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Abstract

We present a parameterization of the class PD(n) of positive definite n X n matrices using
regular vines and partial correlations. Using a bijection from (—1, 1)(3) — C(n), (C(n) is
the class of n x n correlation matrices) with a clear probabilistic interpretation (Bedford and
Cooke [8]), we suggest a new approach to various problems involving positive definiteness.
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1 Introduction

Positive (semi) definiteness is an important property of square matrices. There are algorithms for
testing positive definiteness such as the Choleski decomposition or algorithms based on finding
eigenvalues of a matrix. We propose to study positive definiteness using partial correlations [4] in
conjunction with a new structure which we call a regular vine [1], [8]. A symmetric real (n x n)
matrix with off-diagonal elements in the interval (-1,1) and with ”1”’s on the main diagonal is
called a proto correlation matriz. For a given n X n proto correlation matrix we consider regular
vines. A vine is a set of trees such that the edges of the tree T; are nodes of the tree T;4; and all
trees have the maximum number of edges. A vine is regular if two edges of T; are joined by an edge
of T;+1 only if these edges share a common node in 7;. A regular vine is called canonical if each
tree T; has a unique node of degree n —i (precise definitions are given in Section 3). In total there
are (g) 272 partial correlations. Partial correlations can be assigned to the edges of a regular
vine such that conditioning and conditioned sets of the vine and partial correlations coincide (see
Section 3). There are (}) edges in a regular vine on n elements; hence (3) of the (%)2"~2 partial
correlations are selected in this way. It turns out that these partial correlations are algebraically
independent and uniquely determine the correlation matrix. In fact, a regular vine may be used
construct a bijection from (—1, 1) to the set of correlation matrices. (see Theorem 3.2).

This relationship can be used to specify dependence in high dimensional distributions [2] but
also to decide whether a proto correlation matrix is positive definite. This algorithm can be also
used to transform a non-positive definite matrix into a positive definite matrix. With the new
algorithm these alterations have a clear probabilistic interpretation. This approach can be useful
where a high dimensional correlation matrix should be specified (e.g. dependent Monte Carlo
simulations), or when correlations are inferred from noisy physical measurements !. In complex
problems many entries in the correlation matrix may be unspecified, and this partially specified

IThis arises e.g. in structural mechanics when correlations are inferred from vibration modes



matrix must be extended to a positive definite matrix. We present preliminary results for the
matrix completion problem using canonical vine partial correlation specifications. In particular,
we present, effective procedures for deciding whether a partially specified matrix can be extended
to a positive definite matrix for certain non-chordal graphs [5], [6], [3], [9], [10].

This paper is organized as follows. In the Section 2 we present definition of partial correlations
in terms of partial regression coefficients. In Section 3 we introduce vines and present defini-
tions and theorems showing relationship between vines and positive definite matrices. Section 4
contains an algorithm for testing positive definiteness of a matrix using the canonical vine. The
relationship between the new algorithm and known matrix theory results is also shown. In Section
5 repairing violation of positive definiteness is given and finally in Section 6 the algorithm solving
the completion problem for special cases is presented.

2 Partial correlations

Let us consider variables X; with zero mean and standard deviations o;, i = 1,...,n. Let the
numbers bin:2,.. . n—1,-+30n—1n;1,...,n—2 minimize
2\ .
E ((bln;2,...,n71X1 - b2n;1,3,...,n71X2 T e T bnfl,n;l,...,n72Xn71 - Xn) ) ’

then the partial correlations are defined as (Yule and Kendall [4]):

1
Pn,n—1;1,...n—2 = Sgn(bn,nfl;l,...,nf2) (bn,nfl;l,...,n72bn71,n;1,...,n72)2 ) etc.
Partial correlations can be computed from correlations with the following recursive formula:

Pret mit , = Pn,n—1;1,...,n—3 — Pn—-2,n;1,....n—3 * Pn—2,n—1;1,....n—3 (1)
n—Li,nil,...,n— - .

2 2
\/1 - pn72,n;1,...,n73\/1 - pn72,n71;1,...,n73

All partial correlations can be computed from the correlations by iterating the above equation. In
general it can be written as follows:

Let X;,... X, be random variables, and let i, 7, k be set of distinct indices and let C' be a (pos-
sibly empty) set of indices disjoint from {i,j,k}. The partial correlation of X; and X; given
{Xk,U{Xh|h S C}} is

_ Pij;C — Pik;CPjk;C
Pij;kC = 5 5 ;
\/1 - pik;C\/l ~ Pik;c

where p;; = p(X;, X;).

If pi.c =1 or pi.o =1, then pjjpc is not defined.

If Xq,...,X, follow a joint normal distribution with variance covariance matrix of full rank, then
partial correlations correspond to conditional correlations. The relationship between partial cor-
relations and conditional correlations is studied in Kurowicka and Cooke [2].

p?k;c < 17 p?k;c <L (2)

3 Vines

Definition 3.1 (Tree) T = (N, E) is a tree with nodes N and edges E if E is a subset of
unordered pairs of N with no cycle and there is a path between each pair of nodes. That is, there
does not exist a sequence ay,...,ax (k> 2) of elements of N such that

{a1,a0} € E,..., {ag-1,ar} € E,{ar,a1} € E
and for any a,b € N there exists a sequence ca,...,cp_1 of elements of N such that

{a,c2} € E,{c2,c3} € E,...,{ck_1,b} € E.



Definition 3.2 (Regular vine) V is a regular vine on n elements if
1. V=(T,...,Th—1)

2. T is a tree with nodes Ny = {1,...,n}, and edges E;;
fori=2,...,n—1 T; is a tree with nodes N; = E;_; .

3. (proximity) for i = 2,...,n — 1, {a,b} € E;,#alAb = 2 where A\ denotes the symmetric
difference. In other words, if a and b are nodes of T; connected by an edge, where a =
{ay,a2},b = {b1,b2}, then exactly one of the a; equals one of the b;.

