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Introduction Modern Reliability Data Bases (RDB’s) are designed to meet the needs of 
diverse users, including component designers, reliability analysts and maintenance engineers. 
To meet these needs RDB’s distinguish a variety of ways in which a component’s service 
sojourn may be terminated. Up until quite recently, this data was analyzed from the viewpoint 
of independent competing risk. Independence is often quite implausible, as eg when degraded 
failures related to preventive maintenance compete with critical failure. The maintenance 
crew is trying to prevent critical failures while losing as little useful service time as possible; 
and hence is creating dependence between these competing risks.  We have recently learned 
how to use simple models for dependent competing risk to identify survival functions and 
hence to analyze competing risk data. This type of analysis requires new statistical tests, 
and/or adaptations of existing tests. Competing risk models are described in [5]. In this paper 
we present a number of tests to support the analysis of competing risk data. 
 
Competing risk data may be described as a colored point process, where each point event is 
described by a number of properties, and where a coloring is a grouping of properties into 
mutually exclusive and exhaustive classes.  For example, a maintenance engineer is interested 
in degraded and incipient failures, as they are associated with preventive maintenance. He is 
trying also to take the least expensive maintenance action: repair action or adjustment action 
are favored above replace action. Critical failures are of primary interest in risk and reliability 
calculations and a component designer is interested in the particular component function that 
is lost, in the failure mechanisms and he wishes to prevent the failure of the most expensive 
components of the system.  
 
In addition to this, two other main operations may be performed on the data: superposition, 
pooling. Time histories having the same begin and end points may be superposed. The set of 
event times of the superposition is the union of the times of the superposed processes. In 
general, superposition is performed in order to obtain a renewal process. If the maintenance 
team returns components to service as good as new, then all time histories of the components 
should be superposed. 
The pooled data are considered as multiple realizations of the same random variable or 
stochastic process. When time histories are pooled, these are considered as realizations of the 
same (colored) point process. In general, pooling is performed on identical independent point 
processes in order to obtain better statistical estimates of the inter-event distribution.  
To perform these operations on data, a set of questions arise, requiring statistical tests to 
answer these questions: 
Are the time histories homogeneous and independent? 
Independence will fail, if the events for the time histories of the components tend to cluster in 
calendar time. If homogeneity fails, the uncolored events should not be regarded as 



realizations of the same point process. If homogeneity holds, then the number of events up to 
time t for every component should not differ significantly.  
Is the coloring stationary? 
The pooled process is now considered as colored. The coloring is stationary if the proportion 
of ``red” and ``green” points does not vary significantly with calendar time. 
Is the process ``color blind” competing risk? 
The process is color blind if the distribution of the i-th event is independent of the color of the 
previous event. Color blindness implies that the processes gotten by splicing together all inter 
event times beginning with color j, j=1,...n, are homogeneous. 
Is the uncolored process stationary competing risk? 
Is the uncolored process renewal competing risk? 
In order to answer to this questions, a number of statistical test are presented, together with an 
application to the data set coming from two identical Compressor Units from one Norsk 
Hydro ammonia plant, for the period of observation 2-10-68 up to 25-6-89. 
 
Model assumption 1: The stratum of w sockets (units) is homogeneous 
 
Homogeneity within a group of component sockets can be assumed in the case that the 
components are similar in design, operating circumstances and maintenance regime. 
Nevertheless, this assumption should always be checked with the failure data.  
 
Suppose we have w processes {Ni(t)}, i = 1,…w, where Ni is the counting process with 
intensity Ii(t) 
 
We shall test the hypothesis: 
 
 H0: I1(t) =…= Iw(t)  
 
Cox and Lewis (1966) proposed the following statistic when all the processes are defined 
over the same interval: 
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We reject H0 when D > w-1,, where w-1, is the  quantile of the 2 distribution with w-1 
degrees of freedom. This test is designed to detect if the w processes have the same intensity 
I(t) under the assumption of Poisson processes (non-homogeneous), not to detect if their 
intensity is constant in time (homogeneous Poisson process). 
To avoid the assumption that {Ni(t)} are Poisson processes, the following approach is 
recommended by Paulsen et all [10]: Divide the interval [0,t] in two equal pieces, giving the 
processes: Ni,1(s), 0  s  t/2 and Ni,2(s), t/2 < s  t , i =1,…,w. 
 
