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Abstract 

The Netherlands are protected by a system of dike rings. A dike ring consists of some 

50 dike sections, each section varying between 0.5 and 2 km in length. It has recently 

been decided to base the design philosophy in The Netherlands on the reliability of 

dike rings. A dike ring fails when one of its sections fails. Since dike sections are 

subject to the same environment, there will be significant dependencies in the failure 

probabilities of dike sections. Because of the new features entailed by the dike ring 

safety concept, an uncertainty analysis was performed to assess the uncertainty in the 

predictions of dike ring failure frequency. This analysis made extensive use of 

structured expert judgment. This chapter reports on the expert judgment methods and 

results. 
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1. Introduction 

 

The Netherlands are situated on the delta of three of Europe’s biggest rivers, the 

Rhine, the Meuse and the Scheldt. Large parts of the country lie lower than the water 

levels that may occur on the North Sea, the large rivers and the IJsselmeer. 

Consequently, most of the country is protected by flood defenses. 

Prior to 1953 the standard approach to the design of flood defenses was based on the 

highest recorded water level. In relation to this water level a safety margin of 1 meter 
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was maintained. In 1953 a major breach occurred killing more than 1800 people in the 

southwest of the country. Afterwards, an econometric analysis was undertaken by the 

Delta Committee in which the safety standards were based on weighing the costs of 

the construction of flood defenses and the possible damage cause by floods. This 

analysis led to a design probability of flooding of 8  10-6 per year. Given the 

technical capabilities at that time, this safety concept could not be implemented 

completely. In particular, the probability of a flood defense collapsing, and therefore 

the probability of flooding, proved to be very difficult to estimate. 

For this reason a simplified concept was chosen at the time, based on design loads. 

The basic assumption is that every individual section of a dike has to be high enough 

to safely withstand a given extreme water level and the associated wave impact. 

The current safety standards are laid down in the Flood Protection Act. This act 

foresees a change to a new safety concept based on the probability of flooding in 

certain dike ring areas. A dike ring area is an area that is completely surrounded by 

water and therefore surrounded by flood defenses. In the past few years models for 

determining the inundation probability for dike rings have been developed (Slijkhuis 

1998, van der Meer, 1997).  

Because of the many new features involved in the dike ring safety concept, it was 

decided to perform an uncertainty analysis on the prediction of failure frequency for 

one illustrative dike ring, the so called Hoeksche Waard. This involved the following 

steps: 

1. Freezing the structural reliability model for dike section failure. 

2. Performing an ‘in-house’ quantification of uncertainty, with dependence, of all 

input variables. 

3. Identifying those input variables whose uncertainty is anticipated to have 

significant impact on the uncertainty of the dike ring failure frequency. 

4. Assessing the uncertainty of the selected variables with structured expert 

judgment. 

5. Propagating the resulting uncertainties through the structural reliability model 

so as to obtain an uncertainty distribution on the failure frequency of the dike 

ring. 
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The motivations and goals for performing an uncertainty analysis, as opposed to a 

traditional reliability analysis, are set forth in the next section. 

 

The following section expands on uncertainty analysis. Section 3 discusses the 

structured expert judgment methodology. Section 4 discusses the dike ring study, and 

section 5 presents results. A final section gathers conclusions. 

 

2. Uncertainty Analysis 

In contrast to more standard reliability analyses, the goal of this study is not to predict 

a failure frequency. Rather, the goal is to determine the uncertainty in the failure 

frequency for a given dike ring. The reason for shifting the focus to uncertainty in this 

way is because the primary source of our information in this case is expert judgment, 

not field data. We appeal to expert judgment because there is not sufficient data, and 

hence substantial uncertainty. The goal of using expert judgment, as discussed in the 

next section, is to obtain a rationally defensible quantification of  this uncertainty.  

 

The first step proved surprisingly difficult. The structural reliability model for a dike 

ring is large, involving some 300 input variables whose values are not known with 

certainty. Moreover the model is under continual development and it is very difficult 

to freeze a model which is known to become outdated before the uncertainty analysis 

is completed. 

 

Since there are a large number of uncertain input variables in these dike ring models, 

it is not possible to subject all of these variables to a structured expert judgment 

elicitation. Instead, we must restrict the expert elicitation to those variables which are 

judgment most important in driving the uncertainty of the dike ring failure frequency. 