Definition 3.3 (Constraint set)

1. For j € E;,i <n—1 the subset U;j(k) of E;_ = N;_p41 is defined by
U](k) = {6 |E| ei,(k,l) € ei,(k,2) €...€ j, €€ ei,(k,l)}
is called the k-fold union® of j; k=1,...,i
U; = Uj(i) is the complete union of j, that is, the subset of {1,...,n} reachable from j
by the membership relation.
If a € Ny then U} = 0.
U;(1) = {jr,j2} =J.
By definition we write U;(0) = {j}.
2. Fori=1,...,n—1,e; € E;, ife; = {j, k} then the conditioning set associated with e; is
D., =U;NU;
and the conditioned sets associated with e; are

C€i7j = U; \Dei;ceiJf = UI: \Dei‘

3. The constraint set for V is

cV = {Dei,Cei,j,C’ei7k |6i S Ei;ei = {],k)},’L = 1,...,TL — 1}

Note that for e € Eq, the conditioning set is empty.
Fore; € Ej,i <n—1,e; = {j,k} we have U;, = U; UU}.

We present below two examples of a regular vines on 5 elements with conditioned and condi-
tioning sets. We use the regular vine in Figure 2 to illustrate Definition 3.3.
We get,

I = (NlaEl)a Ny = {1727- . -75}7 E, = {{172}7{173}7{174}7{175}};
T, = (Na,Es), No=FE, E» :{{{152}7{173}}7{{172}7{174}}5{{152}5{155}}}§

The complete union of j = {1,2} is U; = {1,2} and for k¥ = {1,3}, Uy = {1,3}. Hence the
conditioning set of the edge e = {{1,2},{1,3}}in Ty is D. = U NU; = {1,2}N{1,3} = {1}. The
conditioned sets are C, ; = UF \ De = {1,2}\ {1} = {2} and Ce , = Uy \ De = {1,3}\ {1} = {3}.
The doted edge of T» between {1,2} and {1,3} in Figure 2 is denoted 2, 3|1, which gives the
elements of the conditioned sets {2}, {3} before ”|” and conditioning set {1} after ”|”.

2The 1-fold union of a set is the set of elements i.e. the set itself,the 2-fold union is the set of elements of
elements, etc.
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Figure 1. A regular vine on 5 elements showing conditioned and conditioning sets.

Definition 3.4 (Canonical vine) A regular vine is called a canonical vine if each tree T; has a
unique node of degree n —i. The node with mazimal degree in T is the root.

Figure 2. A canonical vine on 5 elements.

For regular vines the structure of the constraint set is particularly simple, as shown by the following
lemmata [1].

Lemma 3.1 Let V be a reqular vine on n elements, and let j € E;. Then

#Uj(k) = 2#U;(k — 1) — #U;(k — 2);k =2,3,.... (3)

Proof. For e;, € Uj(k — 1) write e, = {ep1,en,2} and consider the lexigraphical ordering of the
names ep,¢ = 1,2. There are 2k names in this ordering. U;(k) is the number of names in the
ordering, diminished by the number of names which refer to an element which is already named
earlier in the ordering. By regularity, for every element in U;(k — 2), there is exactly one name in

the lexigraphical ordering which denotes an element previously named in the ordering. Hence (3)
holds. O

Lemma 3.2 Let V be a reqular vine on n elements, and let j € E;. Then

#U; (k) =k +1;k=0,1,...,i. (4)

Proof. The statement clearly holds for ¥ = 0,k = 1. By the proximity property it follows
immediately that it holds for k¥ = 2. Suppose (4) holds up to k — 1. Then #U;(k — 1) = k. By
Lemma 3.1

#U;(k) = 2#U;(k — 1) — #U;(k - 2).



With the induction hypothesis we conclude
#U;(k)=2k—(k—-1)=k+1. O
Lemma 3.3 IfV is a regular vine on n elements then for alli =1,...n—1, and all e; € E;, the
conditioned sets associated with e; are singletons, #U}, =i+ 1, and #D., =i — 1.

Proof. Let e; € E; and e; = {j,k}. By Lemma 3.2 #U; =i+ 1. Let D = U; NU; and
C =U; AUy It suffices to show that #C' = 2. We get

i+1=4#D+#C (5)
and
2i = #U; +#U; = #C +2#D. (6)
When we divide (6) by 2 and subtract from (5) then
#C =2.
Hence #(Us \ D) =1, #{U;\ D) =1and #D =i—1. O

Lemma 3.4 Let V be a regular vine, and suppose for j,k € E;,Us = Uy, then j = k.

Proof. We claim that U;(z + 1) = Ug(z + 1) implies U;(x) = Ug(x). In any tree, the number of
edges between y vertices is less or equal to y — 1. #Uj(z + 1) =z + 2 and Uj(z + 1) C N;_,, so
in tree T;_, the number of edges between the nodes in U;(z + 1) is less then or equal to = + 1.
#Uj(x) = x4+ 1 = #Uyg(x), so both of these sets must consist of the 2 + 1 possible edges between
the nodes of T;_, that are in U;(z + 1) = Ug(z + 1). Hence Uj;(x) = Ui(z).

Since U = Uy, that is U;(i) = U(i), repeated application of this result produces U;(1) = Ux(1),
that is, j = k. O

Lemma 3.5 If the conditioned sets of edges i,j in a reqular vine are equal, then i = j.

Proof. Suppose i and j have the same conditioned sets. By Lemma 3.3 the conditioned sets are
singletons, say {a},{b},a € N,b € N. Let D; respectively D; be the conditioning sets of edges i
and j. Then in the tree 77 there is a path from a to b through the nodes in D;, and also a path from
a to b through the nodes in D;. If D; # D;, then there must be a cycle in the edges E1, but this is
impossible since T is a tree. It follows that D; = D;, and from Lemma 3.4 it follows that i = j. O

Definition 3.5 (Partial correlation specification) A partial correlation specification for a
reqular vine is an assignment of values in (—1,1) to each edge of the vine.

