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Abstract
7

An n-dimensional joint uniform distribution is defined as a distribution whose one-dimensional marginals are uniform on some
interval I. This interval is taken to be [0,1] or, when more convenient [− 1

2 , 1
2 ]. The specification of joint uniform distributions9

in a way which captures intuitive dependence structures and also enables sampling routines is considered. The question whether
every n-dimensional correlation matrix can be realized by a joint uniform distribution remains open. It is known, however, that11
the rank correlation matrices realized by the joint normal family are sparse in the set of correlation matrices. A joint uniform
distribution is obtained by specifying conditional rank correlations on a regular vine and a copula is chosen to realize the conditional13
bivariate distributions corresponding to the edges of the vine. In this way a distribution is sampled which corresponds exactly to the
specification. The relation between conditional rank correlations on a vine and correlation matrix of corresponding distribution is15
complex, and depends on the copula used. Some results for the elliptical copulae are given.
© 2007 Elsevier B.V. All rights reserved.17
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1. Introduction19

The problem of constructing and sampling distributions with given continuous invertible marginals and given rank
correlation matrix, or equivalently, constructing and sampling joint uniforms with given correlation matrix, remains21
open. That is, we do not know whether an arbitrary correlation matrix can be realized by a joint uniform distribution. We
seek methods for specifying and sampling joint uniform distributions. Existing methods for generating joint uniform23
distributions appeal to the joint normal transformation (Iman and Conver, 1982) or the dependence tree-copula method
(Cooke, 1997) where a copula is a bivariate distribution with uniform margins. For background on copulae see Genest25
and Rivest (1993), Nelsen (1999), Dall’Aglio et al. (1991) and Joe (1997).

Using the joint normal transform method, we start with a correlation matrix R which we would like to realize in a27
joint uniform distribution. We construct a joint normal distribution with correlation matrix R and then transform the
one-dimensional margins to uniform. This transformation is not linear and does not preserve R. Hence, we do not realize29
a joint uniform with correlation matrix R (Ghosh and Henderson, 2002); indeed, we do not know if such a distribution
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exists. In practice, for high dimensions, the matrix R will be only partially specified, and we face the notorious matrix1
completion problem: can a partially specified matrix be extended to a positive definite matrix.

The tree-copula method builds high-dimensional distributions from two-dimensional margins whose overlap structure3
forms a tree. The copulae used were either minimum information copulae or the diagonal band (Meeuwissen and
Bedford, 1997; Cooke and Waij, 1986). The tree-copula method yields distributions which exactly correspond to the5
specification, but for n-dimensional problems we can specify only n − 1 correlations corresponding to the edges of the
tree.7

Regular vines (Cooke, 1997) are a graphical tool for specifying conditional bivariate constraints. When these con-
straints are associated with partial correlations, it has been shown (Bedford and Cooke, 2002) that any assignment of9
values from (−1, 1) to the partial correlations corresponding to edges on the vine is consistent, and determines a unique
correlation matrix, and that every correlation matrix arises in this way. In other words, a partial correlation regular vine11
provides an algebraically independent parametrization of the set of correlation matrices. However, we do not know how
to sample partial correlation vines, and we are unable to construct a joint uniform distribution from a partial correlation13
vine.

This paper gives algorithms for sampling regular vines when the bivariate constraints are associated with conditional15
rank correlations. The relation between conditional rank correlation and partial correlation is complex, and depends
on the copula. Some results are given in Section 4. There are two advantages to using the vine-copula method with17
conditional rank correlations. First, we can construct and sample a distribution that exactly corresponds to the vine
specification, and second, if some conditional correlations are unspecified, then a minimal information distribution19
satisfying the incomplete specification can easily be constructed whenever the copula makes uncorrelated margins
(conditionally) independent. In this case it is simply a matter of assigning conditional rank correlation zero to the21
unspecified nodes in the vine (Cooke, 1997; Bedford and Cooke, 2002). The relation of incomplete vine specification
to the matrix completion problem is studied in Kurowicka and Cooke (2003).23

The second section reviews briefly facts about rank, product moment and partial correlations, copulas and vines. We
show that an arbitrary correlation matrix need not be the rank correlation matrix of a joint normal distribution. The25
third section presents a sampling algorithm to exactly sample a high-dimensional distribution with uniform margins
and given conditional rank correlations using the vine-copula method. The fourth section derives results concerning the27
relationship between conditional rank and partial correlations for copulae. The fifth section presents simulation results
for the elliptical, diagonal band and Frank’s copulae. The last section gives conclusions.29

2. Correlation and vines

2.1. Rank, product moment, and partial correlations31

The obvious relationship between product moment and rank correlations follows directly from their definitions as
rank correlation is just a product moment correlation of variables transformed to uniforms. Hence for uniform variables33
rank and product moment correlations are equal but in general they are different.

