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Abstract: The practice of Uncertainty Factors as applied to non-cancer endpoints in the IRIS data base 
harkens back to traditional safety factors. In the era before risk quantification these were used to build in a 
‘margin of safety’. As risk quantification takes hold, the safety factor methods yield to quantitative risk 
calculations to guarantee safety. Many authors believe that uncertainty factors can be given a probabilistic 
interpretation as ratios of response rates, and that the reference values computed according to the IRIS 
methodology can thus be converted to random variables whose distributions can be computed with Monte 
Carlo methods, based on the distributions of the uncertainty factors. Recent proposals from the National 
Research Council echo this view. Based on probabilistic arguments, several authors claim that the current 
practice of uncertainty factors is over-protective. When interpreted probabilistically, uncertainty factors 
entail very strong assumptions on the underlying response rates. For example, the factor for extrapolating 
from animal to human is the same whether the dosage is chronic or sub-chronic. Together with 
independence assumptions,  these assumptions entail that the covariance matrix of the logged response 
rates is singular.  In other words, the accumulated assumptions entail a log linear dependence between the 
response rates. This in turn means that any uncertainty analysis based on these assumptions is  ill-
conditioned; it effectively computes uncertainty conditional on a set of zero probability. The practice of 
uncertainty factors is due for a thorough review. Two directions are briefly sketched, one based on standard 
regression models, and one based on non-parametric continuous Bayesian Belief Nets. 
Keywords:  Uncertainty factors, LOAEL, NOAEL, Benchmark Dose 
 
1. Introduction 
The method of uncertainty factors (Lehman, A,J,. Fitzhugh, O,G,. (1954)), harkens back 
to the engineering practice of safety factors. If the reference load for an engineered 
structure is X, then engineers may design the structure to withstand load 3X, using a 
safety factor of 3 to create a margin of safety. If the structure functions in a corrosive 
environment, another factor would be multiplied to guarantee safety, and another factor 
for heat, another factor for vibrations, etc.   The choice of values is simply based on 
“good engineering practice”, i.e. what has worked in the past. Although safety factors are 
still common in engineering, they are giving way to probabilistic design in many 
applications. The reason is that compounding safety factors quickly leads to 
overdesigning. Compounding safety margins for spaceflight systems may render them 
too heavy to fly.  As our understanding of the system increases, it becomes possible to 
guarantee the requisite safety by leveraging our scientific understanding of the materials 
and processes. That of course requires formulating clear probabilistic safety goals, and 
developing the techniques to demonstrate compliance.  
 
The engineering community has never sought to account for uncertainty by treating 
safety factors as random variables and assigning them (marginal) distributions; such an 
approach would not counteract the overdesigning inherent in safety factors.  Many 
authors, including the recent NAS report Science and Decisions (pp 159 ff) have 
advocated just such a probabilistic approach.  
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EPA’s flagship resource for risk of exposure to hazardous chemicals, the  Integrated Risk 
Information System (IRIS) uses uncertainty factors as safety factors. For non-cancer 
risks, the goal is to derive a reference dose (RfD) or reference concentration (RfC). These 
“reference values” have been based on a “No Observed Adverse Effect Level” (NOAEL) 
or Lowest Observable Adverse Effect Level (LOAEL). The reference dose methodology 
is applied in several programs within EPA, including Acute Reference Exposure (ARE), 
Acute Exposure Guideline Level (AEGL) Office of Pesticide Programs procedures, 
Office of Water (OW) Health Advisories (HA), and the Agency for Toxic Substances and 
Disease Registry (ATSDR) Minimal Risk Levels (MRL). These programs have 
developed different approaches to setting acute, short-term and longer term reference 
values. Efforts are underway to incorporate these different values within the Integrated 
Risk Information System (IRIS) database. 
 
As pointed out by the WHO 1999 (cited in Kalberlah et al 2003) the NOAEL is not a 
biological threshold, and may either under- or over-estimate a true biological threshold. 
More recently, the Benchmark Dose (BMD) or Lower confidence limit of the Benchmark 
dose (BMDL) have been used as a point of departure for deriving reference values. The 
Effective Dose at which r% of the exposed subjects respond, EDr is another indicator 
sometimes used as a point of departure. The regulatory history is sketched in (Dourson et 
al 1983).  According to EPA/630/P-02/2002F the current definition of the RfD is. 
 