This requires an initial ‘in house’ quantification of uncertainties (Step 2) and a 

selection of important variables (Step 3). The techniques used in Step 3 are very much 

in development at the moment (see e.g. Saltelli et al. 2000), and will not be treated 

here. 
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The present chapter focuses on Step 4. The reasons for this are twofold. First, many of 

the questions put to the experts are of general interest, and do not require lengthy 

exposition of the structural reliability model. These include: 

 Frequencies of exceedence of extreme water levels of the North Sea 

 Sea level rise 

 Frequencies of exceedence of extreme discharges of the Rhine river 

 Influence of climate change and human intervention in the Rhine discharge 

 

Second, this was the major effort of the study, and the application of the structured 

approach led to significant insights. 

 

3. Expert judgment method 

 

The methodology for expert judgment has been presented in Cooke (1991) and 

applied in many risk and reliability studies.  See Goossens et al (1998) for a recent 

overview. In particular, this method was used in the study of failure of gas pipelines 

described in this volume. This section briefly describes the expert judgment method. 

It is based on Frijters et al (1998), and Cooke and Goossens (2000a,b).  

 

The goal of applying structured expert judgment is to enhance rational consensus.  

Rational consensus is distinguished from ‘political consensus’ in that it does not 

appeal to a “one-man-one-vote” method for combining the views of several experts. 

Instead, views are combined via weighted averaging, where the weights are based on 

performance measures, and satisfy a proper scoring rule constraint (Cooke 1991). 

This model for combining expert judgments bears the name “classical model” because 

of a strong analogy with classical hypothesis testing. We restrict discussion to the case 

where experts assess their uncertainty for quantities taking values in a continuous 

range. There are two measures of performance, calibration and information. These are 

presented briefly below, for more detail see Cooke (1991). 

3.1  Calibration.   

The term calibration was introduced by psychologists (Kahneman et al 1982) to 

denote a correspondence between subjective probabilities and observed relative 
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frequencies. This idea has fostered an extensive literature and can be operationalized 

in several ways. In the version considered here, the classical model treats an expert  as 

a classical statistical hypothesis, and measures calibration as the degree to which this 

hypothesis is supported by observe data, in the sense of a simple significance test. 

 

More precisely, an expert states n fixed quantiles for his/her subjective distribution for 

each of several uncertain quantities taking values in a continuous range. There are n+1 

‘inter-quantile intervals’ into which the realizations (actual values) may fall. Let  

 

 p = (p1,…pn+1)         (1) 

 

denote the theoretical probability vector associated with these intervals. Thus, if the 

expert assesses the 5%, 25%, 50%, 75% and 95% quantiles for the uncertain 

quantities, then n = 5 and  p = (5%, 20%, 25%, 25%, 20%, 5%). The expert believes 

there is a 20% probability that the realization falls between his/her 5% and 25% 

quantiles, etc. 

 

In an expert judgment study, experts are asked to assess their uncertainty for variables 

for which the realizations are known post hoc.  These variables are chosen to 

resemble the quantities of interest, and/or to draw on the sort of expertise which is 

required for the assessment of the variables of interest. They are called “calibration” 

or “seed” variables. 

 

Suppose we have such quantile assessments for N seed variables. Let 

 

 s = (s1,…sn+1)         (2) 

 

denote the empirical probability vector of relative frequencies with which the 

realizations fall in the inter quantile intervals. Thus s2 = (#realizations strictly above 

the 5% quantile and less than or equal to the 25% quantile)/N, etc. 
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Under the hypothesis that the realizations may be regarded as independent samples 

from a multinomial distribution with probability vector p, the quantity1 

 

 2NI(s,p) = 2Ni=1..N siln(si/pi)       (3) 

 

is asymptotically Chi-square distributed with n degrees of freedom and large values 

are significant. Thus, if n is the cumulative distribution function for a Chi-square 

variable with n degrees of freedom, then 

 

 CAL = 1 - n(2NI(s,p))       (4) 

 

is the upper tail probability, and is asymptotically equal to the probability of seeing a 

disagreement no larger than I(s,p) on N realizations, under the hypothesis that the 

realizations are drawn independently from p. 

 

We take CAL as a measure of the expert’s calibration. Low values (near zero) 

correspond to poor calibration. This arises when the difference between s and p 

cannot plausibly be the result of mere statistical fluctuation. For example, if N = 10, 

and we find that 8 of the realizations fall below their respective 5% quantile or above 

their respective 95% quantile, then we could not plausibly believe that the probability 

for such events was really 5%, as the expert maintains. This would correspond to an 

expert giving ‘overconfident’ assessments. Similarly, if 8 of the 10 realizations fell 

below their 50% quantiles, then this would indicate a ‘median bias. In both cases, the 

value of CAL would be low. High values of CAL indicate good calibration.  