Let   w! be a permutation of (1,2,…w) and let N = {N(i),1  NI,2};  i = 1,2,…w 
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We reject H0 if D(N) is in the upper or lower 2,5% quantile.  
 
 
Model assumption 2: The processes are independent 
 
We assume that there are no clusters of failures in the stratum of sockets. In the extreme case 
all the sockets in the stratum could fail together in a small interval on the calendar time. This 
would indicate a strong dependency between the sockets and a possible common external 
cause of the failures in the sockets. This assumption should therefore always be checked. 
 
We want a test to detect ‘clustering’ of failure events from the various processes, that is, the 
tendency of events in the different processes to occur close in time. Such a clustering means 
either that there are common peaks in the intensities Ii(t) of the processes or that the processes 
are stochastically dependent. 
 

H0: ”No clustering across processes” 
 
We choose one of the w processes Ni(t), with a ‘medium or large, number of events. For 
simplicity we choose the process N1 and let the events of this process occur at times  T1,…, Tk.  
Define intervals (Ti-, Ti+) covering these events. There is thus defined a set S1(2) on the 
time axis, namely the union of the intervals of length 2; let this set have length T1(2). If 
there are N1(T) events then T1(2) < N1(T) 2, with equality if and only if no two events 
occur in 2 and no events occur in (T - ,T] where T is the end of the period of observation.  
 
Let 
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For this analysis we consider the approximation in which N1(T)2 << T and T1(2) = N1(T) 
2. Then under the null hypothesis N*(T) has a binomial distribution with index n and 
parameter T(2)/T. 
 
T(2)/T = N1(T)2/T = pT(2) is the probability of any observation of the process Ni(t), i > 2 
falling in one of the intervals with length 2. 
E(N*(T)) = n pT(2); 
 
Var(N*(T)) = n pT(2) (1 - pT(2)) 
 
Using a Normal approximation, we reject H0 when 
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where U is the  quantile of N(0,1). 
 
If N*(T) is small (less than 5) we should use the binomial or Poisson distribution rather than 
N(0,1). It is suggested that  be chosen so that PT()  0.1 
 
Model assumption 3: The colored process is stationary 
 
The coloring is stationary if the proportion of, say, “red” and “green” points, does not vary 
significantly with calendar time. 
 
We construct a test to detect whether the ratio of colored events (R and G) is constant over 
time. Let 
 
PR(t) = P{event occurring at time t is colored R} 
PG(t) = P{event occurring at time t is colored G} 
 
We test the hypothesis 
 

H0 : PR(t) = pR    (independent of time) 
 
We test H0 by dividing the interval (0, T) in two. Let NR,1 = number of R events in (0, T/2] 
and NR,2 = number of R events in (T/2, T). 
 
Given the total number of events n1 = N(T/2) and n2 = N(T) – N(T/2), we have that NR,1 and 
NR,2 under H0 are independent and binomial distributed with probability pR. Using a normal 
approximation and the result that if X ~ N(1,1

2) and Y ~ N(2,2
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where n = n1 + n2, NR = NR,1 + NR,2, using pR* = NR/n. 
 
Model assumption 4: The process is “color blind competing risk” 
 
The competing risk processes is describe by a n-tuple of risk or colors, and a countable set of 
n-tuples of random variables (X11,..X1n), (X21,..X2n), (X31,..X3n)… . After the (i-1)-th event, 
the next event occurs at time min{Xi1,..Xin} and is assigned the color of the index realizing 
the minimum. Hence, we observe (min{Xi1,..Xin},C(i)), where C(i) is the color of the i-th 
event. 
 
The process is colored blind if the distribution of (min{Xi1,..Xin},C(i)) is independent of the 
color of the (i-1)-th event. Ignoring time dependence of a scale which is small relative to the 



expected inter-event times, color blindness implies that the processes gotten by splicing 
together all inter-event times beginning with color j, j = 1,…n, are homogeneous. 