RfD: an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily 
oral exposure to the human population (including sensitive subgroups) that is likely to be 
without appreciable risk of deleterious effects during a lifetime. It can be derived from a 
NOAEL, LOAEL, or BMD, with UFs generally applied to reflect limitations of the data 
used. Generally used in EPA’s noncancer health assessments. 
 
The same document proposes a revised definition. 
 
Reference Value: an estimate of an exposure, designated by duration and route, to the 
human population (including susceptible subgroups) that is likely to be without an 
appreciable risk of adverse health effects over a lifetime. It is derived from a BMDL, a 
NOAEL, a LOAEL, or another suitable point of departure, with uncertainty/variability 
factors applied to reflect limitations of the data used. 
 
The Reference Value is obtained by dividing a point of departure by uncertainty factors1

                                                 
1 The IRIS data base currently defines “Uncertainty/Variability Factor (UFs)” as:  “One of several, 
generally 10-fold, default factors used in operationally deriving the RfD and RfC from experimental data. 
The factors are intended to account for (1) variation in susceptibility among the members of the human 
population (i.e., inter-individual or intraspecies variability); (2) uncertainty in extrapolating animal data to 
humans (i.e., interspecies uncertainty); (3) uncertainty in extrapolating from data obtained in a study with 
less-than-lifetime exposure (i.e., extrapolating from subchronic to chronic exposure); (4) uncertainty in 

 
(a typical default value is 10) to account for uncertainty from various sources. These 
sources, with notion used in IRIS are: 
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I. extrapolation from LOAEL to NOAEL (UFL),  

II. data sparseness, (UFD: extrapolation from Poor to Rich data contexts)  
III. inter species extrapolation,  (UFA: extrapolation from Animal to Humans) 

IV. sensitive human subpopulations (UFH), and  
V. sub-chronic to chronic dosage (UFS: extrapolation from sub-chronic to chronic 

dosage).  
 
The Definition makes use of probabilistic and quantitative language as “likely”,  and 
“appreciable risk”. Although this suggests a quantitative interpretation, none has been 
proposed to date. To indicate how indeterminate words like “appreciable risk” and 
“likely” can be, consider the “Guidance Notes for Lead Authors of the IPCC Fourth 
Assessment Report on Addressing Uncertainties” issued by the Intergovernmental Panel 
On Climate Change, reproduced as Table 1.   
 
Table 1: Likelihood table from IPCC Fourth Assessment Report on Addressing Uncertainties 

 
 
Does exposure at the reference value entail a 66% probability of being without 
appreciable risk? Reference value exposure to 100 substances acting independently 
would then entail a 10-18 probability of avoiding “appreciable risk”. Being “virtually 
certain” for each of 100 independent chemicals would still entail only a 37% chance of 
avoiding appreciable risk.   Such examples underscore the inevitability of quantifying 
risk.  
 
There has been much work at giving a probabilistic interpretation of the UF’s, (Abdel-
Rahman, and Kadry, 1995, Vermeire,  et al. 1999, Baird et al, 1996, Swartout et al, 1998, 
Slob and Pieters 1998, Evans and Baird, 1998, Calabrese and Gilbert, 1993, Calabrese,  
Baldwin, 1995, Hattis et al 2002, Kang, Kodell,  and Chen,  2000, Pekelis et al 2003) 
envisage what might be called a Random Chemical approach. Several authors adduce 
properties based on log normal distributions. Insightful studies by  Kodell and Gaylor, 
(1999), Gaylor and Kodell, (2000)  suggest that uncertainty factors are independent log 
normal variables. Combining uncertainty factors involves multiplying the median values, 
                                                                                                                                                 
extrapolating from a LOAEL rather than from a NOAEL; and (5) uncertainty associated with extrapolation 
when the database is incomplete. “   
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and combining the “error factors”2 according to the formula KS×A =   exp(1.6449 × √(σS
2 

+σA
2)), where σS

2
, σA

2 are the variances of  ln(UFS) and ln(UFA). Thus UFS × UFA is a 
lognormal variable with Median(UFS × UFA)  = Median(UFS)×Median(UFA), and  95 
percentile given by Median(UFS × UFA)×KS×A.  If UFS and UFA each have an error factor 
or 10, then the error factor of UFS × UFA is not 100 but 25.95. Several authors suggest 
that multiplying uncertainty factors might over-protect3

1. The UF’s are independent random variables 

.  Recent proposals from the 
National Research Council are based on the random chemical approach, and inherit its 
problems (NRC, 2009).  For data on response ratios see (Rhomberg and Wolff, 1998, 
Rhomberg and Lewandowski, 2004) .  
 