 

It is well to emphasize that we are not testing or rejecting hypotheses here. Rather, we 

are using the standard goodness of fit scores to measure an expert’s calibration. 

  

3.2 Information 

Loosely, information measures the degree to which a distribution is concentrated. 

This loose notion may be operationalized in many ways. For a discussion of the pro’s 

and con’s of various measures, see Cooke (1991). We shall measure information as 

                                                 
1 I(s,p) is called the relative Shannon information of s with respect to p. For all s,p with pi > 0, i = 
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Shannon’s relative information with respect to a user-selected background measure. 

The background measure will be taken as the uniform measure over a finite ‘intrinsic 

range’. For a given uncertain quantity and a given set of expert assessments, the 

intrinsic range is defined as the smallest interval containing all the experts’ quantiles 

and the realization, if available, augmented above and below by K%. The overshoot 

term K is chosen by default to be 10, and sensitivity to the choice of K must always 

be checked (see Table 2 below).  

 

To implement this measure, we must associate a probability density with each 

expert’s assessment for each uncertain quantity. When the experts have given their 

assessments in the form of quantiles, as above, we select that density which has 

minimal Shannon information with respect to the background measure and which 

complies with the expert’s quantile assessments. When the uniform background 

measure is used, the minimum information density is constant between the assessed 

quantiles, and the mass between quantiles i-1 and i is just pi. If fk,j denotes the density 

for expert k and uncertain quantity j, then Shannon’s relative information with respect 

to the uniform measure on the intrinsic range Ij is: 

 

)ln())(ln()(),( ,,, jjkjk
Iu

jjk IduufufUfI
j




   (5) 

 

 

where |Ij| is the length of  Ij. For each expert, an information score for all variables is 

obtained by summing the information scores for each variable. This corresponds to 

the information in the expert’s joint distribution relative to the product of the 

background measures under the assumption that the expert’s distributions are 

independent. Roughly speaking, with the uniform background measure, more 

informative distributions are gotten by choosing quantiles which are closer together  

whereas less informative distributions result when the quantiles are farther  apart. 

 

The calibration measure CAL is a”fast" function. With, say, 10 realizations we may 

typically see differences of several orders of magnitude in a set of, say 10 experts. 

Information on the other hand is a “slow” function. Differences typically lie within a 

                                                                                                                                            
1,…N, we have I(s,p)  0 and I(s,p) = 0 if and only if s=p (see Kullback 1959). 
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factor 3. In the performance based combination schemes discussed below, this feature 

means that calibration dominates strongly over information. Information serves to 

modulate between more or less equally well calibrated experts. The use of the 

calibration score in forming performance based combinations is a distinctive feature 

of the classical model and implements the principle of empirical control discussed 

above. 

 

3.3 Combination 

Experts give their uncertainty assessments on query variables in the form of, say, 5%, 

25%, 50%, 75% and 95% quantiles. An important step is the combination of all 

experts‘ assessments into one combined uncertainty assessment on each query 

variable.  The three combination schemes considered here are examples of "linear 

pooling"; that is, the combined distributions are weighted sums of the individual 

experts' distributions, with non-negative weights adding to one. Different combination 

schemes are distinguished by the method according to which the weights are assigned 

to densities. These schemes are designated "decision makers". Three decision makers 

are described briefly below.   

 

Equal weight decision maker   

The equal weight decision maker results by assigning equal weight to each density. If 

E experts have assessed a given set of variables, the weights for each density are 1/E; 

hence for variable i in this set the decision maker's  density is given by:  

 



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     (6) 

 

where ijf ,  is the density associated with expert j's assessment for variable i.   

 

 

Global weight decision maker   

The global weight decision maker uses performance based weights which are defined, 

per expert, by the product of expert's calibration score and his(her) overall 

information score on seed variables,  and by an optimization routine described below 



 9

(see, Cooke 1991 for details). For expert j, the same weight is used for all variables 

assessed. Hence, for variable i the global weight decision maker's density is:  
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These weights satisfy a "proper scoring rule" constraint. That is, under suitable 

assumptions, an expert achieves his (her) maximal expected weight, in  the long run, 

by and only by stating quantiles which correspond to his(her)  true beliefs (see Cooke 

1991).   