Pearson (1907), proved that if vector (X1, X2) has a joint normal distribution, then the relationship between rank (r)35
and product moment correlation (�) is given by

�(X1, X2) = 2 sin
(�

6
r(X1, X2)

)
. (1)37

The proof of this fact is based on the property that the derivative of the density function for bivariate normals with
respect to correlation is equal to the second order derivative with respect to x1 and x2.39

The rank correlation has some important advantages over the product moment correlation. It always exists, can
take any value in the interval [−1, 1], is independent of the marginal distributions and is invariant under monotone41
transformations.

In this paper we will study relationships between conditional product moment, conditional rank and partial correla-43
tions. We assume that the reader is familiar with first two correlation coefficients and we introduce here only the partial
correlation.45
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Let us consider variables Xi with zero mean and standard deviations �i , i =1, . . . , n. Let the numbers b12;3,...,n, . . . ,1
b1n;2,...,n−1 minimize

E((X1 − b12;3,...,nX2 − · · · − b1n;2,...,n−1Xn)
2).3

Definition 1. A partial correlation of X1 and X2 with X3, · · · , Xn is

�12;3,...,n = sgn(b12;3,...,n)
√

b12;3,...,nb21;3,...,n.5

Partial correlations can be computed from correlations with the following recursive formula (Yule and Kendall,
1965):7

�12;3,...,n = �12;3,...,n−1 − �1n;3,...,n−1 · �2n;3,...,n−1√
1 − �2

1n;3,...,n−1

√
1 − �2

2n;3,...,n−1

. (2)

It is well known that partial and conditional correlations coincide for the joint normal distribution but in general they are9
not equal. Interestingly, conditional independence is not sufficient for zero partial correlation (Kurowicka and Cooke,
2000).11

The transformation (1) does not preserve positive definiteness. This makes normal transform method only approxi-
mate (Ghosh and Henderson, 2002). Let us consider a following example:13

Example 2. Let

A =
⎡
⎢⎣

1 0.7 0.7

0.7 1 0

0.7 0 1

⎤
⎥⎦ .

15

We can easily check that A is positive definite. However, the matrix B, such that

B(i, j) = 2 sin
(�

6
A(i, j)

)
for i, j = 1, . . . , 4,17

that is,

B =
⎡
⎢⎣

1 0.7167 0.7167

0.7167 1 0

0.7167 0 1

⎤
⎥⎦

19

is not positive definite.

From this we can conclude that not every symmetric positive definite matrix with ones on the main diagonal is the21
rank correlation matrix of a joint normal distribution. Simulation studies show that the normal rank correlation matrices
become very sparse in the set of correlation matrices as dimension increases (Ghosh and Henderson, 2002; Kurowicka23
and Cooke, 2001).

2.2. Vines25

In this section we briefly introduce a graphical model called vines (Cooke, 1997; Bedford and Cooke, 2002) which
together with the copulae will be used in specifying dependence in high-dimensional distributions.27

A vine V(n) on n variables is a nested set of trees V(n) = (T1, . . . , Tn−1) where the edges of tree j are the nodes of
tree j + 1, j = 1, . . . , n− 2 and each tree has the maximum number of edges. A regular vine on n variables is a vine in29
which two edges in tree j are joined by an edge in tree j +1 only if these edges share a common node, j =1, . . . , n−2.

For each edge of a vine we define constraint, conditioned and conditioning sets of this edge as follows: the set of31
variables reachable from a given edge via the membership relation is called the constraint set of that edge. When two
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1,3|2 2,4|3 3,5|4

1,4|23 2,5|34

1,5|234

4

Fig. 1. A D-vine on five elements showing conditioned (before |) and conditioning (after |) sets.

2,3|1

1

2 3 4 5

1,2
1,3 1,4

1,5

2,4|1

2,5|1 3,4|12

3,5|12

4,5|123

Fig. 2. A canonical vine on five elements showing conditioned and conditioning sets.

edges are joined by an edge of the next tree, the intersection of the respective constraint sets form the conditioning set,1
and the symmetric difference of the constraint sets is the conditioned set. We denote the conditioning and conditioned
sets of an edge e as De and {Ce,j , Ce,k}, respectively.3

Different types of regular vines are available.

Definition 3. A regular vine is called a canonical vine (C-vine) if each tree Ti has a unique node of degree n − i. The5
node with maximal degree in T1 is the root. A regular vine is called a D-vine if no node has degree greater than two.

The canonical and D-vines are generic in the sense that the order of the variables in the first tree determines the vine7
completely. D-vines were used in Joe (1997). Figs. 1 and 2 show a canonical and a D-vine on five variables.