Section 2 identifies assumptions which the current practice imposes on a probabilistic 
interpretation of uncertainty factors. The random chemical model is formulated in section  
3, and section 4 shows that the logged covariance matrix of response rates is singular. 
Suggestions for moving beyond uncertainty factors are explored in section 5. 
 
2  Assumptions Underlying Uncertainty Factors 
 
A probabilistic model for uncertainty factors would consist of a sample space and a set of 
random variables together with assumptions on their joint distribution such that relations 
between these random variables reflect the operations which practitioners perform with 
uncertainty factors. Under the random chemical model,  uncertainty factors are random 
variables reflecting response ratios of randomly sampled toxic substances. Distributions 
of these ratios are used to draw inferences about new or untested chemicals. The 
operations performed with uncertainty factors entail assumptions on their joint 
distribution. The prevailing assumptions are presented informally in this section, precise 
versions are used in section 3. 
 
We consider a Point Of Departure (POD), which may be either a BMD, a LOAEL, a 
NOAEL, and Effective Dose for response of r% of the population (EDr). The relevant 
assumptions are (“UF’s” denotes “uncertainty factors”, not to be confused with “UFS”): 

                                                 
2 Factors which multiply and divide the median of a log normal distribution to obtain the 5- and 95 
percentiles are termed error factors in the technical risk literature (WASH-1400, 1975). 
3 “One of the crucial assumptions affecting how uncertainty factors (UF’s) are operationally implemented 
is that they are independent of each other. This assumption of independence has led to the conclusion that 
the collective uncertainty is the product of all the individual uncertainty factors” (Calabrese and Gilbert, 
1993, p.44).   “Because not all true differences are expected to be at their extremes simultaneously, 
reducing an observed exposure value by a product of default uncertainty factors may lead to undue 
conservatism” (Kodell and Gaylor 1999:  p. 190). “Sound combination of extrapolation factors still is an 
unresolved task in risk assessment. In case of simple multiplication to an overall extrapolation factor this 
may lead to overly conservative human limit values, if all maximal single factors are used simultaneously. 
In addition, multiplication of single extrapolation factors would only be correct for independent 
parameters” (Kalberlah et al, 2003, p 97). “Because of the application of various uncertainty factors that are 
multiplied with each other, the standard method for deriving acceptable human limit values is generally 
considered to be conservative. Indeed, when each individual uncertainty factor by itself is regarded to 
reflect a worst case situation, their product, i.e. the overall uncertainty factor, will tend to be overly 
conservative” (Slob and Pieters, 1998, p 787). 
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2. The extrapolation expressed by a UF is independent of other extrapolations. That 
is, the UF for extrapolating from poor to rich data contexts does not depend on 
whether the extrapolation concerns chronic or sub chronic dose. The extrapolation 
from subchronic to chronic dosage does not depend on whether this is applied to 
humans or animals, or to the poor/rich data contexts4

3. The conditional distribution of a human reference value, given an observed 
(unextrapolated) POD, is obtained by dividing the observed  POD by the product 
of the UF’s corresponding to the required extrapolations.  

, etc. 

 
3. Random Chemical Model  

 
We illustrate the random chemical model for the extrapolations Poor-to-Rich, 
Subchronic-to-chronic and Animal-to-Human. Other extrapolations could serve equally 
well to illustrate the issues. Suppose we randomly sample toxic chemical t from a 
representative set of toxic substances.  For each t, we imagine that we have values for the 
POD for animals at each dosage regime (chronic, sub-chronic; C,S), for each data context 
(poor, rich; P,R)  and for two species (animal, human; A,H). Hence if HC(t) is the 
reference value for t, that is the chronic dose which is likely to be without appreciable 
lifetime risk, we may always write an equation of the form 
  