The edges in a regular vine may be associated with a set of partial correlations in the following way:
fori=1,...,n—1, with e € E;,e = {j, k} we associate

PC.,;Ce r;De-

From Lemma 3.3 it follows that the sets C, ; and C, ; are singletons, and by definition their
intersection with D, is empty. For tree T3, the conditioning sets D, are empty and the partial
correlations are just the ordinary correlations. The order of a partial correlation is the cardinality
of the conditioning set. Hence this association involves (n — 1) partial correlations of order zero,
(n — 2) of order one, ... and one of order (n — 2). In total there are

5= ()



edges in a regular vine and the same number of partial correlations associated with the edges of
a regular vine. Since the conditioned sets of each edge must be distinct, it follows that each pair
of indices appears once as conditioned variables in a regular vine.

The following theorem shows that the correlations are uniquely determined by the partial
correlations on a regular vine.

Theorem 3.1 Let Xy,...,X, and Yy,...Y, be random variables satisfying the same partial cor-
relation vine specification. Then for i # j

Proof. It suffices to show that the the correlations p;; = p(X;, X;) can be calculated from the
partial correlations specified by the vine. Proof is by induction on the number of elements n. The
basic case (n = 2) is trivial. Assume the theorem holds for ¢ = 2,...n — 1. For a regular vine over
n elements the tree T),,_; has one edge, say e = {j, k}. By Lemma 3.3, #D. = n — 2. Re-indexing

the variables X1, ... X, if necessary, we may assume that
Ce,j = U])'k \De = anla
Ce,k = U]:; \De = Xn,
U; = {1,...,n—1}
up = {1,...,n—2,n}
D, = {1,...,n—2}.

The correlations over U and Uy are determined by the induction step. It remains to determine
the correlation p,,—1 . The left hand side of

_ Pn—1,n;1..n—3 — Pn—2,n;1..n—3Pn—2,n—1;1..n—3 7
Pn—1,n;1..n—2 = > > ( )
\/1 - pn72,n71;1...n73\/1 ~Pn—2m—-1;1..n-3

is determined by the vine specification. The terms

Pn—2,n—1;1...n—35 Pn—2,n;1...n—3

are determined by the induction hypothese. It follows that we can solve the above equation for
Pn—1,n;1...n—3; and write

Pn—1,n;1..n—4 — Pn—3,n—1;1...n—4Pn—3,n;1...n—4

2 2
\/1 - pn—37n—1;1...n—4\/1 ~ Pn—3,n;1..n—4

Proceeding in this manner, we eventually find

Pn—1,n;1..n—3 =

pnfl,n - plnflpln

Pn—1,n;1 = > 5
\/1 — Pin1V1—piy

This equation may now be solved for p,—1,. O

The Lemmas 3.6, 3.7 and 3.8 below will be used in matrix completion problem in Section 6.
The following lemma shows that p,_1 n;1..n—2 can be chosen arbitrarily in (7) and the resulting
system could be solved for p;,_1,. This idea is the basis for the proof of Theorem 3.2 below.



Lemma 3.6 If z,z,y € (—1,1), then also w € (—1,1), where

w=2zy(1—22)(1—-y3) + zy.

Proof. We substitute £ = cosa, y = cos 3, and use

l1—cos’a = sina;
cosacosff = cos(a—ﬂ);cos(a-{-ﬂ);
sinasing = cos(a — f3) ; cos(a + ) ;

and find

=w.

cos(a — ) —cos(a+ )| cos(a — ) + cos(a + f3)
‘ 2 ‘ * 2

Write this as

z

w;

a—>b +a+b_
2 2

where a,b € (—1,1). As the left hand side is linear in z, its extreme values must occur when z = 1
or z = —1. It is easy to check that in these cases, w € (—=1,1). O

In the next lemma we will see that it is always possible to find a single unknown variable on
the right hand side of equation (2) such that the left hand side will lie in the interval (—1,1).

Lemma 3.7 Let w,y € (—1,1), z € (—1,1) and

_ w — xy (8)
(1 —2?)(1 - y?)
then
ze(-1L,1) & z€l, LL#0, I, =(z,T)N(-1,1)
where
z = yw—v([1-y?)(1-w?)
T = yw++v/[1-y2)([1—-w?).
Proof. It suffices to find the solution of the following inequality
(w—=y)* < (1-2")(1 -y
which is equivalent to
22 = 2wyr +w? +y°> —1<0. 9)
We get,
A = 4wy —4uw® —4y® + 4
= 4(1-yH({1 —w?).
Since y,w € (—1,1) then A > 0 and inequality (9) has always a solution with
ze (yw— VT =)=y + V121 —w?)) = L,
Since w,y € (—1,1) then wy € (—1,1). We want also z € (—1,1) so we get
L =INn(-1,1) (10)

which is always non-empty. O



Remark 3.1 Similar considerations hold if we change the role of w and x in (8). Then we obtain
that we can always find w such that z € (—1,1). This solution belongs to the following non-empty
interval

1= (ay - V=) {1 = ey + V(1= )1 = 7)) N (-1, 1).
Lemma 3.8 Let w € (—1,1) and let z be given by (8).
z€(=1L1) & (z,y) € A(w)

where

A(w) = {(z,y) : % +a? < 1. (11)

Proof. It suffices to find points (z,y) € (—1,1)? such that
(w—2y)* < (1-2”)(1 -y
therefore we test when the function
g(z,y) = (w-ay)’ —(1-2")(1-y?)

= 22 +y? —2wry +w? -1
= 2’(1-w’) +(y —2w)” - (1 - w?)

is less than zero.
It is easy to notice that g(x,y) is less then zero if (z,y) € A(w). O

Remark 3.2 Note that point (0,0) always belongs to A(w).

