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ABSTRACT 

Local probabilistic sensitivity of input variable X with respect to output variable Z is 
proportional to the derivative of the conditional expectation E(X|z). This paper reports 
on experience in computing this conditional expectation. Linearized estimates are found 
to give acceptable performance, but are not generally applicable. A new method of 
linearization based on re-weighting a Monte Carlo sample is introduced. Results are 
comparable to the linearized estimates, but this method is more widely applicable. 
Results generally improve by conditioning on a small window around z. 

1. INTRODUCTION 

Local probabilistic sensitivity measures (LPSM) were introduced in [3] to describe 
the importance of an input variable X to a given contour of an output variable Z: 
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This measure is indicated when we are particularly interested certain values of the 
output variable. Thus when Z represents the 'strength - load' of a structure, we are 
particularly interested in the value Z = 0 corresponding to failure of the structure. It was 
shown that if the regression E(X|Z) is linear, then LPSM(X) = (Z,X) (see section (5)). 
In special cases, including the independent normal linear model, LPSM(X) can be 
computed analytically [3]. 

Problems in computing LPSM have motivated further study of its properties. It can 
be shown that in the case of independent linear normal models, the LPSM and the 
standard global measures are dual in a straightforward sense. The generalization of the 
standard global measure to non-linear models makes use of the correlation ratio. A 
similar generalization is conjectured for the LPSM. The duality relation suggests 
alternative ways of calculating the LPSM which appear to give acceptable performance. 

Section (2) illustrates problems that can arise in computing the LPSM in Monte 
Carlo simulation. Section (3) reviews sensitivity measures in the linear model. Section 
(4) explores properties of the correlation ratio. Section (5) establishes the duality 
relationship for the independent linear normal case. This relationship suggests new ways 
of calculating the derivative of the conditional expectation. Analytical methods and 
linear approximations are discussed. Though not always applicable in practice, these 



nonetheless provide a benchmark for the method introduced in section (6). This method 
`linearizes by re-weighting' a Monte Carlo sample, and can always be applied in Monte 
Carlo simulation. In section (7) the performance of these methods is compared. A final 
section gathers conclusions. 

2. AN EXAMPLE 

The obvious way to approximate LPSM(X) in Monte Carlo simulations is to compute 
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In some cases this is very unstable. Consider the following example, which was 
proposed by Ton Vrouwenvelder, where X and Y are independent standard normal: 
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One can calculate that (see appendix): 
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On a Monte Carlo simulation with 5,000,000 samples and  = 0.1 the above method 
yields the estimates 
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Of course, by symmetry these two derivatives must be equal. The number of samples 
used is unrealistically large, and still performance is poor. This is explained by a 
number of factors. First if high accuracy is desired,  must be chosen small in (2). On 
the other hand the difference in conditional expectations must be large enough to be 
statistically significant. In the above example this difference was barely significant at 
the 5% level for Y and was not significant for X. In this case, the difference in 
conditional expectations in (2) is small, because, roughly speaking, X feels the effect of 
conditionalizing on Z = 0 on only one half of the samples. Finally, conditionalizing on 
extreme values of Z, as in this case, can introduce strong correlations between the input 
variables. In this case the conditional correlations are negative. This means that 
sampling fluctuations in the estimates of the conditional expectations in (2) will be 
correlated. Indeed, it required an unrealistically large number simply to obtain estimates 
whose signs were both negative (see also the results in Table 4). 

It is clear that alternative methods of calculating the LPSM are needed. 



3. THE LINEAR MODEL 

Let Z = Z(X) be a function of vector X=(X1,…,Xn). Assuming that Z is analytic, it 
can be expanded in the neighbourhood of some point ),...,( **
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where i denotes 
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Let  i and i denote mean and standard deviation of Xi respectively. We obtain 
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If Xi are all uncorrelated then 
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Hence, in the linear uncorrelated model, the rate of change of Z with respect to Xi 
may be expressed as 
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We note that the left hand side depends on the point x* whereas the right hand side 
does not. This of course reflects the assumption of non-correlation and the neglect of 
HOT's. A familiar sensitivity measure involves a "sum square normalization": 
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The factor i gives the influence of variable Xi on the standard deviation of Z. It 
depends on the slope of the tangent line of Z in the point z*. For the linear model and 
when Xi's are uncorrelated, 
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This can be considered as a measure of the variance of Z explained by the linear 
model. If R2 is less then one, this may be caused either by dependencies among Xi's or 
by the contribution of higher order terms neglected in (3). 

When employing the Taylor expansion as above, it is common to introduce a 
transformation of the variable Z which enables us to capture as much of the behaviour of 
the transformed variable as possible in low order terms. Alternatively, one could 
transform the variables Xi toward the same end. These considerations lead to the 
correlation ratio, whose properties we study in the next section. 