Regular vines have some interesting properties that will be used later on in this paper. We collect them in the9
proposition below that was proven in Bedford and Cooke (2002) and Kurowicka and Cooke (2003):

Proposition 4. Let V(n) = (T1, . . . , Tn−1) be a regular vine, then

11
(1) the number of edges is n(n − 1)/2,
(2) each conditioned set is a doubleton, each pair of variables occurs exactly once as a conditioned set,13
(3) if two edges have the same conditioning set, then they are the same edge,
(4) if e ∈ Ei, i = 1, . . . , n − 1, then #De = i − 1.15

Defining m-child of a node f as a node e that is an element of node f, the following lemma can be proven (Kurowicka
and Cooke, 2006):17
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Lemma 5. For any edge M in a regular vine, if variable i is a member of the conditioned set of M, then i is a member1
of the conditioned set of exactly one of the m-children of M, and the conditioning set of an m-child of M is a subset of
the conditioning set of M.3

Definition 6. A partial correlation specification for a regular vine is an assignment of values in (−1, 1) to each edge
of the vine.5

The edges in a regular vine may be associated with a set of partial correlations in the following way: for i=1, . . . , n−1,
with e ∈ Ei, e = {j, k} we associate7

�Ce,j Ce,k;De
.

In Bedford and Cooke (2002) the following is proved:9

Theorem 7. For any regular vine on n elements there is a one-to-one correspondence between the set of n × n

correlation matrices and the set of partial correlation specifications for the vine.11

The above theorem shows that all assignments of numbers between −1 and 1 to partial correlation in regular vine
specification are consistent and all full rank correlation matrices can be obtained this way.13

This relationship can be used in checking whether a given symmetric matrix with one’s on the main diagonal is
positive definite (Kurowicka and Cooke, 2003). Furthermore, it allows us to sample a positive definite matrix by simply15
sampling a vector from (−1, 1)(

n
2 ) and assigning the components to the partial correlations on the regular vine. Values

in the correlation matrix are computed with the formula (2).17

Definition 8. A conditional rank correlation specification for a regular vine is an assignment of values in [−1, 1] to
each edge of the vine. For i = 1, . . . , n − 1, with e ∈ Ei, e = {j, k} we associate conditional rank correlation19

rCe,j
, Ce,k|De.

Note that we can use correlations 1 and −1 in a rank correlation specification. In Section 3 we give explicit algorithms21
for sampling a regular vine.

2.3. Copulae23

A copula is a bivariate distribution with uniform margins. We present here only few families of copula that will be
used later on in the paper.25

The elliptical copula was introduced in Kurowicka et al. (2000). The density function of the elliptical copula with
correlation � ∈ (−1, 1) is27

f�(x, y) =

⎧⎪⎨
⎪⎩

1

�

1√
1
4 (1 − �2) − x2 − y2 + 2�xy

, (x, y) ∈ B,

0, (x, y) /∈ B,

where29

B =
⎧⎨
⎩(x, y)

∣∣∣∣∣∣x2 +
(

y − �x√
1 − �2

)2

<
1

4

⎫⎬
⎭ .

Fig. 3 depicts a graph of the density function of the elliptical copula with correlation � = 0.8.31
The following properties of the elliptical copula are proven in (Kurowicka et al., 2000) and will be used later on in

this paper:33
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Copula C - ro=0.8

Fig. 3. A density function of an elliptical copula with correlation 0.8.

Theorem 9. If X, Y uniform on [− 1
2 , 1

2 ] are joined by the elliptical copula with correlation � then

1
(a) E(Y |X) = �X,
(b) Var(Y |X) = 1

2 (1 − �2)( 1
4 − X2),3

(c) for �X −√
1 − �2

√
1
4 − X2 < y < �X +√

1 − �2
√

1
4 − X2

FY |X(y) = 1

2
+ 1

�
arcsin

⎛
⎜⎝ y − �X√

1 − �2
√

1
4 − X2

⎞
⎟⎠ ,

5

(d) for − 1
2 � t � 1

2

F−1
Y |X(t) =

√
1 − �2

√
1
4 − X2 sin(� t) + �X.7

Note that the cumulative and inverse cumulative distribution functions of the conditional distributions have tractable
closed form expressions, in spite of the fact that the density is infinite along its boundary.9

Theorem 10. Let X, Y, Z be uniform variables on [− 1
2 , 1

2 ] and let X, Y and X, Z be joined by elliptical copula with
correlations �XY and �XZ , respectively, and assume that the conditional copula for YZ given X does not depend on X;11
then the conditional correlation �YZ|X is constant in X and

�YZ|X = �YZ;X.13

The above result is very specific for the elliptical copulae. For diagonal band and minimum information copulae
the conditional correlation �(Y |X, Z|X) will depend on X even when r(Y |X, Z|X) does not depend on X but the15
partial correlation and mean conditional product moment correlation are approximately equal (Kurowicka and Cooke,
2000). This approximation, however, deteriorates as the correlations become more extreme. Theorem 10 can be trivially17
extended to conditional copulae (YZ|X) which are mixtures of elliptical copulae.

Fig. 4 shows graphs of density functions of the diagonal band (Cooke and Waij, 1986) and Frank’s (1979) copulae19
that will be used later on in this paper.

For both these copulas it is possible to find conditional distribution and its inverse as well as relationship between21
their parameters and correlation. This will be used in the next section.
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Fig. 4. Densities of the diagonal band (left) and Frank’s (right) copulae with correlation 0.8.

1

2

3

4

r12 r13 r14

r23|1

r24|1

r34|12

Fig. 5. The canonical vine on four variables with (conditional) rank correlations assigned to the edges.