In [8] the following is proved:

Theorem 3.2 For any reqular vine on n elements there is a one to one correspondence between
the set of n X n positive definite correlation matrices and the set of partial correlation specifications
for the vine.

The above theorem shows that all assignments of the numbers between -1 and 1 to the edges of a
regular vine are consistent and all correlation matrices can be obtained this way. This relationship
can be used in constructing high dimensional distributions realizing a given correlation matrix. It
can be also used to determine whether a proto correlation matrix is positive definite simply by
calculating partial correlations assigned to the edges of regular vine ( see Section 4).

4 Positive definiteness

If Ais an n x n symmetric matrix with positive numbers on the main diagonal, we may transform
A to a matrix A = DAD where

L ifi=j
dy; =< Vi
” { 0 otherwise.

Thus
[£2%]

@y =



A has ”1”-s on the main diagonal. Since it is known that A is positive definite if and only if all
principle submatrices are positive definite then we can restrict our further considerations to the
matrices which after transformation (12) have all @;; € (—1,1) where ¢ # j. The matrix with all
off-diagonal elements from the interval (-1,1) and with ”1”-s on the main diagonal is called proto
correlation matriz. It is well known that A is positive definite (4 > 0) if and only if A is positive
definite.

In order to check positive definiteness of the matrix A we will use the partial correlation
specification for the canonical vine. Because of the one-to one correspondence between partial
correlation specifications on a regular vine and positive definite matrices given in Theorem 3.2, it
is enough to check whether all partial correlations from the partial correlation specification on the
vine are in the interval (—1,1) to decide that A is positive definite .

We illustrate this algorithm for 5 x 5 proto correlation matrix given by

1 pi2 p13 pua pis
p2r 1 paz pas pos
p31 P32 1 p3s p3s
par paz paz 1 pus
P51 ps2 P53 pPsa 1

For this matrix we will consider the canonical vine on 5 variables.

Figure 3. Partial correlation specification for a canonical vine on 5 variables with root 1.

In the first tree we have to read correlations from the matrix A. For the second tree we will
use formula (2) and calculate the following correlations:

P23;1, P24;1, P25;1-

To calculate correlations psa.12, p3s;12 with the formula (2), we will also have to calculate ps4;1 and
P35;1- Similarly, to calculate P45;123 WE will need P45;12 and P45;1-
In general we must calculate using formula (2)

-1
<n 5 > partial correlations of the first order

n—2
< 5 > partial correlations of the second order

<n—(n—2)E

5 > partial correlations of the (n-2) order.

Hence in order to verify positive definiteness of the matrix A we have to calculate

"i (n;k) _ (n—2)én—1)n<%3

k=1



partial correlations using formula (2).
Example 1
Let us consider the matrix

25 12 -7 05 18
12 9 —-18 1.2 6
A=| -7 -18 4 04 —-64
0.5 1.2 0.4 1 -04
18 6 —-64 —-0.4 16

and transform A to proto correlation matrix using formula (12). Then we get

1 0.8 —-0.7 0.1 0.9

0.8 1 -03 04 05

A=| -07 -03 1 02 -08
0.1 04 0.2 1 -0.1

09 05 -08 -0.1 1

Since
P23:1,  P2a:1, pm} _ {0.6068, 0.5360, —0.8412
P34:1, P35;1, P45l 0.3800, —0.5461, 0.0281
[ pssi2, pssiiz,paspz | = [ 0.0816, —0.0830, 0.0351 ]
[ P45;123 ] = [ 0.0351 ]

are all between (—1,1), it follows that, A and A are positive definite.

We now show the relationship between above procedure of testing positive definiteness and a
test procedure based on the Schur complement.

Theorem 4.1 (Schur complement)
Suppose that symmetric matriz M is partitioned as

X v
wo= 7

where X, Z are square. Then

M>=0eX=0and Z—-YTX"Y » 0.

Let A be an n X n proto correlation matrix partitioned in the following way

-~ Xy Y
4= {YkT Zk}

where X is k x k,1 <k <n-—2and Zn—k xn — k matrix.

We introduce the following notation:

Ao, matrix of the k-th order partial correlations with conditioned set {12... k}.3

If M is a square matrix with positive elements on the main diagonal then let M denote the matrix
M transformed to proto correlation matrix using transformation (12).

1 —1: _
3Note that A,12...n—2 = Pnn—1;12..n—2 ] .

Pn,n—1;12..n—2 1

10



Theorem 4.2

A-0 & v1§k§n_2 (Zk - YkTXlzlyk) = A;12___k.

Proof. The proof is by iteration with respect to k. For k = 1 we get

_ X1 N
4= 3]
where

1 P23 P24 ---  P2n
P23 1 P34 ... P3n

Xi =[], i=[pi2piz --- pinl], Z1 = .

P2n-1 P3n—1 .- L1 pn_in
P2an P3n . . 1

Since certainly X; > 0, then by Theorem 4.1
A > 0 if and only if Z, — YT X'V} = 0.

We get
1- ,0%2 P23 — P12P13  ---  P2n — P12P1n
Ay =2, —YTX'yy = | P28 7 P12is 1—pis e P3n — P13PIn
P2n - -p‘12p1n P3n - -P‘13p1n 1 —p%n
Since A is a proto correlation matrix then p;; € (—1,1) where 4,5 = 1,2,...,n and ¢ # j. Hence

all elements on the main diagonal of ;lvl are positive so the transformation (12) can be applied.
After transformation A,; will be of the form

1 P23 —pP12013 P2n—P12P1n
(1=p3,)(1—p33) (1-p3,)(1—p3,)
___P23—p12p13 1 __P3n_P13P1n
(1=p35)(1-p73) (1-p33)(1~p7,)
P2,n—1—pP12P1,n—1 P3,n—1—P13P1,n—1 Pn—1,mn—P1l,n—1P1ln
V=) =pi, ) [U=pt)(1=6F, ) V=t ) 0=i,)
P2n —P12P1n P3n —P13P1n 1
V—pt,)(1-6%,) Vi) (1-0t,)

which by formula (2) is equal to 4,;. Hence A > 0 if and only if A; > 0.

