables specifies at most N — 1 edges between the variables. Each edge
may be associated with a copula, that is a distribution on [0, 1]® with uniform
marginals. Popular copulae in this context are the diagonal band (Cooke and
Waij 1986) and the minimum information copulae (Meeuwissen and Bedford
1997); these copulae are continuous and can realize any correlation value in
[—1,1] (for the other copulae see (Dall’Aglio et al. 1991) and (Nelsen,1999)).
Given any tree on N variables with copulae on the edges, a joint distribution
can always be constructed satisfying the tree-copulae specification. Moreover,
it can be shown (Cooke 1997) that there is a unique minimum information joint
distribution satisfying the tree-copulae specification and under this distribution
the tree becomes a Markov tree. Distributions specified in this way can be sam-
pled on the fly. The tree-copulae method of specifying a joint distribution is
limited by the fact that there can be at most N — 1 edges on the tree.

A vine on N variables is a nested set of trees, where the edges of tree j are the
nodes of tree j +1; 7 =1,..., N — 2, and each tree has the maximum number
of edges. A regular vine on N variables is a vine in which two edges in tree j
are joined by an edge in tree j + 1 only if these edges share a common node,
j=1,...,N—2. Thereare (N—-1)+ (N —-2)+...+1= W edges in a
regular vine on N variables. Each edge in a regular vine may be associated with
a constant conditional rank (Conditional rank correlations are implemented in
the sampling algorithms; however, as we know the conditional copula distribu-
tions and the relation between rank and mean product moment correlations for
these distributions, we could just as well associate mean conditional product
moment correlations) correlation (for j = 1 the conditions are vacuous) and,
using the diagonal band or minimum information copulae, a unique joint distri-
bution satisfying the vine-copulae specification with minimum information can
be constructed and sampled on the fly (Cooke 1997). Moreover, the (constant
conditional) rank correlations may be chosen arbitrarily in the interval [—1,1].

Figure 1 shows a regular vine on 5 variables. The four nested trees are distin-
guished by the line style of the edges; tree 1 has solid lines, tree 2 has dashed
lines, etc.The conditional rank correlations associated with each edge are de-
termined as follows: the variables reachable from a given edge are called the
constraint set of that edge. When two edges are joined by an edge of the next
tree, the intersection of the respective constraint sets are the conditioning vari-
ables, and the symmetric difference of the constraint sets are the conditioned
variables. The regularity condition insures that the symmetric difference of the
constraint sets always contains two variables. Note that each pair of variables
occurs once as conditioned variables.
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Figure 1: A regular vine on 5 variables

The edges of a regular vine may also be associated with partial correlations,
with values chosen arbitrarily in the interval (—1,1). Using the recursive for-
mulae (1.1) it can be shown that each such partial correlation regular vine
uniquely determines the correlation matrix, and every full rank correlation ma-
trix can be obtained in this way (Bedford and Cooke 1999). In other words,
a regular vine provides a bijective mapping from (—1,1)N(N=1/2 into the set
of positive definite matrices with 1’s on the diagonal. One verifies that p;; can
be computed from the sub-vine generated by the constraint set of the edge
whose conditioned set is {7, j} using recursive the formulae (1.1).We can deter-
mine numerically the mean conditional product moment correlation for a given
constant conditional rank correlation. If this mean product moment correla-
tion were (approximately) equal to the partial correlations, then the recursive
formulae (1.1) could be applied to (approximately) compute the entire correla-
tion matrix of the joint distribution constructed from the regular vine-copula
specification. Alternatively, an arbitrary correlation matrix could be used to
compute the partial correlations on a regular vine, and these in turn used to
determine the constant conditional rank correlations, and to (approximately)
sample the distribution on the fly. The degree to which partial correlations and
mean constant conditional product moment correlations agree is a property of
the copulae used, and the correlation values themselves.
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1.4 Conditions for A =0

The following example shows that A may be large.