                                                       ASR(t)      ACR(t)         HC(t)             

HC(t) = ASP(t)  ————  ————   ————                                     (2) 
                                                      ASP(t)       ASR(t)        ACR(t)  
 
 
If we consider t as a randomly drawn chemical, which, following convention, we denote 
with upper case T, we can write (2) as an equation of random variables; 
 
                                                         ASR(T)     ACR(T)       HC(T)             

HC(T) = ASP(T)   ————  ————     ————                                   (3) 
                                                        ASP(T)       ASR(T)       ACR(T) 

                                                 
4 Sub-chronic Exposure is defined as: “Repeated exposure by the oral, dermal, or inhalation route for more 
than 30 days, up to approximately 10% of the life span in humans (more than 30 days up to approximately 
90 days in typically used laboratory animal species)”. Chronic Exposure is defined as: “Repeated exposure 
by the oral, dermal, or inhalation route for more than approximately 10% of the life span in humans (more 
than approximately 90 days to 2 years in typically used laboratory animal species”.  UA is defined as 
follows: “Use an additional 10-fold factor when extrapolating from valid results from long term studies on 
experimental animals when results of studies of human exposure are not available or are inadequate...” and 
UC: “...Use an additional 10-fold factor when extrapolating from less than chronic results on experimental 
animals when there are no useful long-term human data”. These definitions would not tell us how to 
extrapolate from human sub-chronic studies, nor from animal sub-chronic to animal chronic. Such 
extrapolations are surely less prevalent, though not excluded, as the definitions of sub-chronic and chronic 
dosages make clear. The absence of separate uncertainty factors, eg for sub-chronic-to-chronic for animals 
and for humans, suggests that (2) is implicitly assumed. Indeed,  Swartout et al 1998 write: “Within the 
current RfD methodology, UFC [here, UFS] does not consider differences among species, endpoints, or 
severity of effects, the same factor is applied in all cases” (p.275). Due to the rarity of relevant human data, 
the same authors suggest the use of other endpoints as surrogates in estimating UA. 
 



Appearing in Risk Analysis 
 

 6 

 
If we now write 
 
                         ASP(T)                   ASR(T)                     ACR(t)             

UFD =  ————,   UFS =   ———— ,  UFA =   ————                                     (4) 
                         ASR(T)                  ACR(T)                      HC(t)  
 
then it appears that have interpreted UF’s as random variables based on the random 
chemical model: 
 
                                                                ASP(T) 

HC(T) =                                                          (5) 
                                                           UFD × UFS×UFA  
 
 
Equation (5) reflects an assumption noted by many authors, namely that the UF’s, as 
random variables must be independent.  However, (5) involves more assumptions which 
have not received ample attention. Suppose we observe for a given toxic substance t, that 
ASP(t) = 30 [units]. We use 30 / (UFD × UFS × UFA ) as the conditional distribution of 
HC(T) given ASP(T)=30. This must hold for any observed value,  thus ASP(T) must be 
independent of UFD × UFS × UFA

5

Note that these conditionalization assumptions always apply from “more easily measured 
to more difficult to measure”.  They do not apply in the other direction. Letting  “⊥” 
denote independence, if X ⊥ X/Y and also Y ⊥ X/Y, then it is easy to show that X/Y must 
be constant

.  Barring pathological situations, this means that 
ASP(T) is independent of each of these UF’s.  
 

6

                                                 
5 Rehearsing elementary probability, suppose we wish to express the uncertainty in random variable X, 
given that another random variable Y takes the value y. One way of modeling this is to write X as a function 
g(Y, Z) of Y and some other random variable Z. If Z is independent of Y, then the conditional distribution 
(X|Y=y) of X given Y=y is the distribution of the random variable g(y, Z).  If Y and Z are not independent, 
they we must use the conditional distribution (Z|Y=y) when computing the distribution of g. In this case X 
= HC(T), Y = ASP(T), Z = UFA(T)×UFS(T)×UFD, and g(Y,Z) = Y/Z. To justify the type of 
conditionalization for which the UFs are intended we must have ASP(T) independent of {UFA(T),UFS(T), 
UFD(T)}  
6 Take logs, write out the covariances, and infer that σ2

ln(X) - ln(Y) = 0. 

.   
 