If any element of the first row of A;1 is not in (-1,1) then A and A.; are not positive definite. *
If all elements of the first row of A.; are in (-1,1) we can apply the above steps with A, in the
role of A. Let A.1(i,j) denote the (i,7) element of A.1. The result of applying Theorem 4.1 and
transformation (12) to A,; yields a matrix with off-diagonal elements (3, j), i,j = 2,3,...n

Aﬂ(i:j) — A;1(27i)A;1(25j) -
V(1= A3 (2,0)(1 - 43(2,))

By the recursive formula (2), this is equal to

Pij;12

so A.12 is the matrix of second order partial correlations. The proof is completed by repeating the
above argument. If the elements of A.;2 ; are not in (-1,1) then A is not positive definite and the
argument terminates; otherwise we compute 4,12 2 and conclude that A is positive definite. O

4Note that this is equivalent to checking if all correlations in the second tree in the canonical partial correlation
vine are in (-1,1).

11



Corollary 4.1

A0 & [pi2€(-1,1),...,p1n € (—1,1) and A, = 0]
~ [p23;1 S (_17 ]-)7 . '7p2n;1 S (_17 ]-) and A;12 > 0]

4 [pn—27n—1;1...n—3 € (_17 1)7pn—27n;1...n—3 € (_171) and A;12---’ﬂ—2 - 0]
& Prn-ti12..n-2 € (—1,1).

5 Repairing violations of positive definiteness

In physical applications it often happens that correlations are estimated by noisy procedures. It
may thus arise that the measured matrix is not positive definite. If we want to use this matrix
we must change it to get a positive definite matrix which is as close as possible to the measured
matrix.

Partial correlation specifications on a regular vine can be used to alter a non-positive definite
matrix A so as to obtain a positive definite matrix B. If the matrix is not positive definite then
there exists at least one element in the partial correlation specification of the canonical vine which
is not in the interval (—1,1). We will change the value of that element and recalculate partial
correlations on the vine using the following algorithm:

for1<s<n—-2, j=s+2,s+3,...,n

Ps+1,j;12...5 Q (_1; ]-) — Ps+1,j;12...5 = V (ps+1,j;12...s)

where V (pst1,j:12...5) € (—1,1) is the altered value of psi1 j.12..s-
Recalculate partial correlations of lower order as follows:

V(Ps+1,j;1...t—1) = V(Ps+1,j;1...t)\/(1 - pg,s+1;1...t71)(1 - P§+1,j;1...t—1) (13)
+Pt,s4+1;1...t—1Ps+1,551...t—15

where t = s,s —1,...,1.

Theorem 5.1 The following hold:
a. all recalculated partial correlations are in the interval (—1,1),

b. changing the value of the partial correlation on the vine leads to changing only one correlation
in the matriz and doesn’t effect correlations which were already changed.

c. there is a linear relationship between altered value of partial correlation and correlation with
the same conditioned set in the proto correlation matriz,

d. this method always produces a positive definite matrix.

Proof.

a. This condition follows directly from Lemma 3.6.

b. The condition (b) is a result of observation that changing the value of the correlation ps11,j;12...5

in the above algorithm leads to recalculate correlations of the lower order but only with the

9.9

same indices before ”;”, that is, s + 1, j.
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c. Since psy1 j;12..¢—1 is linear in pgiq j12..¢ for all ¢ = s,s — 1,...,1 the linear relationship
between psy1; and psy1 ji12...s follows by substitution.

d. Applying the above algorithm whenever a partial correlation outside the interval (—1,1) is
found, we eventually obtain that all partial correlations in partial correlation specification
on the vine are in (—1, 1), that is, the altered matrix is positive definite. O

From the statement (c) of Theorem 5.1 we can obtain the following result.

Corollary 5.1 If

|ps+1,j;12...s - V(ps+17j;12...s)(1)| < |ps+1,j;12...s - V(ps+17j;12...s)(2)|

then
1 2
o1 — Pl < dpsirg — P71,

where V (psi1 jo...)") and V(psi1 jas..s)®) are two different choices of V(psi1 jia2.s) in 18

Let us consider following example:
Example 2
Let

1 -06 -0.8 0.5 0.9

-0.6 1 0.6 —-04 -04

A=1] -08 06 1 01 -0.5
05 -04 0.1 1 0.7

09 -04 -05 0.7 1

We get p3a,12 = 1.0420 hence A is not positive definite.
Since psa;12 > 1 then we will change its value to V(psa;12) = 0.9 and recalculate lower order
correlations

V(psast) = V(psa12)y /(1= p3) (1 = paa) + posaposs

and

V(psa) = V(pss)y/ (1= p2) (1 = 92) + prspua

This way we will get for our example V(pss;1) = 0.9623 and finally the new value in the proto
correlation matrix V' (pss) = 0.0293. Next we will apply the same algorithm to verify that this
altered matrix is positive definite. We obtained matrix

1 -06 -038 0.5 09

-0.6 1 06 —-04 -04

B=| -08 06 1 0.0293 -0.5
0.5 —04 0.0293 1 07

09 -04 -0.5 0.7 1

which is positive definite. Note that only cell (3,4) is altered.

Remark 5.1 In Ezample 2 we could choose new value of the correlation pss.1z, that is, V(psa12)
as 0.99 then the altered value of correlation pss is 0.0741. If we change pssi2 to 0.999 then we
calculate that psy is 0.0786 but in this case we obtain that pys.103 is equal -1.6224. If we change
this value to -0.999 we calculate pys = 0.7052.

13



Remark 5.2 Note that the choice of vine has a significant effect on the resulting altered matriz.
The canonical vine favors entries in the first row. They are not changed. The changes are greater
the further we go from the first row. Hence when fizing a matriz one should rearrange variables
to have the most reliable entries in the first row.