4. CORRELATION RATIO 

The correlation ratio is one of the most important non-directional measures of 
uncertainty contribution [2]. 

Definition 4.1 (Correlation ratio) Let G be a random variable, and X a random 

vector. The quantity 
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 is called the correlation ratio of X to G and denoted 

CR(X,G). 

We consider a function G = G(X,Y) of random vectors X and Y with 2
G . In 

analogy with non-linear regression methods, we may ask for which function f(X) with 
2
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    Proposition 4.2 Let G = G(X,Y) with 2
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The latter inequality follows from the Cauchy Schwarz inequality. This is similar to a 
result in [5]. 

The correlation ratio of X to G may be taken as the general global, variance based 
sensitivity measure of G to X. This may be understood by recalling the simple relation: 
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Dividing both sides by Var(G), we may interpret CR(X,G) as the percentage of the 
variance of G which is explained by X. 

Note that the correlation ratio is always positive, and hence gives no information 
regarding the direction of the influence. Note also that in general CR(G,X)CR(X,G) 



The following propositions explore some properties of the correlation ratio. 

Proposition 4.3 Let G(X, Y ) = f(X) + h(Y ) where f and g are invertible functions 
with f

2 < ,h
2 < , and X,Y are not both simultaneously constant (G

2 >0). If X and Y 
are independent then 
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The result now follows with Proposition (4.2).     � 

Proposition 4.4 Let G=G(X,Y), with Cov(E(G|X), E(G|Y)) = 0 then 
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4.1.Computing the correlation ratio 

The computations frequently use Monte Carlo methods. Efficiency in this context 
usually means on-the-fly. That is, we would like to perform all necessary calculations 
on a sample, then discard the sample and proceed to the next sample. A computation 
which involves retaining the entire sample is not efficient. 

Computing the correlation ratio may be difficult in some cases. However, if we can 
sample Y' from the conditional distribution (Y|X) independently of Y, and if the 
evaluation of G is not too expensive, then the following simple algorithm may be 
applied (Ishigami and Homma [4]) : 

1. Sample (x,y) from (X,Y ), 

2. Compute G(x,y), 

3. Sample y' from (Y|X = x) independent of Y = y, 

4. Compute G' = G(x, y') 

5. Store Z = G * G' 

6. Repeat 



The average value of Z will approximate E(E2(G|X)), from which the correlation 
ratio may be computed as 
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Of course, if Y and X are independent, then this algorithm poses no problems. If Y 
and X are not independent, then it may be difficult to sample from (Y|X). In this case 
there is no alternative to the “pedestrian" method: save a large sample, compute 

)|(  ixXGE  for suitable x1,…, xn, and compute the variance of these conditional 

expectations. To do this for a large number of variables can be slow. 

The notion of the correlation ratio can be generalized by introducing the following 
definition 

Definition 4.5 [Generalized correlation ratio] Correlation ratio of 
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5. LOCAL PROBABILISTIC SENSITIVITY MEASURES 

The local sensitivity measure (1) is intended to measure the rate of change with 
respect to Z of “some function” of X|Z at a given point. For the uncorrelated linear 
model, ”global” and “local” are equivalent, hence the global and local measures should 
coincide. This motivates choosing “some function” as a normalized conditional 
expectation in (1). In fact, local probabilistic and global sensitivity measures may be be 
seen as dual, in the following sense. Apply the Taylor expansion to E(X|Z): 
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Thus, if the regression of X on Z is linear, then higher order terms vanish and 
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which may be compared with (4). If the roles of Z and X were reversed in the linear 
uncorrelated model, then (9) would express the rate of change of X with respect to Z. Of 
course, these roles cannot be reversed, as Z is correlated with X1,…,Xn. However, the 
regression E(X|Z) can be linear, indeed this arises for linear normal, mixed normal and 
elliptical models (correlated as well as uncorrelated) ([1]). Hence in the uncorrelated 
linear models with linear regression of X on Z, we have 
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Note that the quantities on the right hand side are global, whereas those on the left 
are local. As seen above, the correlation ratio of X to Z is the maximal squared 
correlation attainable between Z and some function of f(X) of X with finite variance. In 
the same vein, we could ask, `which function f(X) of X maximizes 
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We conjecture that the maximum is attained for f(X) = E(Z|X). 

We first discuss methods of computing and approximating 
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cannot always be applied in practice, but serve as a benchmark. In the following section 
we develop a method based on the above duality. 