 
Is the colored processes ‘renewed’ to the same degree by R-events and G-events? If not, the 
colored process might be a superposition of R and G processes (which could be renewal). 
 
Let, 
 
{XR,k}k=1,2,…  the R – process – the sequence of intervals starting with R 
{XG,k}k=1,2,…  the G – process – the sequence of intervals starting with G 
 
We test 
 

H0 : {XR,k} and {XG,k} are realizations of identical processes 
 
We reduce H0 to two ‘subhypotheses’: 
 
1) H0,1 : IR(t) = IG(t) (the uncolored R and G processes have the same intensity) 
 
2) H0,2 : PR(R) = PG(R) (the fraction of R-events in the R-process and G-process are the same) 
 
1)  We consider the comparison of k Poisson processes (k > 2) and we test for equality 
the parameters 1,…k, no special type of alternative being specified. 
Suppose that in fixed time periods t0(1),…t0(k), the number of events observed are n1,…,nk, 
where ni is the observed value of a Poisson variable Ni, of mean i = it0(i)  
 
The best known test is based on the index of dispersion, i.e. on the statistic 
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d tends to a chi-square distribution with k – 1 degrees of freedom [4]. 
In our case, we reject H0,1 if: 
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and  NR(TR) is the number of red events in the red process and NR(TG) is the number of red 
events in the green process. 
 



An alternative test of Lindqvist [9] could be applied to test identity within the class of 
homogeneous Poisson, nonhomogeneous Poisson and Weibull trend renewal process. 
 
2) We test for  
 
H0,2 : PR(R) = PG(R) 
 
Is identical with the test used for ‘stationary coloring’ (see above). Let the R-process have nR 
events and let NRR of these be R. Let the G-process have nG events and let NGR of these be R. 
 
We reject H0,2 if: 
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where  
 
NR = NRR + NGR, n = nG + nR  
 
Model assumption 5: The process is stationary competing risk 
 
Characteristics of a stationary series of events of importance to this work are: 
 
 the distribution of the number of events in an interval of the time window  depends only 

on the length of the interval; 
 the expected number of events in a interval of the time window is proportional to the 

length of the interval; 
 there exist no trend in the mean rate of occurrence of failure events throughout the length 

of the time window. 
 

In our case this means that the process (min{Xi1,..Xin},C(i)), i = 1,2,…, is stationary. 
Since the coloring has already been found to be stationary, this is equivalent to asking 
whether the uncolored process is stationary. 
 
We test for trend in the rate of occurrence. The uncolored process has inter-event times T1, 
T2,…Tn 
 
1) Laplace test [7] 
 
If we consider a trend in the rate of occurrence represented by a smooth change in time 

 
(t) = e + t , 

 
then we test for the null hypothesis  = 0. The probability density that in the interval (0, T] 
events occur at T1  T2 …  Tn is 
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To interpret this relation consider n random variables U1,…,Un independently uniformly 
distributed over (0,T], each having the p.d.f. 1/T. The joint p.d.f. is 1/Tn. Now examine the 
corresponding order statistics U(1)  …  U(n). To calculate their p.d.f. at argument T1, 
T2,…Tn, note that n! different original sequences U1,…,Un each with the same p.d.f. lead to 
the same sequence U(1)  …  U(n). That is, conditionally on n, the positions of the events in a 
Poisson process are independently uniformly distributed over the period of observation T 
with mean T/2 and variance T2/12. 
And from central limit theorem we have 
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We reject H0 when 
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2)  The above test depends on taking the Poisson process as null hypothesis. We 
presented now a test in which the intervals X1,…,Xn are independent and identically 
distributed, not necessarily exponentially distributed, that the series is a renewal process. 
If a plausible functional form can be chosen for the distribution of the Xi’s, a special test can 
be constructed by taking the alternative hypothesis a model in which the parameters in the 
distribution are suitably chosen functions of the zi’s. 
We arrange the Xi’s in increasing order 
 