6 Completion problem

In this section we apply the canonical vine to the completion problem. First, however, we quote
the known results of the completion problem which can be found in [5], [6], [3], [9], [10]. The
following definitions are taken from Laurent [6]. We define the set of correlation matrices &, x, as
follows:

Enxn = {X = (x;;) symmetric n x n|X > 0,z;; =1foralli=1,2,...,n}.

Let G = (N, E) be a graph where N = {1,2,...,n}. G is simple i.e. has no loops or parallel
edges. We define the set &, as a projection of £, x, on the subspace R¥ indexed by the edge set
of G

En(G) = {z € R¥|3A = (a;;) € Enxn such that a;; = z;; for all (i,j) € E}.
The sets Enxn and &, (G) are called eliptopes.

Let G = (N, E) be a graph. Given a subset U C N, G(U) denotes the subgraph of G induced
by U, with node set U and with edge set {(u,v) € E|u,v € U}. One says that U is a cliqgue in G
when G(U) is a complete graph.
Suppose X has diagonal entries 1, and let © = (7;;);jer € R denote the vector whose compo-
nents are specified entries of X. Let G denote the graph with edge set E.

Definition 6.1
X is completable if x € £,(G).
Clique condition

z € &p(G) =

For every clique K in G, the projection xx of x on the (14)
edge set of K belongs to & (K).

The clique condition is also described by saying that every fully specified principal submatrix is
positive definite, and a matrix with this property is called partial positive definite. It is shown
in [7] that every partial positive definite matrix whose graph is G can be completed to a positive
definite matrix if and only if G is chordal ( graph G is said to be chordal if every cycle of G with
length > 4 has a chord; a chord of the cycle C is an edge joining two nonconsecutive nodes of C').

Since every vector z € £(G) has all entries in the interval [-1,1], we can find

arccos
a, = ———= € [0,1] for every e € E.
™

Cycle condition

z € E(G) = a = (a.)eck satisfies condition

14



Deer Ge = ZeEC\F a. < |F|—1

for C a cyclein G, F C C with |F| odd. (15)

The conditions (14) and (15) are necessary but in general not sufficient. As noted, (14) is sufficient
for chordal graphs.

The condition (15) is sufficient for the cycles and series-parallel graphs i.e. graphs with no Kj-
minors® [10], [6].

These two conditions taken together suffice for describing eliptope &,(G) for the graphs called
cycle completable [9] i.e. chordal graphs, series-parallel graphs and their cligue sums ( where
cligue sum of graphs G; = (N1, E1) and Go = (Ns, E») is a graph G = (N; U No, Ey U E») such
that the set K = Ni N Ny induces a clique (possibly empty) in both G1 and G2 and there is no
edge between a node of N; \ K and node of N, \ K).

Now we present the solution of the completion problem for the special cases of graphs using
partial correlation specification of a canonical vine; the root node is always chosen to be 1. We
shall see that verifying the relevant conditions for completability simultaneously gives the set of
completions.

In the cases below we consider only symmetric matrices so only upper the part is shown and
unspecified entries in this matrix are indicated by ”0O”.

Case 1
We have the following partial proto correlation matrix which needs to be completed
(1 pia p13 P4 oo PLk+l PLk+2 .-+ Pln |
1 p2s poa - P24l P2k+2 --- Pon
L prk+1 Prk+2 - Pk
1 a ... O
1 o o
1 |
_ U

In this case all entries in rows k+1 to n are not specified. For n = 5 and k£ = 1 this corresponds
to the graph in Figure 4.

Since all correlations from the rows 1 to k are given we can calculate all partial correlations in
canonical vine specifications up to (k — 1)-th order.

Assigning the remaining partial correlations of order & to n— 2 in the canonical vine any value from
the interval (-1,1), we can specify all empty cells recalculating partial correlations using the algo-
rithm (13). In this case the matrix can be completed if and only if all partial correlations of order

less then k are in the interval (—1,1). Hence we must evaluate formula (2) Z;:klﬂ [(;) - (";k)]

times.

5A graph H is said to be minor of the graph G if H can be obtained from G by repeatedly deleting and/or
contracting edges and deleting isolated nodes. Deleting an edge e in graph G means discarding it from the edge set
of G. Contracting edge e = uv means identifying both end nodes of e and discarding multiple edges and loops if
some are created during the identification of u and v.
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Figure 4. Chordal graph corresponding to Case 1 with n=>5 and k=1.

Case 2
a:
(1 pia p13 -or PLEHL PlLE+2 P1,k+3 Plitd oo Pin ]
1 pa3 oo pags1r P2,k42 P2,k+3 P2k44 oo P2n
1 prrsr prps2 Pk k+3 Pkk+d - Pkn
1 Pk+1,k+2 | Pk+lk+a -+ Pk+ln
1 Pk+2,k+3  Pk42,k+4  --- Pki2.n
1 O O
1 | O
1 |
- 1 -

In this case all entries in rows k+3 to n and entry (k+1,k+3) are unspecified. For n=4
and k=1 this case corresponds to the graph on Figure 5 (left). We can calculate all partial
correlations of order less then k£ and all of order k except pri1,k+3;1...k. If all these partial
correlations are in the interval (—1,1) then the matrix can be completed. To find pg41 k+3
we choose a value of pgy1 k+3;1...k Which belongs to the non-empty interval Ik+27k+3;1___k+16
given by (10) and then calculate pgy1 43 using algorithm (13). Similar solutions are obtained
when the empty cell in row &k + 1 occupies any other position except position (k + 1,k + 2).