3. Sampling vines1

A rank correlation specification on regular vine plus copula determines the whole joint distribution. The procedure
of sampling such a distribution can be written for any regular vine. We first illustrate the procedure for the canonical3
and D-vines, and then give the general procedure.

3.1. Canonical vine5

For the canonical vine, the sampling algorithm takes a simple form. We illustrate this algorithm for a canonical vine
on four variables, shown in Fig. 5.7

The algorithm involves sampling four independent uniform (0, 1) variables U1, . . . , U4 (realizations denotes as
u1, . . . , u4). We assume that the variables X1, . . . , X4 are also uniform. Let ri,j |k denote the conditional rank correlation9
between variables (i, j) given k. Let Fri,j |k;Ui

(Xj ) denote the cumulative distribution function for Xj given Ui under
the conditional copula with correlation ri,j |k . Then11

Xj = F−1
ri,j |k;Ui

(Uj )
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X2

F2|1 U2

X3

F3|1

F3|12

U3

U4

X4

F4|1 F4|12

F4|123

Fig. 6. Staircase graph representation of canonical vine sampling procedure.

expresses Xj as a function of Uj and Ui . The algorithm can now be stated as follows:1

x1 = u1,

x2 = F−1
r12;u1

(u2),

x3 = F−1
r13;u1

(F−1
r23|1;u2

(u3)),

x4 = F−1
r14;u1

(F−1
r24|1;u2

(F−1
r34|12;u3

(u4))). (3)

We see that the uniform variables U1, . . . , U4 are sampled independently, and the variables X1, . . . , X4 are obtained3
by applying successive inverse cumulative distribution functions.

The “staircase graphs” in Fig. 6 show the sampling procedure graphically. The horizontal and vertical lines represent5
the (0, 1) interval; the intervals are connected via conditional cumulative distribution functions. Notice that u1, u2
and u3 are values of X1, F2|1 and F3|12, respectively, hence conditional distributions F4|1, F4|12 and F4|123 can be7
easily found by conditionalizing copulae with correlations r14, r24|1 and r34|12 on values of u1, u2 and u3, respectively.
Inverting the value of u4 through F4|1, F4|12 and F4|123 gives x4.9

In general we can sample an n-dimensional distribution represented graphically by the canonical vine on n variables
with (conditional) rank correlations11

r12, r13, r14, . . . r1n,

r23|1, r24|1, . . . r2n|1,

r34|12, . . . r3n|12,

. . .

rn−1,n|12...n−2,
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1 2 3 4
r34r23r12

r13|2 r24|3

r14|23

Fig. 7. Rank correlation specification for the D-vine on four variables.

assigned to the edges of the vine, by sampling n independent, uniform (0,1) variables, say U1, U2, . . . , Un, and calcu-1
lating

x1 = u1,

x2 = F−1
r12;u1

(u2),

x3 = F−1
r13;u1

(F−1
r23|1;u2

(u3)),

x4 = F−1
r14;u1

(F−1
r24|1;u2

(F−1
r34|12;u3

(u4))),

. . .

xn = F−1
r1n;u1

(F−1
r2n|1;u2

(F−1
r3n|12;u3

(. . . (F−1
rn−1,n|12...n−2;un−1

(un)) . . .))).3

3.2. D-vine

The sampling algorithm for the D-vine is more complicated than that of the canonical vine. We illustrate the sampling5
algorithm for a D-vine on four variables, shown in Fig. 7.

For reasons that become apparent in the next section, we choose the sampling order to be X3, X2, X4, X1. The7
sampling procedure for the D-vine in Fig. 7 is

x3 = u3,

x2 = F−1
r23;x3

(u2),

x4 = F−1
r43;x3

(F−1
r42|3;Fr23;x3 (x2)

(u4)),

x1 = F−1
r12;x2

(F−1
r13|2;Fr32;x2 (x3)

(F−1
r14|23;Fr42|3;Fr32;x3

(x2)(Fr43;x3 (x4))
(u1))).9

Notice that the sampling procedure for D-vine uses conditional cumulative distribution functions as well as inverse
conditional cumulative distribution functions, hence will be much slower than the procedure for the canonical vine. To11
shorten the notation the above algorithm can be stated as

x3 = u3,

x2 = F−1
2|3:x3

(u2),

x4 = F−1
4|3:x3

(F−1
4|23:F2|3(x3)

(u4)),

x1 = F−1
1|2:x2

(F−1
1|32:F3|2(x3)

(F−1
1|432:F4|32(x4)

(u1))).13

Fig. 8 gives a staircase graph representation of the D-vine sampling procedure. Notice that for the D-vine values of
F3|2 and F4|32 that are used to conditionalize copulae with correlations r13|2 and r14|23 to obtain F1|23 and F1|432,15
respectively, have to be calculated. This is in contrast to the canonical vine where values of ui are used.
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F3|2 U3

X4

F4|3

F4|23

U4

X1

F1|2
F1|32

F1|432
U1

Fig. 8. Staircase graph representation of D-vine sampling procedure.