5.1.Computing 
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We discuss methods for computing the derivative of a conditional expectation. In 
general, if the rightmost integral converges absolutely for all zo;  
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Alternatively, we could compute the conditional expectation E(X|Z) directly and take 
its derivative. Assume  for  example  that X,Y  are  independent  and  uniformly  
distributed  on [0, 1], and let Z=Z(X,Y) be sufficiently differentiable in both arguments. 
To compute the expectation of X given Z=zo, we define a density along the contour 
Z=zo which is proportional to arc length. If the contour is simple we may parametrize 
arc length in terms of x and write zo=Z(x,y(x)) The arc length element, ds and 
conditional expectation are given by 
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The reader may verify the following examples: 
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5.2. Linear approximations 

Since (9) does not depend on zo, it does not provide a good basis for linear 
approximations. For random variables X, Y let Z=Z(X,Y) and suppose for some analytic 
function G we can write X=G(Z,Y). The Taylor expansion gives: 
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Take yo = E(Y|zo) and take conditional expectations on both sides with respect to zo. 
The first order terms, the cross term and the second order term in Z all vanish. We find 
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We now take derivatives on both sides with respect to zo. Retaining only the first 
term yields estimate 1: 
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Retaining both terms yields estimate 2: 
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Note that both these estimates depend on zo. 

6. LINEARIZATION VIA RE-WEIGHTED MONTE CARLO SIMULATION 

The methods of the previous section are not generally useful in practice. Indeed, 

estimate 1 will typically require )|(

0

XYE
z


to estimate )(

0

ZXE
z


 which is just as hard to 

calculate as quantity being estimated. Estimate 2 requires )0(

0

zYVar
z


 which is more 

difficult to estimate than )0(

0

zXE
z


. 

A new method of calculating
0

)0(

z

zXE




 suggested by Meilijson is currently being 

developed. The idea is the to make the duality relation (9) approximately true by re-
weighting the sample emerging from a Monte Carlo simulation. Since E(X|Z) can be 
expanded around zo as 
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So if we assign a “local distribution” to Z such that the terms between curly brackets 
are equal to zero then 
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To achieve this the local distribution should be chosen so that 
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where Z  means Z with a local distribution. We want this distribution to be as close 
as possible to the distribution of Z. In our case we take the distribution which minimizes 
the relative information with respect to the original distribution of Z. 

7. RESULTS 

The first table presents the theoretical results for the functions given in example 
(5.1). X,Y are independent and uniform on [0, 1]. The theoretical values have been 
computed with MAPLE. Note that for Z=2X+Y the estimates are exact, as the 
regression is piece-wise linear: E(X|z)=z/4; 0 < z < 1; 2 < z < 3; but E(X|z) = z/2 ; 1 < z 

<2. 

 

 

 

 

 

 

 

Table 1: Comparison of theoretical 
values and linearized estimates. 

 

 

 

 

 

Z zo 
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est1 est2 

2X+Y 0.25 0.25 0.25 0.25 
0.5 0.25 0.25 0.25 
1.5 0.5 0.5 0.5 
2.5 0.25 0.25 0.25 

X2+Y2 0.1 1.0066 1.2189 1.2024
0.5 0.4488 0.5451 0.5063
0.9 0.3355 0.4056 0.3538

XY 0.1 1.0724 1.8046 1.7764
0.5 0.6342 0.7768 0.7095
0.9 0.5180 0.5361 0.5271

X2Y 0.1 1.2698 1.8013 1.5733
0.5 0.4454 0.5099 0.4501
0.9 0.2746 0.2816 0.2746



Table 2 shows the re-weighted estimates for the same models as in Table 1. To show 
the sampling fluctuations, the results have been computed on five runs, each run using 
10,000 samples. The weights defining the local distribution for Z have been computed 
with MOSEK. We see that the results are reasonably stable and are generally between 
those of estimate 1 and estimate 2 in Table 1. An exception occurs for Z = 2X + Y; in 
this case the second derivative of the regression function E(X|z) does not exist for z=1. 
This suggests that better results could be obtained by first defining a window around the 
value zo and applying the re-weighting method within this window. 
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1 2 3 4 5 

2X+Y 0.25 0.25 0.2577 0.2387 0.2447 0.2500 0.2436 
0.5 0.25 0.2646 0.2496 0.2603 0.2514 0.2560 
1.5 0.5 0.4021 0.4007 0.3966 0.4022 0.4002 
2.5 0.25 0.2484 0.2440 0.2475 0.2540 0.2602 

X2+Y2 0.1 1.0066 1.1626 1.2117 1.1473 1.1391 1.1568 
0.5 0.4502 0.5309 0.5163 0.5428 0.5238 0.5317 
0.9 0.3355 0.4388 0.4441 0.4440 0.4411 0.4475 

XY 0.1 1.0724 1.4854 1.5025 1.5200 1.4916 1.6087 
0.5 0.6342 0.6939 0.7018 0.7031 0.6955 0.6860 
0.9 0.5180 0.4666 0.5908 0.4641 0.5108 0.5182 

X2Y 0.1 1.2698 2.3313 2.3890 2.3878 2.3453 2.3634 
0.5 0.4454 0.5784 0.5839 0.5822 0.5808 0.5782 
0.9 0.2746 0.2706 0.2974 0.2498 0.2636 0.2717 

 
Table 2: Comparison of theoretical values and re-weighting method, five runs of 10,000 

samples. 