 
4. Implications of Assumptions 
 
These independence assumptions are quite strong and have consequences. Consider the 
statement that  
 

ASP(T) ⊥ UFD                                                                   (6) 
 
Note that ASR(T) = ASP(T) / UFD. Taking logs of both sides: 
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Ln(ASR(T)  =  Ln(ASP(T)) – Ln(UFD).                                           (7) 
 
ASP(T) ⊥ UFD entails also Ln(ASP(T)) ⊥ Ln(UFD); and that  
 

VAR(Ln(ASR(T)) = VAR(Ln(ASP(T))) + VAR( Ln(UFD)).                             (8) 
 
 
This says that the variance of logged animal PODs based on sub-chronic dosage and rich 
data sets is strictly greater than the variance of logged animal PODs based on a 
subchronic dosage with poor data contexts; the same holds for chronic dosage. This 
seems counterintuitive.  Similarly,  ASP(T)  ⊥ UFS  implies that  VAR[ln(ACP(T))] > 
VAR[ln(ASP(T))], and the same holds for rich data contexts.  This means that the 
variance of the logged animal chronic values is strictly greater than the variance of the 
logged animal sub-chronic value, which is at odds with statements in the Cancer 
Guidelines7

                                                 
7 “Uncertainty usually increases as the duration becomes shorter relative to the averaging duration or the 
intermittent doses become more intense than the averaged dose. Moreover, doses during any specific 
susceptible or refractory period would not be equivalent to doses at other times.” (CG 3-4). 

.  This underscores the importance of identifying underlying assumptions. 
 
We now demonstrate the singularity of the covariance matrix of logged terms in the UFs. 
It suffices to consider only the extrapolation from poor to rich data contexts, and from 
sub-chronic to chronic dosages, all for animal PODs. We could equally well have chosen 
UFL and UFA, the argument would be identical. To lighten the notation in this section, let 
SP denote the animal value of the POD under Subchronic dosage in a Poor data context, 
CR the animal POD under Chronic dosage in a Rich data context, and let SR, and CP be 
defined similarly. Each of these is considered as a random variable whose values are 
determined by randomly sampling a toxic substance from a representative set.  
 
The basic equations are 
 

CR = SP × (SR/SP) × (CR/SR) = SP / (UFD×UDS)                              (9) 
 

CR = CP × (CR/CP) = CP/UFD.                                          (10) 
 
 
The same UF is applied for extrapolating from Poor to Rich data contexts, regardless 
whether the dosage is chronic or subchronic. This means that UFD has a distribution 
which can be measured in two ways: 
 

UFD ~ SP/SR                                                                    (11) 
 

UFD ~ CP/CR.                                                                  (12) 
 
Similarly the UF for extrapolating from sub-chronic to chronic is used for both rich and 
poor data contexts, hence 
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UFS ~ SP/CP                                                                  (13) 
 

UFS ~ SR/CR                                                                  (14) 
 
We use the following notation. 
 

A = VAR(ln(SP)) 
B = VAR(ln(SR)) 
C = VAR(ln(CP)) 

  D = VAR(ln(CR)). 
 
If two variables are independent, then also the logs of these variables are independent. If 
X is independent of Y, then X is also independent of 1/Y. The following independence 
statements are assumed by the UF methodology, under a probabilistic interpretation: 
 
I.1  SP ⊥ SP/SR (enable conditionalization  in (9))  
I.2  SP ⊥ SR/CR (enable conditionalization  in (9)) 
I.3  SP/SR ⊥ SR/CR (UFD ⊥ UFS) 
I.4  SP ⊥ CP/CR (enable conditionalization in (9) with (12)) 
I.5 CP ⊥ CP/CR  (enable conditionalization  in(10)) 
I.6 CP ⊥ SP/SR (enable conditionalization  in (10) with (11)) 
I.7 SR/CR ⊥ CP/CR (UFS ⊥ UFD) 
 
If two variables are independent, then their covariance is zero, let Cov(X,Y) denote the 
covariance of X and Y. Taking logs of  I.1 – I.7, and setting covariances of independent 
variables equal to zero, using the linearity of covariance, we find: 
 