Rather than giving the general algorithm for the D-vine, we turn directly to the sampling procedure for an arbitrary1
regular vine.

3.3. Regular vines3

A regular vine on n nodes will have a single node in tree n−1. It suffices to show how to sample one of the conditioned
variables in this node, say n. Assuming we have sampled all the other variables we proceed as follows:

5
(1) By Lemma 5, the variable n occurs in trees 1, . . . , n− 1 exactly once as a conditioned variable. The variable with

which it is conditioned in tree j is called its “j-partner”. We define an ordering for n as follows: index the j-partner7
of variable n as variable j. We denote the conditional bivariate constraints corresponding to the partners of n as

(n, 1|∅), (n, 2|Dn
2 ), (n, 3|Dn

3 ) · · · (n, n − 1|Dn
n−1).9

Again by Lemma 5, variables 1, . . . , n−1 appear first as conditioned variables (to the left of “|”) before appearing
as conditioning variables (to the right of “|”). Also,11

0 = #Dn
1 < #Dn

2 < · · · < #Dn
n−1 = n − 2.

(2) Assuming we have sampled all variables except n, sample one variable uniformly distributed on the interval (0,1),13
denoted un. We use the general notation Fa|b,C to denote Fa,b|C:Fb|C ; that is, the conditional copula for {a, b|C}
conditional on a value of the cumulative conditional distribution Fb|C . Here, {a, b|C} is the conditional bivariate15
constraint corresponding to a node in the vine.

(3) Sample xn as follows:17

xn = F−1
n|1,Dn

1
(F−1

n|2,Dn
2
(. . . (F−1

n|n−1,Dn
n−1

(un)) . . .)). (4)
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1,3|2
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1,4|25

3,5|12

3,4|125

Fig. 9. Regular vine with five variables.

The innermost term of (4) is1

F−1
n|n−1,Dn

n−1
= F−1

n,n−1|Dn
n−1:Fn−1|Dn

n−1

= F−1
n,n−1|Dn

n−1:Fn−1,n−2|Dn−1
n−2 :F

n−2|Dn−1
n−2

.

Example 11. We illustrate the sampling procedure for the regular vine on five variables in Fig. 9 which is neither3
canonical nor a D-vine. The top node is {34|512}. Assuming we have sampled variables 2,5,1,3 already the sampling
procedure for x4 is5

x4 = F−1
4|2 (F−1

4|5,2(F
−1
4|1,52(F

−1
4|3,152(u4)))).

4. Relationship between conditional rank and partial correlations assigned to the edges of a vine7

For a vine-copula method we would like a copula for which rank correlations are equal to corresponding partial
correlations on the vine or at least for which the relationship between them is known. We now examine some copulae9
from this perspective.

4.1. Elliptical copula11

A copula for which partial and constant conditional product moment correlations are equal is the elliptical copula.
More precisely, it is known that when (X, Y ) and (X, Z) are joined by elliptical copulae (Section 2.3), and when the13
conditional copula of (Y, Z) given X does not depend on X, then the conditional correlation of (Y, Z) given X is equal
to the partial correlation (Theorem 10). We can find a relationship between partial and conditional rank correlation by15
incorporating the sampling algorithm for a canonical vine from the previous section and then compute:

�23;1 = 12
∫ ∫ ∫

I 3 x2x3 du1 du2 du3 − r12r13√
(1 − r2

12)(1 − r2
13)

, (5)
17

where I = [− 1
2 , 1

2 ]. Calculating the above integral with x2 and x3 given by the sampling procedure (3) with inverse
conditional distributions of the elliptical copula (Theorem 9) and simplifying the expression we get19

�23;1 = 2
∫ ∫

I 2
sin(�u2) sin

(
�

[√
1 − r2

23|1

√
1

4
− u2

2 sin(�u3) + r23|1u2

])
du2 du3. (6)

Notice that �23;1 does not depend on r12, r13. It depends only on r23|1. This is very specific for the elliptical copula.21
We denote the relationship (6) as

�23;1 = �(r23|1). (7)23
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Now we can easily show that when r23|1 = 1 then1

�23;1 = 2
∫ ∫

I 2
sin(�u2) sin(�u2) du2 du3 = 1

and when r23|1 = −13

�23;1 = 2
∫ ∫

I 2
sin(�u2) sin(−�u2) du2 du3 = −1.

From the above result, Hoeffding’s (1940) theorem and Theorem 7 we get that there exists trivariate uniform distribution5
realizing any correlation structure.

Example 12. Construct a trivariate distribution with the following rank correlation structure:7

A =
⎡
⎢⎣

1 0.7 0.7

0.7 1 0

0.7 0 1

⎤
⎥⎦ . (8)

The correlation specification on a regular vine with elliptical copulae provides a very convenient way of sampling a9
distribution with rank correlation matrix (8). We have �12 = �13 = 0.7 and �23 = 0. The partial correlation �23;1 can
be calculated from (2) as −0.96. From (6) we find conditional rank correlation r23|1 = −0.9635 that corresponds to11
partial correlation of −0.96.