b:
(1 pi2 pi3 -o- PLrtt PLE+2 PLi+3 Plk+a - Pin |
1 pa3s oo pog+1 P2k+2 P2,k+3 P2 k+4 .- P2n
1 prk+1 Prk+2  Prk+3 Pkk+4 -+ Phkn
1 O O Phtlktd -+ Phtln
1 Pk+2,k+3  Pk42,k+4  --- Pki2.n
1 O O
1 | O
1 O
- 1 -

The difference with Case a is that additionally entry (k+1,k+2) is omitted. For n=4 and
k=1 this corresponds to the graph on Figure 5 (right). In contrast to Case 2a the partial
correlation pg41,k+2;1...k, Which cannot be calculated now, appears in every correlation of
order k + 1. To find values for correlations pgt1,x+2 and pgi1,k+3, we must first choose
Prk+1,k+2:1...k such that all correlations of order k + 1 except ppry1 g+3;1..k+1 are in (-1,1).
Hence

Ph+1,k+21. ok € Tot1 k21, 6 = Teg2, k451 k1 D T2, k5500 k41 N oo e N Tpg2ngt kg1

Next given this value of pgi1 x+2:1...k, the value of pry1 r13,1...x can be found. In this case
the matrix can be completed if all correlations which can be computed are in (—1,1) and if
the interval Ijy1 g42;1..% is not empty.

6We write It1 k4251 .k instead of Tpp g g0y -
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Figure 5. Chordal graphs corresponding to Case 2a (left) and Case 2b (right) with n=4 and k=1.

Case 3

This case is an example of non-chordal graph with one cycle with length 4.

1 pi2 pi3 PLk+1  P1k+2 P1,k+3 P1,k+4 Pin
1 P23 P2,k+1 P2,k+2 P2,k+3 P2,k+4 P2n
1 prgk+1 Prk+2 Pk k43 P k44 Pk,n
1 Ph1,k+2 O Ph1, k44 Pr+1n
1 Pl+2,k+3 | Pk+2,n
1 Pl-+3,k+4 Pk+3,n
1 O
O
i 1

We can see that rows k+3 to n and entries (k+1,k+3) and (k+2,k+4) are unspecified. For k=1
and n=5 this corresponds to the graph on Figure 6 (left). In this case we can calculate all partial
correlations of order less than k and all of order k except pry1,k+3;12...k and pry2 k44,12, k-

Using Lemma 3.7 we choose pg41,k+3;12...k belonging to the intersection

It ggsiie b = Tego k3o kbt N Tpg3 kas1. kg1

of two intervals such that ppy2 kys:12..k+1 and pr43 kra12. k1 are in (—1,1) if this intersection
is non-empty. We next can find possible solutions for pg43 x44;12...k+1 such that pris kya;12.. k42
is in (—1,1). Recalculating correlations using formula (13) we can fill empty cells in the cycle. In
this case the matrix can be completed if all correlations which can be calculated are in (—1,1)
and if Iy 41 p43,1...% is not empty. If the intersection of It yo ky3:1..k+1 and I 43 pta;1.. k+1 is empty
then this matrix cannot be completed (see Example 5).

Remark 6.1 We notice that the procedure of finding correlation pyy1 k+3,12...x which belongs to
the interval I11 13,12,k ollows us to choose a chord in this circuit. In this way, Case 3 can be
reduced to the previous cases where chordal graphs were considered.

In Section 3 of [10] the completion problem for a cycle was solved. The approach used in [10]
consist of solving a system of equations which is equivalent to (16). In Case 4 we present this
approach in terms of partial correlation specification on a vine.

Case 4

In this case we show the general solution of the completion problem for the cycle of length n
(n > 4). The following matrix corresponds to the cycle of length n (The cycle of length 6 is
presented on Figure 6 (right))

1 pp O O O Pin
1 P23 O O O
1 Pn—3,n—2 a a

pn72,n71 O
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We have to choose correlations pi3, pi4,---,p1n—1 such that by Lemma 3.7 and Lemma 3.8 the
following system is satisfied

P13 € Iy
(p13,p14) €  A(psa)
(p14, p15) €  A(pss) (16)
(pl,n—?:pl,n—l) € A(pn—Q,n—l)
P1,n—1 € Infl,n;l

where I3, denotes I,,;., .
If we can solve (16) then this matrix can be completed. We complete our matrix with the algo-
rithm presented below:

p3a:12 € (—1,1) & pos1 € Isa12 = p2a can be calculated with (13)
p35:12 € (—1,1) & pos.a € Is512 = pos can be calculated

Pn—1m12 € (—1,1) & pana € In_1n;12 = p2n can be calculated
pasi123 € (—1,1) & pssao € Iusi23 = pss; and next pss can be calculated

Pn—1mi123 € (—1,1) & psni2 € In_1n123 = p3n;1 and next ps, can be calculated

Prn—1ms12..n—2 € (=1,1) & pp_oni2.n—3 € In—1n12..n—2 = Pn—2,n;12..n—4
and next pp—s n;12..n—4,- - -, Pn—2,n can be calculated

Figure 6. Graphs corresponding to Case 3 (left) with k=1n=>5 and Case 4 (right) with n=6.

Case 5

In this case we consider wheel on n (n > 4) elements (a wheel on n elements is a graph composed
of a circuit C' on n — 1 nodes together with an additional node adjacent to all nodes of C).

The following matrix corresponds to the wheel of length n

1 pi2 p13 pua p1s ... e P14 Pln
1 pp3 O 0O ... e O Pon
1 p3g O ... e O O
1 Pn—3,n—2 | o
1 Pn—2,n—1 a
1 Pn—1,n
L 1 -

This case can be reduced to the Case 5 by applying Theorem 4.1. If correlations py jy1,1 for

18



k=2,3,...,n—1 and pay1 arein (-1,1) then the following matrix needs to be completed

1 p3p O 0O ... O P2n;1
1 P34;1 a e a a
1 pp_2pn-12 o
1 Pn—1,n;1
1

Remark 6.2 Note that it is shown in [10] that the wheel on n (n > 5) elements is not cycle
completable.