X(1), X(2),…,X(n) 
 
Let r(i) be the rank of Xi and define the score for Xi: 
 

Si = 1/n + 1/(n – r(i) + 1) 
 

We can use an asymptotic normal distribution for 
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with mean zero (by symmetry) and variance  
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We take zi = i and reject H0 when: 
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Model assumption 6: The process is renewal competing risk 
 
This model assumption implies that a socket is completely or perfectly repaired, similar to 
replacement to a new one. The plausibility of this model assumption can be easily questioned. 
Yet, we have a major modeling benefit of this assumption by the fact that the series of events 
is now a renewal process. 
A renewal process is a process in which the intervals between events are independently and 
identically distributed. 
 
It remains to test for independence of inter-event times Xi. Let i = corr(Xk, Xk+i). 
Then if (Xk, Xk+i) are independent i = 0. But the reciprocal is not always true.  
 
H0: {Xi} are independent (1 = 0) 
 
From [7] the most useful result is for large sample: 
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For a renewal process 
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1 - n*1  will have a unit normal distribution if n is large and 1 = 0, so that we reject H0 
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Model assumption 7: The process is Poisson competing risk 
 
Given that the Xi’s are iid, we may test whether these are exponential (thus giving the 
homogeneous Poisson process). We test for independent exponentially distributed times 
between events against the alternative of independent times between events with a Gamma 
distribution. 
 
H0: Poisson process 
H1: Renewal process 
 
We reject H0 if [7] 
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The numerator of ln is exactly the maximum likelihood ratio criterion for homogeneity of 
variances, if we regard the Xi’s as variance estimates from a normal population having two 
degrees of freedom. We recall that an exponentially distributed random variable is 
proportional to a chi-squared variable with two degrees of freedom. Under the null hypothesis 
ln has approximately a chi-squared distribution with n – 1 degrees of freedom. The divisor 
was introduced by Bartlett (1937) to improve this approximation. 
 
 
Statistical Analysis of Competing Data Sets 
 
The data set proposed for discussion of different competing risk models comes from one 
Norsk Hydro ammonia plant operating two identical compressor units, for the period of 
observation 2-10-68 up to 25-6-89. This yields 21 years of observation and more than 350 
events. As every modern reliability data base, this data base has the following compressor 
unit history: 

 Time of component failure 
 Failure mode: leakage, no start, unwanted start, vibration, warming, overhaul, little 

gas stream, great gas stream, others 
 Degree of failure: critical, non-critical 
 Down time of the component 
 Failure at the compressor unit: 1 - first unit failed, 2 - second unit failed, 3 - both units 

failed 
 Failure of System and Sub-System of Compressor unit 
 Action taken: immediate reparation, immediate replacement, adjustment, planned 

overhaul, modification, others 
 



   
Figure 1. Compressor units data 
 
The data base indicates also, that there are 18 revision periods with a duration from 4 to 84 
days. 
 
For the analysis of this data base a software tool was developed in the higher order 
programming language Visual Basic and Excel. From the new friendly user interface the 
operator can choose two classes of competing risk for the five fields of interest: failure mode, 
degree of failure, action taken, system/subsystem. The operator can perform an analyze over 
the whole time of observation or for a certain time window by specifying the limiting dates of 
interest. 

 
Figure 2. User interface  
 



In order to increase the available observation for the theoretical processes, hence to reduce 
the uncertainty in model estimation, one may pool the data obtained from unit 1 and 2. This 
operation has to take into account the assumptions 1 and 2.  
The assumption of homogeneity within the 2 units data is accepted at the level  = 0.1931 
under the assumption of non-homogeneous Poisson processes and it is rejected at the level  
= 0.0328 using the approach proposed by Paulsen et all [10]. The assumption of 
independence is also accepted at level of significance  = 0.95.  
Having the assumptions of homogeneity and independence validated, the next step can be 
approach: the statistical analysis of competing risk concept (assumptions 3 and 4). Following 
the choice of competing risk classes proposed in Bunea et all [3] for different fields of 
interest, one can obtain the significance levels for rejection the null hypothesis of 
assumptions 3 and 4 are: 
 