Using the sampling algorithm for the canonical vine we can sample a distribution with rank correlation matrix (8)13
very efficiently. Notice that this rank correlation matrix could not be realized by the joint normal transformation method
(see Example 2).15

Unfortunately the above result cannot be generalized to higher dimensions. We show now how the relationship
between partial and conditional correlations on a vine can be established for a four variate distribution obtained by the17
vine-elliptical copula method. For a given 4 × 4 correlation matrix, using the recursive formula 2, a partial correlation
specification on the canonical vine on four variables can be obtained19

�12, �13, �14,

�23;1, �24;1,

�34;12.

(9)

We must find a rank correlation specification on the canonical vine that corresponds to the partial correlation specification21
(9)

r12, r13, r14,

r23|1, r24|1,

r34|12.

(10)

23

Clearly, r1,i = �1i , i = 2, 3, 4. The r23|1, r24|1 that correspond to �23;1, �24;1 respectively can be found from (7), hence
r23|1 =�−1(�23;1) and r24|1 =�−1(�24;1). Now we must only find r34|12 that corresponds to �34;12. Using the sampling25
procedure for a canonical vine the correlation �34 can be calculated as

�34 = 12
∫ ∫ ∫ ∫

I 4
x3x4 du1 du2 du3 du4.27

Simplifying and using partial correlation formula (2) we get

�34;1 = 2
∫ ∫ ∫

I 3
g(r23|1, u2, u3)g(r24|1, u2, g(r34|12, u3, u4)) du2 du3 du4, (11)29
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where1

g(r, u, v) = sin

[
�

(√
1 − r2

√
1
4 − u2 sin(�v) + ru

)]
.

Hence �34;1 depends on r23|1, r24|1, which are already chosen, and r34|12 which we want to find. Denoting this rela-3
tionship by �34;1 = �(r34|12, r23|1, r24|1) and using partial correlation formula (2) the relationship between �34;12 and
r34;12 is5

�34;12 = �(r34|12, r23|1, r24|1) − �23;1�24;1√
(1 − �2

23;1)(1 − �2
24;1)

. (12)

This cannot be solved analytically but using numerical integration we can search for r34|12 corresponding to given7
�34;12.

Notice that for9

�34;12 = �34;1 − �23;1�24;1√
(1 − �2

23;1)(1 − �2
24;1)

,

where �34;1 given by (11) and �23;1, �24;1 by (6), if r34|12 = 1 then11

�34;12 = 2h(r23|1, r24|1, u2, u3) − 4t (r23|1, u2, u3)t (r24|1, u2, u3)√
(1 − 4t (r23|1, u2, u3)

2)(1 − 4t (r24|1, u2, u3)
2)

,

where13

h(r23|1, r24|1, u2, u3) =
∫

I 2
g(r23|1, u2, u3)g(r24|1, u2, u3) du2 du3,

and15

t (rij |k, u2, u3) =
∫

I 2
sin(�u2)g(rij |k, u2, u3) du2 du3.

This in general is not equal to 1 but if one additionally assumes that r23|1 = r24|1 then �34;12 = 1.17
Suffices to show that

2
∫

I 2
g(r23|1, u2, u3)

2 du2 du3 = 1.19

We get

2
∫

I 2
g(r23|1, u2, u3)

2 du2 du3 = 2
∫

I 2
sin2

(
�

[√
1 − r2

23|1

√
1

4
− u2

2 sin(�u3) + r23|1u2

])
du2 du3

=
∫

I 2
1 − cos

(
2�

[√
1 − r2

23|1

√
1

4
− u2

2 sin(�u3) + r23|1u2

])
du2 du3.

21

Using the formula for cosine of a sum of two angles and noticing that∫
I 2

sin(2�r23|1u2) du2 du3 = 023

we obtain

=1 −
∫

I 2
cos

(
2�
√

1 − r2
23|1

√
1

4
− u2

2 sin(�u3)

)
cos(2�r23|1u2) du2 du3.

25
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Integrating the above integral by parts and simplifying we get1

=1 − 1

2�r23|1

∫
I 2

sin

(
2�
√

1 − r2
23|1

√
1

4
− u2

2 sin(�u3)

)
sin(2�r23|1u2)

u2√
1
4 − u2

2

du2 du3.

Since the integrand in above integral is such that f (u2, u3) = −f (−u2, −u3) and f (−u2, u3) = −f (u2, −u3) then3
�34;12 = 1.

We show now how the rank correlation specification on the canonical vine on four variables can be found to realize5
a given correlation structure.

Example 13. Let us consider a matrix7

A =

⎡
⎢⎢⎢⎢⎣

1.0000 −0.3609 0.3764 −0.3254

−0.3609 1.0000 0.6519 −0.3604

0.3764 0.6519 1.0000 −0.2919

−0.3254 −0.3604 −0.2919 1.0000

⎤
⎥⎥⎥⎥⎦ . (13)

The partial correlation specification on the canonical vine is9

�12, �13, �14, −0.3609, 0.3764, −0.3254,

�23;1, �24;1, = 0.9117, −0.5419,

�34;12, 0.8707.