Proposition 1 Let

(a) X is distributed uniformly on an interval [0, 1],

(b) Y, Z are independent given X,

(¢) Y|X and Z|X are distributed uniformly on [0, X*], & > 0,
then

3k2(k — 1)2

A
4(k* + 4k> + 3k + 1)

3
- = 1.2
j (12)
The case k = 2 was proposed by P. Groeneboom.

Proof: We get X
E(Y)=E(2) = E(E(Y|X)) = E(°}) = o5

E(Y?) =E(Z%) = (EZ(YIX))z B(55) = sty

Var(Y) = Var(Z) = 2k+1 — (3 1+)) ,

E(XY) = E(XZ) = B(E(XY|X)) = B(X(E(Y|X)) = BE(X5~) = 5t
) 1

2 2(k+2)°
Cov(X,Y) = Cov(X,Z) = E(X E(X)E(Y) = gy — 3900mm
E(YZ) = E(E(Y Z|X)) = E(E(Y|X)E(Z |X>>=E(X:’“)— BT

Cov(Y,Z) = E(YZ) — E(Y)(E(Z) = ;

Cov(Y, Z) 3k
pyz=——"">" = ‘“F5 07—
oyoy 4k? + 2k + 1
and
_ Cov*(X,Y) 9k2(2k + 1)
PXYPXZ = e XVarY (k+1)2(4k> + 2k + 1)
PYZ — PXYPXZ 3k>(k — 1)

= = ——ask —o00 O
4 2
\/1_pr\/1 PXZ A4(k* + 22+ k+1) 4
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Y| Xand Z|X | A

[0, 7] 0.0000
[0, 7] 0.0769
[0, 23] 0.2126
[0, 2] 0.3243
[0, 2°] 0.4049
[0, 219] 0.5824
[0, z199] 0.7348
[0, 2x1000000] 0.7500

Table 1.1: Numerical results for Proposition 1.1

Table 1.1 shows some numerical results. We note that unconditional distribu-
tions of Y and Z are not uniform.

Theorem 1
Let

(a) X,Y,Z have mean 0,
(b) Y and Z be independent given X,
(c) E(Y|X) = AX, E(Z|X) = BX, where A,B #0
then
A=0. (1.3)
Proof. Since (1.3) is equivalent to

Cov(Y,Z)  Cov(Y,X) Cov(Z, X)

oyoyz oyox 0z0Xx
it suffices to show that

0% Cov(Y,Z) = Cov(Y,X)Cov(Z, X) (1.4)
We get

E(ZY) = E(E(Y Z|X)) = E(E(Y|X)(E(Z|X)) = ABo¥%,
E(XY) = E(XE(Y|X)) = Ao%,
E(XZ) = Bo%.

Hence (1.3) holds. O
Theorem 2
Suppose (1.3) holds and that

(a) X,Y,Z have mean 0,
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(b) Y and Z are independent given X,
(¢) E(Y|X) = B(Z|X);
then
E(Y|X)=AX, where A #0.
Proof. If (1.3) holds then (1.4) is satisfied as well. From (b) and (c) we get
AE(EYIX)P) = [B(XEY|X).
Applying Cauchy-Schwarz inequality in the case of equality we obtain

E(Y|X) = AX. O

1.5 Copulae

Definition 1

A copula E is a class of joint distributions on the unit square with uniform
marginals.

In the following we transform the unit square to [
lations.

Definition 2

Random variables X and Y are joined by copula f if and only if their joint

distribution has density

11

-3, 5]2 to simplify the calcu-

F(Fx (u), By H(ug)).
The simplest copula is the Fréchet copula, = = {f1, f_1} where

if U1 = U2

Sl

0 otherwise

fi(ui,ug) = {

and

1 .
— ifu =—u
_ \/i 1 1 2
Joalun, u) { 0  otherwise
where uy,up € [—1,1].
Let ®(A) denote the class of mixtures of f; and f_; with parameter A € [0, 1]

on the unit square [—3, $]%, that is f € ®(A) if
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flur,ug) = Afi(ur,uz) + (1 — A)f1(ur,uz).