The results in Table 3 are obtained by drawing 100,000 samples, and 
conditionalizing on the window Z  (zo – 0.2, zo + 0.2). Two runs are shown; Ñ 
indicates number of samples in the conditional distribution on each run. We note that 
for Z = X2Y = 0.1 the results are poor, despite the fairly large number of samples falling 
in the window. The function Y(x) = 0.1/x2 ; x  [0.1,1] is highly non-linear; the 
derivative ranges over 4 orders of magnitude. Reducing the window size to 0.05 returns 
results comparable to estimate 2. 

Z zo 

0

)0(

z

zXE



 1 Ñ1 2 Ñ2 

2X+Y 0.25 0.25 0.2530 5021 0.2464 4832 
0.5 0.25 0.2573 10079 0.2608 9874 
1.5 0.5 0.4943 19867 0.4894 20015 
2.5 0.25 0.2570 10047 0.2501 9949 

X2+Y2 0.1 1.0066 1.1564 23774 1.1655 23593 
0.5 0.4502 0.4610 31320 0.4509 31300 
0.9 0.3355 0.4141 29323 0.4180 29347 

XY 0.1 1.0724 1.5140 66131 1.5260 66072 
0.5 0.6342 0.6438 28813 0.6464 28713 
0.9 0.5180 0.5167 5020 0.5363 5038 



X2Y 0.1 1.2698 2.3759 79690 2.3580 79403 
0.5 0.4454 0.4564 17792 0.4469 17855 
0.9 0.2746 0.2689 2638 0.2871 2658 

Table 3: Comparison of theoretical values with re-weighting method results with 
window. 

Table 4 shows results for X, Y independent standard normal. There are five runs with 
10,000 samples per run and no window (the use of a window did not improve results). 
The results for Z = min(3-X,3-Y)=0 are quite bad and quite unstable. This presumably 
reflects the small number of samples in the region z = 0. The other values are quite 
acceptable. 

 

Z zo 

0

)0(

z

zXE



 1 2 3 4 5 

X+Y 0 0.5 0.5058 0.4964 0.5000 0.4921 0.4965 
2 0.5 0.5387 0.4831 0.4983 0.5030 0.5086 
3 0.5 0.4292 0.4415 0.4840 0.4681 0.5826 

2X+Y 0 0.4 0.4005 0.4037 0.4012 0.3967 0.3939 
1 0.4 0.4006 0.3992 0.3497 0.3996 0.3967 
3 0.4 0.4033 0.3996 0.3927 0.4027 0.4027 

Min{3-X,3-Y} 0 -0.5067 -0.8779 0.7641 0.3178 1.1178 -0.6585 
1 -0.5568 -0.6478 -0.5839 -0.5445 -0.7650 -0.4516 
2 -0.6852 -0.6925 -0.6686 -0.7204 -0.6676 -0.6792 
3 -0.8183 -0.8061 -0.8031 -0.8002 -0.7979 -0.8048 

Table 4: Comparison of theoretical and re-weighting method results for normals. 

With regard to the example Z=min{3-X,3-Y} the results are better than those given in 
section (2), but not overwhelming. With 5,000,000 samples and window z[-0.1,0.1] 
we find 
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Needless to say, this number of samples is not realistic in practice. With only 10,000 
samples the results were not acceptable. Note that in this case the linearized estimates 
are not defined, as the function G satisfying X = G(Z,Y ) does not exist. 

8. CONCLUSIONS 

In the linear model (3), with X1,…,Xn independent normal, we have observed 
following relations: 
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When these assumptions do not apply, one can still use these relations by way of 
crude estimation. Thus one can estimate the rate of change of Z with respect to Xi as, 

iX

ZiXZ


 ),(

and one can estimate the rate of change of E(X|z) with respect to z as 

Z

Xi i
XZ



 ),(
. Better estimates can be obtained by the linearization techniques 

introduced in sections (5.2, 6). In particular the re-weighting approach to linearization 
gives acceptable results in most of the benchmark problems and is applicable quite 
generally. None the less, there is room for improvement. We have tried adding 
additional constraints to the re-weighting algorithm, but did not find any constraints 
which produced better results for all of the benchmark functions. Reducing the window 
size generally leads to better results, but of course this drives up the number of samples 
required. For difficult problems, such as that discussed in section (2) the re-weighting 
method returns good results only after using a small window with a very large number 
of samples. It seems likely that the re-weighting method of linearization can still be 
further improved. 
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9. APPENDIX 

Let Z=min(3-X,3-Y) with X,Y independent standard normal. 
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and  is the standard normal density, with cumulative distribution function  . The 
partial derivative of the right hand side at z = 0 is 
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