 

Item weight decision maker   

As with global weights, item weights are performance based weights which satisfy a 

proper scoring rule constraint, and are based on calibration and informativeness, with 

an optimization routine described below. Whereas global weights use an overall 

measure of informativeness, item weights are determined per expert and per variable 

in a way which is sensitive to the expert's informativeness for each variable. This 

enables an expert to increase or decrease  his(her) weight  for each variable by 

choosing a more or less informative distribution for that variable. For the item weight 

decision maker, the weights depend on the expert and on the item. Hence, the item 

weight decision maker's density for variable i is: 
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3.4 Optimization 

The proper scoring rule (Cooke 1991) constraint entails that an expert should  be 

unweighted if his/her calibration score falls below a certain minimum,  > 0.  The 

value of  is determined by optimization. That is, for each possible value of  a 
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certain group of experts will be unweighted, namely those whose calibration score is 

less than . The weights of the remaining experts will be normalized to sum to unity. 

For each value of  we thus define a decision maker dm  computed as a weighted 

linear combination of the experts whose calibration score exceeds . dm is scored 

with respect to calibration and information. The weight which this dm would receive 

if he were added as a “virtual expert” is called the "virtual weight" of dm. The value 

of  for which the virtual weight of dm is greatest is chosen as the cut-off value for 

determining the unweighted expert.  

 

3.5 Validation 

When seed variables are available, we can use these variables to score and compare 

different possible combinations of the experts’ distributions, or as we shall say, 

different decision makers. In particular, we can measure the performance of the global 

and item weight decision makers with respect to calibration and information, and 

compare this to the equal weight decision maker, and to the experts themselves. This 

is done in the following section. 

 

 

4. The Dike ring expert judgment study 

 

17 experts participated in this expert judgment study. They are all associated with 

Dutch universities or governmental institutes. The experts were acquainted with the 

issues,  study objectives and methods beforehand, and were elicited individually. A 

typical elicitation took 3 to 4 hours. Each expert gave 5%, 25%, 50%, 75% and 95% 

quantiles for 40 uncertain quantities, concerning: 

 Frequencies per year of exceedence of extreme water levels of the North Sea  

 Sea level rise 

 Frequencies of exceedence of extreme discharges of the Rhine river 

 Influence of climate change and human intervention in the Rhine discharge 

 The significant wave height 

 The significant wave period2 

                                                 
2 Significant wave height and wave period are defined as the 67% quantile of the occurring wave 
height resp. wave period distribution.  
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 The model term for Zwendl3 

 The model factor for critical discharge 

 The model factor for occurring discharge4 

 The dependence between model factor for critical discharge between dike 

sections 

 The dependence between model factor for occurring discharge  between dike 

sections  

 

The issue of dependence and its assessment requires more exposition than is possible 

here, (see Cooke and Goossens 2000b).   

 

Model factors and model terms are used to capture an experts’ uncertainty with regard 

to model predictions, and are defined as the ratio of the realization to the model 

prediction. A model term is defined as the difference between the realization and the 

model prediction. An example of the elicitation for the model term Zwendl is given in 

the appendix. 

Seed variables 

The model factors and model terms afford the possibility of calibrating the experts’ 

assessments. With some effort, realizations were found from historical and 

experimental records, and compared with model computations. We are interested in 

the relation between model predictions and realizations in extreme situations, say 

water levels higher than 4 meters above normal. We cannot find such realizations in 

the available data or in controlled experiments. However, we can find ‘sub extreme’ 

realizations (water levels 2.5 meters above normal). For these we can compute post 

hoc the model predictions. Comparing these two, we obtain realizations for the model 

factors and model terms. This is done in the current study and resulted in 47 seed 

variables. It is significant that this had not been done for the models in question prior 

                                                                                                                                            
 
3 Zwendl is a computer code which computes local water levels at estuary measuring stations as a 
function of inter alia  North Sea storm profile and Rhine discharge profile. This model was calibrated 
extensively during its development. A simplified version used in the current dike ring model considers 
only a ‘standard storm profile’ characterised by peak discharge and peak North Sea surcharge. The 
current study brought to light the fact that this simplified version was never calibrated. 
4 The critical discharge for a dike section is the maximal flux of water [liters /meter second] which a 
dike section can withstand without failing. The occurring discharge is the actual occurring discharge 
over the crown of a dike section.  
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to the current study. These realizations and predictions were not known to the experts 

(nor to the analysts) at the time of the elicitation. 

 

Figure 1 gives a “range graph” for the experts’ assessments of the significant wave 

height, and gives the results of 7 realizations.  