It is easy to see that this mixture of the Fréchet copulas has linear regression.
For the variables X,Y,Z joined by the mixtures of the Fréchet copulas the
assumptions of Theorem 1 are fulfilled so in this case (1.1) holds.

The diagonal band distribution on the unit square [—3, £]? is given below. For
the positive correlation the mass is concentrated on the diagonal band with
vertical bandwidth 8 = 1 — a. Mass is distributed uniformly on the inscribed
rectangle and is uniform but is “twice as thick” in the triangular corners. We
can easily verify that the mass on the rectangle is equal to ﬁ and on the

triangles % . For negative correlation the band is drawn between the other

corners.

Figure 2: The diagonal band distribution with correlation 0.8

The regression for the diagonal band distribution are given by the following
formulae:

0<a<05
2(11:1) [X? + X + (a = 0.5)%], 05 =X <05+«
B(Y]X,0) = 755X, “05ta X< 05-a
R ll_a)[XZ—X+(a—0.5)2], 05—a <X < 0.5
0.6 <a<l
2(11_a) [X? + X + (a = 0.5)%], —05 <X< 05-a
E(Y]X,a) =X, 05—a X< ~05+a
—sra[X? = X +(a@=05)?%, —05+a <X< 0.5

For the negative a we can find the regression as follows

EY|X =z,a) = EY|X = —z,—a).
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The correlation coefficient can be calculated from the formula (Cooke and Waij
1986)

p=sgn(a)((1 - |a)® = 2(1 - |a)* +1).

The minimum information copula is the joint density function g(z,y) with
minimal relative information with respect to the uniform density given uniform
marginals and a given correlation. The density g(z,y) has functional form
(Bedford and Meeuwissen 1997)

g(x,y) = K(z)r(y)e"™

for (z,y) in unit square [—3, $]2. Function () is even around z = 0.

U‘\/o»—-ww&mmxlm

o

Figure 3: The minimum information distribution with correlation 0.8

r0=0.8 number of points=50
05 T T T T T T T T T

0.4 A
03[ 3 : 4
02f . 4

0if p 4

-02f . — y=E(YIX=x) | ]
o — y=ro*x

05 L L L L L L L L L
0.5 -0.4 -0.3 -0.2 -0.1 o 0.1 0.2 03 0.4 05

Figure 4: The conditional expectation for minimum information distribution
with correlation 0.8.
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1.6 Computing A

Let us consider variables X, Y uniform on [—%, %] We may write

EY|X) = kX +eX).
We want to find the coefficient k which minimizes the square error given by
/(E(Y|X) — kX)*da.

Setting the derivative with respect to k equal to 0:

d
dz
/X(E(Y|X) _kX)dr =

/(E(Y|X)—kX)2dx _—

0,
/XE(Y|X)dx - /kX2d:r,,
Cov(X,Y) = ko%

and finally since ox = oy

Cov(X,Y) Cov(X,Y)
0% oxXoy

Thus, the best approximation of the regression is the line with coefficient equal
to p.

The mean square difference with linear regression is equal to the variance of
the conditional expectation minus a correction term p20%.

Proposition 2

/(E(Y|X) — pX)? de = Var(BE(Y|X)) — p2o%.
Proof:
/(E(Y|X) —pX)dzr = /E(Y|X)2 dz — 2p°Cov(X,Y) 4 p*o%

= /E(Y|X)2dx - plo%k
= Var(E(Y|X)) — p?c%. O

Theorem 3 Let us consider variables X, Y, Z uniform on [—%, %] and such that
Y and Z independent given X then

J ey (X)ez(x)dn
A= PYZ — PXYPXZ i T oyog;

V1= k1 ks V1=%y V1-0% 5
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where

ey(X) = EY|X)—pxyX
ez(X) = E(Z|X)—pzvX.