I.1 ⇒     A = Cov(ln(SP), ln(SR)) 
I.2 & I.1 ⇒    A = Cov (ln(SP), ln(CR)) 
I.3 & I.1 & I.2  ⇒   B = Cov (ln(SR), ln(CR)) 
I.4 & I.1 & I.2 ⇒  A = Cov (ln(SP), ln(CP)) 
I.5 ⇒     C = Cov (ln(CP), ln(CR)) 
I.6 & I.4 ⇒    A = Cov (ln(CP), ln(SR)) 
I.7 & I.6 & I.5 & I.3 ⇒  D = B+C-A 
 
We bring these relations together in the following covariance matrix: 
 
Table 2: log covariance matrix 
 Ln(SP) Ln(SR) Ln(CP) Ln(CR) 
Ln(SP) A A A A 
Ln(SR) A B A B 
Ln(CP) A A C C 
Ln(CR) A B C B+C-A 
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Observe that the second plus third rows, minus the first row equals the fourth row. The 
determinant of this matrix is zero, meaning that there is a linear relationship between the 
variables. Using VAR(X+Y) = VAR(X)+VAR(Y)+2Cov(X,Y), with the values in Table 3 it 
follows that  
 

VAR(ln(CR) + ln(SP) – ln(SR) – ln(CP)) = 0.                                       (15) 
 
 In other words,  
 

CR = constant× SR× CP / SP                                                                       (16) 
 
Re-arranging, we may write this as CR/CP ∝ SR/SP. This says that the two random 
variables in (11) and (12)  must actually be the same variable. This means that if we 
actually knew the values SP(t), CP(t) and SR(t) we could compute CR(t).  Similar 
singularities arise if we consider other pairs of UFs.  
 
 
5. How forward? 
The first step forward is to realize that the current system will not admit a probabilistic 
interpretation and that the fundamental changes are required if we wish to account for 
uncertainty in reference values. Ultimately, for important chemicals, we should like to 
combine animal data, in vitro human data, and epidemiological data from natural 
experiments to derive dose response relations with uncertainty quantification.  However, 
there will always be a need to evaluate new potentially toxic chemicals based on their 
similarity to other chemicals and meager experimental data. We should like a simple 
method which 

1. Yields predictions of toxicological indicators with uncertainty via a valid 
probabilistic mechanism 

2. Is based on a random chemical model, regarding a new chemical as a random 
sample from a reference distribution of chemicals 

3. Is non-disruptive. 
This last desideratum is very important, and has received insufficient attention.  
Regulatory bodies cannot turn on a dime, but must contend with a legacy of accepted 
practice. The foregoing suggests that a probabilistically valid inference system will be 
quite different from the current system. Nonetheless, to meld with current practice, it 
must initialize on the current system, and allow this system to evolve in a measured 
fashion.  
 
We can use the IRIS database to obtain a reference set of substances, perhaps 
supplemented with structured expert judgment. These reference values serve to define a 
population of toxic substances from which a new substance is regarded as a random 
sample. The idea is simply to discard the UF methodology, but to retain the results of that 
method as a reference distribution to initialize the new system. The reference distribution 
can further evolve under the new regime, but the changes in toxicity indicator values will 
be non-disruptive. There are at least two ways of leveraging such a reference set to draw 



Appearing in Risk Analysis 
 

 10 

inferences on new substances, standard log linear regression and non-parametric 
Bayesian Belief Nets. 
 
5.1 Standard (log) linear regression 
 
To render this discussion more intuitive, we focus on animal (A) and human (H) 
responses at chronic (C) and sub-chronic (S) dosages. Suppose we are interested in 
predicting ln(HC)(t*) for a new toxic substance t*, and we can estimate Cov(ln(HC), 
ln(AC)) and σ2(ln(AC)) from a large data set of toxic substances. Translating all variables 
to have mean zero, the linear least squares predictor (llsp) of ln(HC) based on ln(AC) 
would be 
 
llsp(ln(HC)(t*) | ln(AC)(t*)) =  Cov(ln(HC), ln(AC)) × (1 / σ2(ln(AC))) × ln(AC)(t*). 
 