(14)

The corresponding rank correlation specification is the following:11

r12, r13, r14, −0.3609, 0.3764, −0.3254,

r23|1, r24|1, = 0.9170, −0.5557,

r34|12, 0.9392.

(15)

where r23|1, r24|1 are found from (6) and r34|12 from (12).13

Using sampling procedure (3) with the above rank correlations we obtain a distribution with rank correlation matrix
A up to sampling and numerical errors.15

The matrix A in above example was chosen such that after transformation (1) becomes non-positive definite. Hence
A is not a rank correlation matrix of joint normal distribution but can be realized with the vine-elliptical copula method.17

Example 14. The following-four dimensional correlation matrix cannot be realized with the vine-elliptical copula
method:19

A =

⎡
⎢⎢⎢⎢⎣

1.0000 0.8000 0.6000 −0.3000

0.8000 1.0000 0.2400 −0.6979

0.6000 0.2400 1.0000 0.5178

−0.3000 −0.6979 0.5178 1.0000

⎤
⎥⎥⎥⎥⎦ .

The partial correlation specification on the canonical vine is21

�12, �13, �14, 0.8, 0.6, −0.3,

�23;1, �24;1, = −0.5, −0.8,

�34;12, 0.99.

We can find that r23|1 = −0.5137, r24|1 = −0.8101 which correspond to �23;1 = −0.5, �24;1 = −0.8, respectively.23
However, assigning r34|12 =1 yields �34;12 equal only to 0.9892. The above matrix is also not a rank correlation matrix
for joint normal.25
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4.2. Other copulae1

Using techniques presented in the previous subsection we can find a relationship between partial and conditional
rank correlations for other copula. If in (5) when calculating the integral we use x2, x3 with the inverse conditional3
distributions of, e.g., the diagonal band or Frank’s copula then the relationship between partial correlation and a
parameter of the copula that corresponds to r23|1 can be established. However, in contrast to the elliptical copula, �23;15
will also depend on r12, r13.

Interestingly, the correlation matrix in Example 12 cannot be realized with the vine method with the diagonal band7
copula. We may use formula (5) to search for r23|1 that corresponds to partial correlation −0.96 and we find that
r23|1 = −1 yields partial correlation equal only to −0.9403.9

At the moment there are no analytical results concerning the relationship between partial and constant conditional
rank correlations for the diagonal band or the Frank’s copula. It would be interesting to know whether there exists a11
copula for which partial and constant conditional rank correlations are equal. We could also consider incorporating
non-constant conditional rank correlations assigned to the edges of a regular vine and see how they relate to partial13
correlations.

5. Predicting correlation matrices—simulation results15

Having specified a joint uniform distribution with the vine-copula method, we would like to predict the resulting
correlation matrix. It was shown in the previous section how this can be done for the canonical vine with elliptical17
copula. In general we cannot calculate the correlation matrix, but if we pretend that the conditional rank correlations
satisfy the recursive relations for partial correlations, we can predict the correlation matrix with some error. To indicate19
how big this error can be, we performed a simulation experiment for the matrix in Example 13. We run the sampling
procedure (3) for 10 000 samples using the elliptical copula and conditional rank correlations on the canonical vine21
which are either:

• [rank-vine] given in (15),23
• [partial-vine] equal to partial correlations hence given in (14).

For fair comparison we have used the same independent uniform samples for both simulations. Sample correlation25
matrices for both distributions were calculated and compared to the original matrix (13). The sum of absolute differences
(d) between matrix (13) and sampled matrices was taken as a measure of difference between matrices. This procedure27
was repeated 500 times and results in a form of average (E(d)) and standard deviation (�(d)) of these differences
as well as average and standard deviation of the differences per cell (denoted as E(dcell), �(dcell), respectively) are29
presented in Table 1.

We see that the differences between both errors are not too big but the vine with rank correlation indeed predicts the31
target correlation matrix better than the one where we have assumed equality of partial and conditional rank correlations.

We now estimate this error for the elliptical, diagonal band and Frank’s copulae with simulation. The procedure is33
as follows:

(1) Sample a correlation matrix of size n with onion method (Ghosh and Henderson, 2002).35
(2) Find the partial correlation specification on the canonical vine on n variables.
(3) Pretend that conditional rank and partial correlation specifications are equal.37

Table 1
Average and standard deviation of differences and differences per cell between matrix (13) and sampling correlation matrices for distributions
[rank-vine] and [partial-vine]

Dist. E(d) �(d) E(dcell) �(dcell)

[rank-vine] 0.0665 0.0024 0.055 0.0024
[partial-vine] 0.0828 0.0288 0.069 0.0024
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Table 2
Performance of different copulae (E, DB, F) in the vine-copula method

Copula/dimension 3 4 5 6 7 8 9 10

E Min. err. (%) 60.6 53.6 28.6 8.4 1 0 0 0
Max. err. (%) 0.115 0.213 0.451 0.702 1.093 1.516 2.021 2.807
Aver. err. (%) 0.035 0.099 0.216 0.414 0.696 1.053 1.504 1.992

