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1 Introduction

In doing uncertainty analysis on Accident Consequence Codes, the uncertainty analyst has to
construct a distribution on the target variables, the uncertain code input parameters. To illus-
trate the construction of this distribution in this project, we make use of an example taken from
the Foodchain module. We will start off with a brief introduction on the methodology on struc-
tured expert judgement elicitation used in this project. Due to the methodology a mathematical
technique, termed Probabilistic inversion, had to be developed. Besides eliciting information on
marginal distributions of elicitation variables (quantities for which the experts have to provide
assessments), the experts provided information on dependencies among a selection of elicitation
variables. In order to show the effect of correlation in doing uncertainty analysis, we concluded
with a comparison between correlated versus uncorrelated propagation of the distribution on the
target variables.

2 Structured Expert Judgement Elicitation

We will make use of an example taken from the Foodchain module to illustrate a vital part of
the methodology on structured expert judgement elicitation adopted in this project. The example
focuses on the movement of radioactive material in rootcrops, which is modeled in FARMLAND 2

using a compartmental model. Project staff regarded that it would be sufficient to do uncertainty
analysis on a simplified version of the compartmental model for rootcrops as implemented in
FARMLAND, see Figure 1. For this example, the target variables are the transfer coefficients 3

(k21,n, k24,n, k45,n, k51,n) for nuclide n. Project staff decided to determine a distribution on the
target variables for the nuclides Sr and Cs only.

Based on Figure 1, a set of first order differential equations can be constructed which, with
the appropriate initial conditions, can be solved and fully specifies the movement of the material
between the compartments. A vital part of the methodology on structured expert judgement
adopted in this project says that experts should on provide information on quantities which are
measurable, in principle and with which the experts are familiar. To summarize, the quantities
for which the experts have to provide information should be such that the experts can envision
an experiment which measures these quantities. The transfer coefficients were regarded as non-
measurable and therefore it was decided that they could not serve as elicitation variables. Instead,
elicitation variables were formulated on the concentrations of Sr and Cs in the edible portion
(Tuber) of rootcrops at different times before harvest:

1Delft University of Technology, Faculty of Information Technology and Systems, Department of Control, Risk,
Operations Research, Statistics, Stochastics, Mekelweg 4, 2628 CD Delft, The Netherlands.

2FARMLAND is a computer code developed at the National Radiological Protection Board (NRPB) which
calculates dose coefficients in a variety of plants and animals.

3Transfer coefficients klj,n represent the proportion of radioactive material for nuclide n moved from box l to
box j.
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Figure 1: Simplified compartmental model for rootcrops, for nuclide n

What is the concentration (Bq kg−1 wet weight) of Sr and Cs in the edible portion
of root crops at harvest, for a single deposition intercepted by the plant of 1 Bq m−2

occuring 15, 30, 60, 90 days before harvest?

The experts provided 5%, 50% and 95% quantiles of their distributions for the question above.
The assessments of the experts were aggregated using equal weights to obtain 5%,50% and 95%
quantiles of the distribution of the Decision Maker (DM), see Table 1.

Concentration of Cs in Tuber at time t Concentration of Sr in Tuber at time t
5% 50% 95% 5% 50% 95%

15 days 1.72e-6 8.08e-3 1.06e-1 9.61e-5 6.18e-6 1.59e-3
30 days 1.46e-5 1.02e-2 1.14e-1 1.42e-6 9.63e-6 1.61e-3
60 days 1.34e-4 1.96e-2 1.37e-1 3.48e-6 3.48e-5 1.96e-3
90 days 1.42e-4 2.83e-2 1.80e-1 9.73e-6 1.15e-4 2.06e-3

Table 1: Quantile information of the marginal distributions of the Decision Maker for rootcrops.

Note, the expert/DM data give information on the concentration at different times for ’com-
partment 5’, the Tuber, in Figure 1. The solution of the set of differential equations for compart-
ment 5, m5,n(t) for nuclide n is:

m5,n(t) =
k45,n k24,n e−k51,nt

(k24,n + k21,n − k51,n)(k45,n − k51,n)
−

k45,n k24,n e−k45,nt

(k24,n + k21,n − k45,n)(k45,n − k51,n)
+

(1)

+
k45,n k24,n e−(k21,n+k24,n) t

(k24,n + k21,n − k51,n)(k24,n + k21,n − k45,n)

3 Probabilistic Inversion

Suppose we had a distribution over the target variables for nuclide n. We could then push this
distribution through the compartmental model and obtain a distribution over, for example the
retention of nuclide n at various times in the Tuber, using Equation 1. The problem at hand
involves reversing this procedure: we have quantiles of distributions over the retention of nuclide
n in the Tuber at certain times, as given in Table 2; thus we seek a distribution over the target
variables of nuclide n which, when pushed through the compartmental model, yields quantiles over
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retentions of nuclide n in the Tuber agreeing with those from the DM. Hence our problem is one
of probabilistic inversion.