Proof. We get
EYZ)=EE(YZ|X))=EE(Y|X)E(ZX)) =

pxypxzo'§(+,0xy/XEZ(X)dI-i—pxz/XE)/(X)dx—i-/ey(X)EZ(X)dI.

/XEZ(X) = /Xw(X)
_ /(XE(Y|X)—pxyX2)dx

Cov(X,Y) 2

= Cov(X,Y)— ,OXYU§( = Cov(X,Y) — x=0

Ox0y

then we get

E(YZ) = pxypxz0%x + /6y(X)eZ(X)dm.
We can easily calculate that

E(XY) = pxyo% and E(XZ) = pxz0%.

Hence we get

loyz — pxypxz| =

E(YZ) E(XY)E(XZ) ‘

oyoyz Uyazag(

1
— X X)d
p— /EY( )ez(X)dz

which concludes the proof. O
Remark
In the case when E(Y|X) = E(Z|X) we get

A_lvz= _ VaBEIX) 2 w5
1 —p? o%(1—p?)  1—p* '
Next we examine the difference between conditional and partial correlation
when we assume that conditional correlation is constant.

Theorem 4
Let
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(a) X,Y,Z be uniform on[—%, %],
(b) E(Y|X)=E(Z]|X)=AX, where A # 0,
(c) Oy|x = 0Z|X>»
(d) Pvzix =T,
then
pYz;x =T

Proof. It is easy to see that

pxz = pxy = A.

Since

B | Cov(Y|X,Z|X) _ E(YZ|X)— A2X?
"= IOYZ|X - O-Y‘XO-Z‘X - Var(Y|X)

then
E(YZ|X) = rVar(Y]X)— A%X2
From the above we get

E(E(YZ|X)) _ E(rVar(Y|X) - A%2X?)
ok - ok '

PYyz =

Since

E(Var(Y|X)) = Var(Y) — Var(E(Y|X)) = o% — A%0% =o%(1 — 4?)

then

ro2(1 — A%) + A2%52
pyz = x( 02) X —r(1 - A%+ A%
X

Finally we can calculate the partial correlation Y, Z given X

PYZ — PXYPXZ r(l1—A%) 4+ A2 — A%

SN s

Theorem 5
Let

(a) X,Y,Z be uniform on[—3, 1]

= =r. O

13
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(b) Y, X and Z, X be joined by the mixture of the Fréchet copulas with pa-
rameters Ay, Az respectively,

(c) Pyzix =T,

then
pYz;x =T
Proof. We get
E(Y|X) = X(24y —1),
E(Z|X) = X(24z-1),
E(Y|X)?) = X% (1-Ay)+X%4y = X2,
Var(Y|X) = X% - X243 = X?(1— A}).

From the above we obtain

oy|x =X 1— A2 and oz x = X 1— A%,

We also get
Cov(X,Y) E@zE(Y|X)) Ayo%
pPXy = ————— = = 5 = Ay.
oyox oyoXx Ox

Analogously we obtain
pxz = Az.
From the above calculations and by (c)
Cov(vixzlx) . EYZ|X) - Ay Az X?

TEPYZIXT Tovxozx XQ\/I—A%\/l_AZZ‘

Hence we calculate that
BE(YZIX) = r/1— 431 - AZX? + Ay Az X?
= X2(r\/1 - A2\/1 - AL + Ay Ayp)

and find

E(E(YZ|X))

pyz = —

oyoy
B(X2(r\/1— A3\/1 - A% + Ay Az))
_ =
0% (ry/1— A3\/1— 4% + Ay Ay)
ok

= 11— A%/1- 4% + Ay Ay
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Hence partial correlation Y, Z given X is as follows

___PYZ — PXYPXZ _ T\/l - A%/\/l — Ay + Ay Ay — Ay Ay
PYZ;X = \/1_,0%”\/1—,0%(2 - \/1—A§,\/1—AQZ

which concludes the proof. O

=r

1.7 Numerical results

We calculate A for several values of p = pxy = pxz using (1.5). The results
are prepared in Matlab 5.3 and presented in Table 1.2. A discrete version of the
minimum information distribution was obtained in Matlab 5.3 as a solution of
the optimization problem. Table 1.2 contains the results for discrete minimum
information distribution where the unit interval was divided uniformly into 50
equal segments. If we take a better approximation of this distribution we find
that A becomes smaller.