If ln(AC)(t*) is known, this is a predictor of ln(HC)(t*), not a random variable.  We might 
try to think of σ2(ln(AC)) / Cov(ln(HC), ln(AC)) as an uncertainty factor, but these would 
not behave as uncertainty factors in the IRIS methodology. To give one illustration, 
suppose we observed ln(AS)(t*) in addition to ln(AC)(t*). The IRIS method would not 
use the additional information regarding AS(t*), but would simply use AC(t*)/UA. 
However, following the theory of linear models, we should have 
 
llsp((ln(HC)(t*) | ln(AC)(t*), ln(AS)(t*)) = llsp(ln(HC)(t*) | ln(AC)(t*)) +  
   

 llsp[ln(HC)(t*) | ln(AC)(t*) - llsp( ln(AC)(t*)| ln(AS)(t*) ) ] 
 
In other words, we add the llsp of ln(HC)(t*) based on ln(AC)(t*) to the llsp of ln(HC)(t*) 
based on the residual ln(AC)(t*) - llsp(ln(AC)(t*) | ln(AS)(t*)).  
 
We can extract the variance of the llsp; for arbitrary random vectors X,Y, we have (the 
variance and covariance terms now denote matrices): 
 
σ2(llsp(Y | X) = Cov(Y,X) (σ2(X))-1 Cov(X,Y). 
 
We also obtain the variance of the residual as: 
 
σ2(Y - llsp(Y|X)) = σ2(Y) - σ2(llsp(Y | X). 
 
Note that the last two variances do not depend on the value of the conditioning variable 
X.  In general, the variance of the residual is not the conditional variance of Y given X, 
and we do not get the conditional distribution of Y given X.  In many cases, we may 
actually be interested in the distribution of human values given observed animal values, 
especially if these observed values are in the tails of their respective distributions. Such 
considerations drive us in the direction of Bayesian Belief Nets. 
 
5.2 Non-Parametric Continuous Bayesian Belief Nets  
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Non parametric continuous Bayesian Belief Nets (NPCBBNs) build a joint density 
(Hanea et al 2008). A full description is inappropriate here, suffice to say that NPCBBNs 
are based on empirical marginal distributions and empirical rank correlations; they build 
a joint density by modeling the copula that realizes these empirical rank correlations. In 
principle any copula can be used, but in practice the joint normal copula is preferred, as it 
enables rapid conditionalization. Roughly, this means that the rank dependence structure 
is modeled as that of a joint normal distribution. This hypothesis can be tested, based on 
the sampling distribution of the determinant of the normal rank correlation matrix. The 
marginal distributions and rank correlations are not modeled, but taken directly from 
data, hence they do not form part of the hypothesis being tested. If the normal copula 
hypothesis is not rejected, then we can proceed to conditionalize any variable on any set 
of values of other variables.  
 
5.2.3 Using NPCBBNs for inference on toxicity 
 
A BBN is a mechanism for encoding inferences. Drawing an inference from data is 
performed by conditionalizing a BBN on the data;  the distribution captured in the BBN 
is updated with current data.  BBNs are simply a perspicuous way of visualizing complex 
inference patterns. Continuous non-parametric BBNs enable this inference based on an 
initial data set. With the normal copula, very large problems with very complex inference 
structures can be handled analytically, so that the inferences are effectively instantaneous. 
The marginal distributions and rank correlation structure is read from the data; the only 
assumption is that these rank correlations are compatible with the normal copula. This is 
a much weaker assumption than that underlying standard regression models, namely that 
error terms are independent and normally distributed. 
 
To compare the BBN approach to standard regression modeling, suppose that we are 
interested in some probabilistic response  in animals (A) and humans (H) at chronic (C) 
and subchronic (S) dosage. As before, this might be a RfD, RfC, BMD, or an ED10  or 
indeed any other indicator. It could be an ED10 for subchronic dosage of animals, ED50 
for chronic dosage for animals, a RfD for chronic human dosage, and a BMD for 
subchronic human dosage. All that matters is that we have a list of, say 100, toxic 
substances filled in as illustrated in Table 2. The units in each column must be the same, 
but needn’t be the same across columns. 
 