Mathematically, let H represent a distribution of the DM over retention in given compartments
at given times. Let F represent a distribution over the target variables in the rootcrop model,
and let G(F ) represent the ’push-through’ distribution over retention in the Tuber at the given
times, obtained by pushing the distribution F through the model G. Then our problem may be
represented as: Find F such that G(F ) ∼ H, where ’∼’ means ’has the same distribution as’,
or equivalently, F ∼ G−1(H). Note that a probabilistic inverse G−1(H) may not exist, and if it
exists it will be in general not unique. Therefore we must have a method of selecting a preferred
distribution in case of non-uniqueness and a method of choosing a best fitting distribution in case
of non existence, for details see [2],[3]. Throughout the whole project, information on 33 models
has been probabilistically inverted:
Dispersion & deposition : Gaussian model for 4 stability classes and Wet deposition for Methyl-Iodide, Ele-

mental Iodine and Aerosol particles.

Foodchain : Soil migration model for 2 nuclides, Grain model for 2 nuclides and Rootcrop model for 2 nuclides.

Early Health Effects : Mortality for GI-tract, Lung and Whole body and morbidity for Skin and Lung.

Internal Dosimetry : Lung model, absorption to the blood for 7 different nuclides, Systemic retention for 7
different nuclides.

Note also that the technique of probabilistic inversion is not restricted to expert judgement
only. Distributions obtained from a series of experiments under similar conditions can also be
used as input.

Based on the elicited information and Equation 1, a distribution on (k21,n, k24,n, k45,n, k51,n)
for each nuclide n was determined, see Table 2. Table 3 compares quantile information between
the DM and the ’push-through’ obtained from the probabilistic inversion.

Target variable 5% 50% 95% Target variable 5% 50% 95%
k21,Cs 2.43e-4 2.22e-3 4.09e-1 k21,Sr 2.54e-4 9.00e-3 9.53e-2
k24,Cs 6.58e-6 5.42e-3 4.25e-2 k24,Sr 4.27e-7 3.11e-6 2.31e-4
k45,Cs 6.29e-4 2.58e-2 2.94e-1 k45,Sr 8.36e-3 4.27e-2 2.28e-1
k51,Cs 2.81e-5 3.10e-2 1.47e-1 k51,Sr 5.39e-6 1.98e-3 2.96e-2

Table 2: Quantile information of the marginal distributions on the target variables.

m5,Cs(t) m5,Sr(t)
Percentiles DM Prob. Inv. DM Prob. Inv.

5% 1.72e-6 1.72e-6 9.61e-7 3.61e-7
15 days 50% 8.08e-3 8.08e-3 6.18e-5 6.18e-5

95% 1.06e-1 1.06e-1 1.59e-3 1.59e-3
5% 1.46e-5 5.80e-6 1.42e-6 1.41e-6

30 days 50% 1.02e-2 1.02e-2 9.63e-6 2.04e-5
95% 1.14e-1 1.13e-1 1.61e-3 2.01e-3
5% 1.34e-4 1.76e-5 3.48e-6 5.22e-6

60 days 50% 1.96e-2 1.97e-2 3.48e-5 3.49e-5
95% 1.37e-1 1.37e-1 1.96e-3 1.79e-3
5% 1.42e-4 2.04e-5 9.73e-6 9.66e-6

90 days 50% 2.83e-2 6.60e-3 1.15e-4 7.15e-5
95% 1.80e-1 1.85e-1 2.06e-3 1.99e-3

Table 3: Comparison of quantile information between Decision Maker (DM) and ’push-through’
obtained from Probabilistic Inversion (Prob. Inv.)

To summarize, probabilistic inversion supplied the uncertainty analyst with 2 distribution; a
distribution on the target variables for Cs and a distribution on the target variables for Sr. The
distributions were represented in the uncertainty analysis by marginal distributions with rank
correlation matrices. Project staff recognized that there may be a potential dependence between
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the retention of Cs and Sr in the Tuber of the rootcrop. The next section focuses on how this
dependence was elicited from the experts and how it was used to construct one distribution on
the target variables of both Cs and Sr.

4 Elicitation of Dependence

In the course of the project, a new method for eliciting dependencies from experts has been devel-
oped, for a detailed description see [2]. The method developed is quick and easily understandable
to the experts. The dependence is specified by a conditional probability among the elicitation
variables of interest. For rootcrops the experts provided their conditional probability4 for the
following question:

Consider an experiment in which a unit Cs and a unit Sr is deposited on a rootcrop.
Given that the concentration of strontium in the Tuber in this experiment 15 days
before harvesting is above its median value, what is the probability that the concen-
tration of caesium in the Tuber in the same experiment 15 days before harvesting is
above its median value as well?