The above results show that in the case of conditional independence for di-
agonal band and minimum information distributions the correlation between
conditionally independent variables is almost equal to the product of correla-
tion between them and the variable on which we conditionalize. In all cases A
is lower for the minimum information copula.

) A
MINIMUM
DIAGONAL BAND | INFORMATION

0.1 7.08594e-6 2.0455e-6
0.2 1.54056e-4 1.0002e-5
0.3 8.64019e-4 4.0192e-5
0.4 2.82514e-3 1.6511e-4
0.5 6.84896e-3 6.1690e-4
0.6 1.34098e-2 2.0390e-3
0.7 2.16325e-2 5.8727e-3
0.8 2.92942e-2 1.3867e-2
0.9 3.27922e-2 2.2426e-2

Table 1.2: The comparison of A for diagonal band and minimum information
distributions for p = pxy = pxz-

Suppose in Table 1.3 we fix pxy, pxz and the conditional rank correlation and
sample using the minimum information copula. Table 1.3 compares partial
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correlation, and the mean conditional product moment correlation for some
illustrative cases. We see that the difference between them can be in order
of 4%, and thus is larger than in Table 1.2 where Y and Z are conditionally
independent given X.

Stipulated Computed

PXY | PXZ | TyzIx | PYZ pyzx | Epyzx A, A

0.1 0.7 0.0 0.0702 | 0.0002 | -1.347e-14 | 2.5e-4 | 2.5e-4
0.9 0.9 0.9 0.9795 | 0.8921 0.9004 0.0079 | 0.0083
-0.9 | 0.9 -0.9 -0.9739 | -0.8626 -0.8469 0.0374 | 0.0157
-0.9 | 0.9 0.9 -0.6631 | 0.7729 0.8098 0.1271 | 0.0369
-0.5 | 0.4 0.7 0.3267 | 0.6635 0.6525 0.0365 | 0.0110
0.3 0.9 -0.2 0.1906 | -0.1909 -0.1896 0.0091 | 0.0013
-0.1 | -0.3 -0.8 -0.7173 | -0.7873 -0.7719 0.0127 | 0.0154
0.8 0.8 0.8 0.9143 | 0.7619 0.7540 0.0381 | 0.0079

Table 1.3: The results of the simulations for minimum information distribution.

In Table 1.2 the conditional rank correlation and the conditional product mo-
ment correlation are equal and equal to zero. In Table 1.3 the conditional rank
correlation is constant, and not equal to the (non constant) conditional prod-
uct moment correlation. We believe that improved numerical routines will give
better approximations as the stipulated correlations become more extreme.

1.8 Conclusions

We have seen that mean conditional product moment correlation under constant
conditional rank correlation with the minimum information copula provides a,
good approximation to the partial correlation, particularly if the stipulated
correlation values are less than 0.9 in absolute value. As explained in section
1.3, this means that we can (approximately) specify a correlation structure
by giving the partial correlation values on a regular vine. The advantage of
this is that these values are algebraically independent; they need satisfy no
condition like positiveness definiteness, and the matrix completion problem does
not arise. Alternatively, We can start with an arbitrary correlation matrix,
and compute the partial correlations on a regular vine. Setting these equal
to mean conditional product moment correlations under constant conditional
rank correlations, we can retrieve the conditional rank correlations and thus,
combined with the minimum information copula, determine a sampling routine.
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This sampling routine works on the fly: We draw one sample vector at a time,
we need not retain large numbers of sample vectors in memory.
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