 
Table 3: Illustrative input for BBN 
 Probabilistic 

response: 
Animal, 
SubChronic 

Probabilistic 
response: 
Animal Chronic 

Probabilistic 
response: 
Human 
Subchronic 

Probabilistic 
response: 
Human Chronic 

Toxic Chem. 1 20 [AS units] 15 [AC units] 4[HS units] 2[HC units] 
Toxic Chem. 2 45[AS units] 30[AC units] 30[HS units] 26[HC units] 
Toxic Chem. 3 30[AS units] 35[AC units] 20[HS units] 14[HC units] 

… … … … … 
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When the inference engine is “seeded” in this way, we can apply it to some new chemical 
which we regard is a random sample from the population of chemicals from which the 
chemicals in Table 2 are randomly drawn. We guarantee thereby, that the inferences for 
new chemicals will reflect the relations between the probabilistic response variables 
captured in Table 2. 
 
Figure 1 shows the result of reading these (fictitious) data into a NPCBBN. The 
conditional rank correlations are inferred from the relations in Table 2 (Hanea et al 2008).  
Figure 2 shows the marginal histograms, with means and standard deviations.  Figures 3 - 
5 show how this BBN can be conditionalized to draw inferences for new toxic 
substances, regarded as members of the same population as in Table 2.  
 
Figure 1 Bayesian Belief Net for P, Animal, Subchronic (AS). P , Animal, Chronic (AC)), P, Human, 
Subchronic, ((HS)) and P, Human, Chronic (HC)), distributions over set of (fictitious) toxic 
substances; (conditional) rank correlations as inferred from  Table 3 are shown. 
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Figure 2, Same information as Figure 1, but with means and standard deviations 

 
 
Confronted with a new substance, our inferences from test results may be based on the 
assumption that this chemical is randomly drawn from the toxicity distribution captured 
in the BBN. Suppose for a new substance, we observe that AS = 60, our mean value for 
HC shifts from 51.1 (Figure 2) to 47.6 (Figure 3). The conditional distribution of HC 
given this information is also available and is shown as a histogram, the original 
distribution is shown in gray.  The standard deviation of HC has shifted from 24.7 to 
17.1. Suppose we conditionalize on AS=100, a very high value (Figure 4), the mean and 
standard deviation of HC are 80.2 and 26.1 respectively. In contrast to the log linear 
regression model we obtain the full conditional distributions, and we note that the 
conditional variances are not constant. Conditionalization of AS on a typical value (60) 
lowers the conditional uncertainty of HC relative to the unconditional uncertainty. 
Whereas conditionalizing AS on a large value (100) increases the conditional uncertainty.  
In Figure 5 we conditionalize on a very high value of AC, 130. In combination with the 
very low value of AS, 9, this constitutes a very unlikely combination. Nonetheless, 
because we have built a multivariate density function, we can conditionalize on this 
unlikely situation and find the HC has mean and standard deviation of 78.9 and 21.4 
respectively. AC‘s influence on HC is stronger than that of AS. Indeed, the correlation on 
the arrow between AC and HC in Figure 1 is the conditional correlation of HC and AC 
given AS. The unconditional correlation between AC and HS is 0.825.   
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Figure 3 Distribution in Figure 2, conditionalized on observing AS = 60 

 
 
 
 
Figure 4 Distribution in Figure 2, conditionalized on observing AS = 100  
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Figure 5 Distribution in Figure 2, conditionalized on ln(AS) = 9, AC = 130 

 
 
6. Conclusion 
UFs were introduced to create a margin of safety. Attempts to give them a probabilistic 
interpretation in terms of response ratios of random chemicals  encounter insuperable 
obstacles. Under prevailing assumptions the logged response ratios have a singular 
covariance matrix.  Any Monte Carlo analysis based on the probabilistic interpretation of 
UFs is therefore ill-conditioned. Claims that UFs over-protect, as well as recent NRC 
proposals for probabilistic interpretations, are equally ill-conditioned.  A thorough review 
would not be inappropriate. The effort to quantify uncertainty in dose response should 
skirt UFs altogether and focus on dose response modeling. However, the need for rapid 
and simple inference based on a random chemical model will persist.  A new rapid 
inference system should (i) be as easy to use as the current system, (ii) should derive 
toxicological indicator values, with uncertainty, in a probabilistic valid fashion, and (iii)  
should initialize on current practice. Two lines of attack have been sketched here, one 
based on standard regression modeling, and one based on Bayesian Belief Nets.  
Undoubtedly, more good ideas will emerge, once the inevitability of thorough going 
reform is recognized. 
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