The conditional probabilities of the experts were combined and translated into one rank correlation
for the DM, τDM (m5,Cs(15d.),m5,Sr(15d.)). Next, the distributions on the target variables for Cs
and Sr were linked using the simulation package UNICORN [1]. UNICORN allows the user to
specify a dependence structure among target variables via an acyclic graph. Modelling dependence
via an acyclic graph it is ensured that the resulting rank correlation matrix is positive definite, see
[4]. An acyclic dependency graph has been constructed among the target variables for both Cs
and Sr, based on the rank correlation matrices obtained from the probabilistic inversion. Next,
the dependency graphs were linked in such a way that the rank correlation between ’push-through’
distributions of m5,Cs(15d.) and m5,Sr(15d.) equaled τDM (m5,Cs(15d.), m5,Sr(15d.)). In this way
one distribution on the target variables of both Cs and Sr is constructed. The resulting dependency
graph is shown in Figure 2
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Figure 2: Dependency graph with rank correlations among target variables for rootcrops.

5 Influence of Correlations

The purpose of this section is to illustrate the effect of taking account of correlations among the
target variables in doing uncertainty analysis. In performing the uncertainty analysis, the distri-
bution on the target variables will be represented by marginal distributions together with a rank
correlation matrix. The simulation package UNICORN can deal with this kind of representation
of a distribution. The simulation results (correlated and uncorrelated) for both Cs and Sr are
given in Table 4. For the uncorrelated propagation the range factors do not vary much in time,
whereas the range factors in the correlated propagation decrease with time. The 5%-tiles of the
correlated and uncorrelated propagation at all time-points are roughly the same, but the 95%-tiles

4Briefly, a conditional probability of 0 indicates that 2 elicitation variables are rank correlated by -1, a conditional
probability of 0.5 indicates that 2 elicitation variables are uncorrelated and a conditional probability of 1 indicates
that 2 elicitation variables are rank correlated by 1.
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Cs Sr
Percentiles Correlated Uncorrelated Correlated Uncorrelated

5% 1.42e-6 1.58e-6 3.79e-7 4.55e-7
15 days 50% 7.38e-3 5.28e-3 1.10e-5 9.09e-6

95% 9.1e-2 1.2e-1 1.13e-3 6.84e-4
Range factor 6.4e4 7.6e4 3000 1503

5% 4.94e-6 3.63e-6 1.42e-6 1.45e-6
30 days 50% 1.35e-2 1.168e-2 3.32e-5 2.55e-5

95% 1.27e-1 2.34e-1 1.83e-3 1.97e-3
Range factor 2.6e4 6.45e4 1288 1359

5% 1.24e-5 5.84e-6 4.69e-6 3.16e-6
60 days 50% 1.53e-2 1.84e-2 7.39e-5 5.53e-5

95% 1.38e-1 3.55e-1 1.88e-3 4.36e-3
Range factor 1.1e4 6.1e4 401 1380

5% 9.11e-6 5.75e-6 8.08e-6 3.45e-6
90 days 50% 1.33e-2 1.89e-2 1.01e-4 7.7e-5

95% 0.15 4.07e-1 1.8e-3 5.85e-3
Range factor 1.6e4 7.1e4 223 1696

Table 4: Simulation results (correlated and uncorrelated) for rootcrops for Cs and Sr (5000 sam-
ples)

start off as being almost the same but in time the difference between correlated versus uncorre-
lated propagation is observed. Clearly the effect of the correlations in performing the uncertainty
analysis cannot be ignored.

6 Conclusion

By making use of the rootcrop model from the Foodchain module, this paper illustrated the
construction of the joint distribution on the target variables. Due to the methodology on structured
expert judgement elicitation adopted in this project, two mathematical techniques (Probabilistic
Inversion and the elicitation of dependencies) had to be developed, which provide the uncertainty
analysis with information of the required distribution. Based on all information the uncertainty
analyst constructed the distribution on the target variables. Finally, the effect of correlations in
performing uncertainty analysis has been studied. The results clearly showed the effect of the
correlations, which let to the conclusions that for this case the correlations also have to be taken
into account. Although the rank correlations in the rootcrop example were large, cases have been
studied for which the rank correlations among the target variables were small, but the difference
between correlated propagation versus uncorrelated propagation was large, citeesrel97.

References

[1] R.M. Cooke. UNICORN; Methods and Code for Uncertainty Analysis. AEA Technology,
Warrington, Cheshire (UK), 1995.

[2] J.A. Jones, J. Ehrhardt, L.H.J. Goossens, J. Brown, R.M. Cooke, F. Fischer, I. Hasemann,
and B.C.P. Kraan. Probabilistic accident consequence uncertainty assessment using cosyma:
Methodology and processing techniques. Technical Report EUR 18827, National Radiological
Protection Board and Forschungszentrum Karlsruhe GmbH and Delft University of Technology,
1999.

[3] B.C.P. Kraan. Joint CEC/USNRC Uncertainty analysis on Accident Consequence Codes using
Expert Judgment. PhD thesis, Delft University of Technology, 2000.

5



[4] A.M.H. Meeuwissen and R.M. Cooke. Tree dependent random variables (revised version).
Technical Report TUD-REPORT 94-28 and ISSN 0922-5641, Delft University of Technology,
1994.

6