 Assumption 3 

The colored process is 
stationary 

Assumption 4 
The process is color blind competing 
risk 
IR(t) = IG(t) PR(R) = PG(R) 

Failure Mode 
Class I:  LEK,IST,UST,VIB 
Class II: LIG,STG,VAR,OVH,ANN 

 
0.6312 

 
rejected 

 
0.7889 

Action taken 
Class I: AKR,JUS,OVH,MOD,ANN 
Class II: AKU 

 
0.8969 

 
rejected 

 
0.5616 

Degree of failure 
Class I:  Critical 
Class II: Non-critical 

 
0.9813 

 
rejected 

 
0.9977 

System 
Class I:  SMO,KOM,INS 
Class II: SPE,ELM,GEA 

 
0.9195 

 
rejected 

 
0.9427 

Sub-system 
Class I:  PUM,TAN,FOR 
Class II: ROR,TRY,…,ANN 

 
0.0783 

 
rejected 

 
0.7152 

Table 1. Significance levels of rejection the null hypothesis for model assumptions 3 and 4 
 
Since the ``color blind” assumption has been rejected, it is not necessary to check whether the 
uncolored process is stationary competing risk (Figure 3). However for the state of the art, 
one can ask whether the uncolored process is stationary. Due to the fact that the homogeneity 
was accepted under the assumption of Poisson processes, Laplace’s test is used. The null 
hypothesis is accepted at the significance level  = 0.3957. 
 
The most important assumption of this analysis, the process is renewal competing risk,  is 
accepted at the level of significance  = 0.5067. 
 
At this point we have to find the competing risk model, which is appropriate to interpret data. 
In literature one can find two methods: via graphical interpretation – Bunea et all [3], Cooke 
et all [5] and via statistical testing – Bunea et all [2], Dewan et all [8]. We propose here to test 
if the renewal competing risk process is Poisson. The assumption is rejected at the 
significance level  = 0.00128. 
 
 
 



Conclusions 
 
Figure 3 shows the main assumptions that have been made through this present work. The 
validation/invalidation of the assumptions is marked on the graph. The analysis is not 
complete due to the fact that no tests are available in the literature to test the independence of 
the colors. One try of testing independent exponential distributions, can be find in Bunea et 
all [2]. At this point of color ``independence” a probabilistic interpretation of data has been 
developed in a new type of analysis (Cooke et all – [5]). One can see that if the independence 
assumption holds than a constant hazard rate is characteristic for our process, hence we have 
to deal with a Poisson process. Nevertheless, the probabilistic analysis performed on this data 
(Bunea et all [3]), indicates that independent model might hold but exponential distribution 
not. 
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Figure 3. Model assumptions graph 

n realizations of w counting processes Ni(t)

Homogeneity

n realizations of one 
counting process N(t) 

n realizations of w 
counting processes Ni(t) 

Clusters 

n dependent 
realizations of N(t) 

n independent 
realizations of N(t)

n dependent realizations 
of w processes Ni(t) 

n independent realizations 
of  w processes Ni(t) 

n independent realizations of 
one uncolored process N(t)

n independent realizations of one 
stationary colored process N(t) 

Trend 
coloring

yes no 

yes yesno no 

no 

 Trend 
coloring

n independent realizations of one 
stationary colored process N(t) 

yesno 

no 

Trend 

n independent realizations of one 
stationary uncolored process N(t)

yes yes

Renewal

n independent realizations of one 
colored renewal process N(t) 

Renewal

n independent realizations of one 
uncolored renewal process N(t) 

yes 

yesyes 

Poisson

n independent realizations of one 
independent colored Poisson process N(t)

Poisson

n independent realizations of 
one Poisson process N(t) 

Independent 
colors 

n independent realizations of one 
independent colored renewal process N(t)

Clusters

Model assumption 1

Model assumption 2

Model assumption 3

Model assumption 4

Model assumption 5

Model assumption 6

Model assumption 7

Color blind