Remark 6.3 To our knowledge Case 5 is the first method for completing the wheel. Methods of
completing chordal graphs and cycles have been previously presented in [7] and [10].

Example 4

Figure 5. A wheel on 6 elements.

The following matrix corresponds to a wheel on 6 elements

1 p12 p13 p14 p15 ,016 1 08 01 —03 05 —04
L pa3 O O pog 1 0 ] o  -0.1

1 p3a 0O O _ 1 —-06 O |

1 pys O B 1 -07 O

1 P56 1 0.2

1 1

We can calculate
[p23:1, P26:1, P34:1, Pasi1, Pser] = [—0.1340, 0.4001, —0.6005, —0.6658, 0.5040].

We must choose correlations pay;; and p2s. such that the system similar to (16) is satisfied.
Since p24;1 € 134;12 = (—07119,08729) and pP25;1 € 156;12 = (—05899, 09932) then we can choose
P24;1 = P25;1 = 0. Hence P34;12 = —06060, P45;12 = —0.6658 and P56;12 = 0.5499. (Note that P45;12
depends on pas;1 and pos.1. Hence we must choose these correlations such that also pas,12 € (—1,1).
If it is not possible then this graph cannot be completed.)

Now we can find pss.12 € Iss.123 = (—0.1900,0.9970). Let us choose pss.12 = 0 then pys.123 =
—0.8370 and P36;12 € [56;123 = (—08352, 08352) Hence we can also take P36;12 = 0 then P56;123 =
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0.5499. Finally we get P46;123 S 156;1234 = (—09173, —00032) We take for instance P46;123 = —-0.5
and now we can recalculate all correlations using algorithm 13.

p241 =0 = pog = p1ap1a = —0.24

p251 =0 = pos = p12p15 = 0.4
p35;12 =0 = p35;1 = pas;1p251 =0
=  p3s = p13p15 = 0.05
pas;i2 =0 = p3g1 = pas;1p2e; = —0.0536
= pao = pasa /(L= pls)(1— o) + prapio = —0.0889
przs = —0.5 = pagis = —0.3977 = pagy = —0.3645 = pag = —0.1987.

We obtain that the matrix

1 08 01 =03 0.5 —-04
1 0 -024 04 -0.1
1 —-06 005 -0.0889
1 —-0.7 —0.1987
1 0.2
1

is positive definite.

Example 5
Let us consider the following matrix
1 p12 p13 pua p1s 1 07 =03 02 0.5
1 P23 O P25 1 —-0.8 O 0.7
1 P34 O = 1 0.6 0O
1 Pas 1 0.9
1 1

which corresponds to the Case 3 with n=>5 and k=1. We can calculate
[p23:1, P25:1, P3a.1, pas] = [—0.8661, 0.5659, 0.7061, 0.9428].

Now following the procedure presented in Case 3 we must choose correlation psg;; such that it
belong to the intersection of I34;12 and Is5,12. We get however that

Isgio = (—0.9655,—0.2576),
Iisan = (0.2587,0.8084).

Hence the intersection in empty. From this we conclude that this matrix cannot be completed.

General solution strategy
We consider a practicable strategy for finding a completion of an incomplete proto correlation
matrix, if such a solution exists. The following matrix is given (assumed to be symmetric)

1 P12 P13 .- Pia—1  Pln
P21 1 P23 ... P2a—1  P2n
P31 P32 1 .o P3n—1 P3an

Pn—1,1 Pn—12 Pn—1,3 --- 1 Prn—1,n
Pnl Pn2 Pn3 -o- Pnn—1 1
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First, we remark that by Lemma, 3.7 we know that if the matrix is completable, then the set of
solutions is open. Some of the entries p;; are not specified. We first order the rows and columns
to obtain a maximal bottom right triangle above the diagonal with unspecified elements. If all
unspecified cells appear in this triangle, then the choices of values for the partial correlations whose
conditioned sets correspond with the empty cells is unconstrained (case 1). Any choice yields a
completion under (2). If there is an unspecified cell (7, j) such that some (i, k) is specified, k > 7,
then the choice of partial correlations p;j;1...;—1 is constrained. The different ways in which these
are constrained are illustrated in the cases above. In general, we can say that for all unspecified
cells in the ¢ —th row, p;5,1...,—1 must be chosen such that all partial correlations pgj.1...;, k > i are
in (—1,1).

Define C, = {j € {k+1,...,n}|pk; unspecified } and D; = {k € {j+1,...,n}|px; specified }.
To choose values for pij,7 € C1 we must solve a system such that all correlations of the first
order py;.1 are in the interval (-1,1), where k € D, using Lemma 3.7 and/or Lemma 3.8. (If the
system has no solutions, the matrix is not completable.) If this system has solutions then we can
fill all empty cells in the first row and the values of pj;1 are fixed. Next we repeat the same
operation for the unspecified elements in the second row py;,j € C>. We must solve a system
such that all correlations of the second order py;.12 where k € D; are in the interval (-1,1). If this
system has solutions we obtain partial correlations of the first order psj;.1. If this system has no
solutions, we return to C'; and choose another solution, re-fixing the values of pyj,1. If the matrix
is completable, we can find a solution for C; which allows us to fix values for Cs in finitely many
steps. We continue in this way through row n. Of course this strategy is not an effective procedure
for deciding whether or not a given incomplete matrix is completable. The issue of decidability of
real closed fields is not addressed in this paper.

7 Conclusions

We have explained the use of partial correlation specifications on a canonical vine in various
problems regarding positive definiteness of proto correlation matrices. One attractive feature
is that the steps in the algorithms acquire a probabilistic interpretation through the notion of
partial correlations. We note, however, that they cannot apply to problems involving positive
semidefiniteness. Indeed, the denominators in (2) must be non-zero and this implies that all partial
correlations must be greater then -1 and less then 1. The speed of these algorithms appears to be
comparable to that of previous algorithms.
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