DB Min. err. (%) 25.4 33.6 53.4 62.6 61 46.4 27.4 9.4
Max. err. (%) 0.129 0.226 0.372 0.556 0.765 0.997 1.237 1.5739
Aver. err. (%) 0.041 0.103 0.190 0.317 0.467 0.645 0.869 1.045

F Min. err. (%) 14 12.8 18 29 38 53.6 72.6 90.6
Max. err. (%) 0.268 0.292 0.418 0.672 0.825 1.049 1.280 1.484
Aver err. (%) 0.054 0.126 0.219 0.345 0.483 0.642 0.830 0.945

N Max. err. (%) 0.200 0.364 0.571 0.642 0.873 1.002 1.195 1.550
Aver. err. (%) 0.013 0.158 0.265 0.381 0.525 0.690 0.863 1.068

Simulation results for joint normal method (N).

Table 3
Average error per cell for vine-copula method with E, DB, F copulae and for joint normal method (N)

Dist./dim. 3 4 5 6 7 8 9 10

E 0.0058 0.0083 0.0108 0.0138 0.0166 0.0188 0.0209 0.0221
DB 0.0069 0.0086 0.0095 0.0106 0.0111 0.0115 0.0121 0.0116
F 0.0091 0.0105 0.0110 0.0115 0.0115 0.0115 0.0115 0.0105
N 0.0795 0.0132 0.0132 0.127 0.0125 0.0123 0.0120 0.0119

(4) Draw 10 000 samples of the n-dimensional distribution described by the rank correlation specification with the1
elliptical (E), the diagonal band (DB) and Frank’s (F) copula (in the sampling procedure for all copulae the same
independent samples are used).3

(5) Calculate correlation matrices from these samples and compare with the target correlation matrix (as a measure
of difference between matrices we took sum of absolute differences between elements of the target and sampled5
matrix).

The above procedure was repeated 500 times for each dimension. Error is defined per matrix as the sum over all cells7
of the absolute difference between the target and the sampled matrix. In Table 2 we record the maximum absolute
error over the 500 matrices, the average absolute error over the 500 matrices, and percentage of the 500 simulated9
matrices for which the given copula led to the minimum error. To compare these results with the joint normal method,
we sampled 500 random correlation matrices with the “onion” method, and used these matrices as product moment11
correlation matrices of the joint normal. We drew 10 000 samples from the joint normal and calculated rank correlation
matrix from these samples. Because we sample from normal distributions instead of uniform distributions, the results13
per matrix cannot be compared with the vine-copula matrices, but the maximum and average error can be compared.

Notice that for three and four-dimensional matrices the elliptical copula gives the smallest error. Five, six and seven-15
dimensional matrices are best approximated by the vine-diagonal band method and then Frank’s copula starts to produce
the smallest error.17

Of course, the average error over 500 matrices is affected by the fact that number of cells over which we sum increases
with dimension. Table 2 shows average error, divided by the number off-diagonal cells. The average error per cell for19
the vine-copula method and the joint normal method is presented in Table 3. Notice that the average error per cell using
the normal method is always bigger than the average error per cell for the vine method with the diagonal band and21
Frank’s copula. However, the difference decreases with matrix dimension.
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6. Conclusions1

The problem of representing and exactly sampling a distribution with given margins and a given rank correlation
matrix arises in uncertainty and sensitivity analysis. Up to now, only approximate results (joint normal and Iman3
and Conver, 1982 method) were available. The vine-copula method presented in this paper is a generalization of
the existing tree-copula approach. The tree structure imposes conditional independencies which severely constrains5
the dependence structure that can be realized. The copula-vine method uses conditional dependence to construct a
multidimensional distribution from two-dimensional and conditional two-dimensional distributions of uniform vari-7
ables. This approach combined with the copula provides on-the-fly sampling algorithms which are fast and accurate.
Sampling procedures for a D-vine and a canonical vine (C-vine) have been implemented in the uncertainty anal-9
ysis program UNICORN, that is free to download at http://ssor.twi.tudelft.nl/∼ risk. We can construct and sample
a distribution that exactly corresponds to the vine specification, moreover, rank correlations in vine specifications11
are algebraically independent. Hence, every rank correlation specification on a regular vine is consistent and can be
realized.13

It is shown in Section 4 that not every symmetric positive definite matrix with one’s on the main diagonal
can be realized with the vine elliptical copula method. Using the elliptical copula in vines assures existence of a15
trivariate joint uniform with any correlation structure. However, there are four-dimensional correlation matrices
which cannot be realized in this way. Nonetheless, this method can realize more than joint normal method17
(Example 13).

At the moment it is not clear if every n-dimensional correlation matrix can be realized by a joint uniform19
distribution. If it is not a case then we would like to know which correlation matrices are correlation matrices of
joint uniform distribution and how this set relates to the set of matrices that can be realized by vine-copula21
method.
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