 

These data were obtained from measurements of wave height distributions at the 

measurement station Marollegat over six months in situations where the model 

predictions could be calculated post hoc. We see that most experts placed their 

median value for this model factor at 1, indicating that the probability of over 

prediction was equal to the probability of under prediction. Expert 14 believed that the 

model for significant wave height almost certainly under predicts the actual 

significant wave height. Eyeballing this data, we might say that the experts are a bit 

under confident, that is, too many realizations fall within the 25% and 75% quantiles. 

There might be a slight tendency for the model to under predict, but the tendency 

seems small relative to the experts’ uncertainty. 

 

A different picture emerges with the model term for the local water level model 

Zwendl shown in Figure 2: 

 

 

This data are from the measuring station Dordrecht. When a high local water level 

was reached, the parameters for calculating Zwendl’s predicted water level were 

recovered post hoc. Similar pictures emerged from data from other measuring stations 

(Raknoord and Goidschalxoord).  

 

All experts except numbers 1 and 12 placed their median value at zero. Only one data 

point is less than zero, and many fall outside the experts’ 95% quantiles. This picture 

suggests that the model under predicts local water levels to a degree which is 

significant relative to the experts’ uncertainty. This result was rather surprising. Most 

engineers assumed that the model Zwendl had been properly calibrated, and therefore 

put their median value at zero. It turned out that the original model was calibrated 

almost 30 years ago, according to methods and standards no longer current, and the 

simplified model actually in use had never been calibrated. 
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 5. Results 

 

Before presenting the results, it is useful to get a picture of how well the experts agree 

among themselves. For a given item this can be measured as the Shannon relative 

information of an expert’s distribution relative to the equal weight combination of all 

experts’ distributions. Averaging these relative informations over all items, we get the 

data in Table 1. 

 

The values for all variables range between 1.148 and 0.389, with average value over 

all experts of 0.62. This value should be compared to the experts’ own information 

relative to the background measure (Table 2 column 4) and to the result of performing 

robustness analysis on the selection of experts (see below Table 3 column 5). 

  

Table 2 gives scoring results for the experts, and various decision makers. 

 

 

The item weight decision maker shown in the bold bordered cells exhibits the best 

performance (as judged by unnormalized weight5 )  and is chosen for this study. The 

values in the shaded areas are given as comparisons to the item weight values. The 

unnormalized weights are the global weights wj in (7). Note that column 6 is just the 

product of columns 2 and 5. 

 

Column 4 of Table 2 should be compared to column 2 of Table 1. We see that the 

experts are much more informative relative to the uniform distribution over the 

intrinsic range, than they are with respect to the equal weight dm. This indicates that 

the experts’ 90% confidence bands display considerable overlap. If there were little 

overlap, the information scores in Table 1 would be closer to those in Table 2. 

 

The number of seed variables, 47, is quite large; and since 6 or 7 realizations are 

typically available for a single measuring station, it is doubtful whether the 

                                                 
5 If the size of the intrinsic range is changed, then the information scores also change, hence the item 
weight DM should be compared with the glob al weight DM and the equal weight DM with the same 
intrinsic ranges. 
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realizations should be considered as independent samples as required by the 

calibration measure. We can account for this by treating each expert’s empirical 

probability vector s as if it were generated by a smaller number of samples. In short, 

we replace N in (3) by a smaller number, called the effective sample size. A effective 

sample size of 9 results from considering the measurements in distinct groups 

(Figures 1 and 2 each represent one group) as one effective measurement. Although 

not really defensible, this does establish a lower bound to the effective sample size. 

The calibration scores in the third column may be compared with many other studies 

involving a comparable number of seed variables, and it emerges that these experts, as 

a group, are comparatively well calibrated. Considering all 47 seed variables as 

independent leads to the scores in the second column. Although the expert 

performance would be much worse in this case6, the global and item weight decision 

makers still reflect good calibration. To render the intuitive meaning of these scores 

we could say: The hypothesis that the realizations are drawn independently from a 

distribution whose quantiles agree with those of the item weight decision maker would 

be rejected with these 47 realizations at the 0.4 significance level (which of course is 

much too high for rejection in a standard hypothesis test). 

 

Another way to assess the decision makers’ performances is given in the last column. 

This is the normalized global weight after adding the decision maker to the pool of 

experts, and scoring him as another ‘virtual expert’7. For the 17 experts, the values in 

the last column are the global weights the experts would receive if the item weight dm 

were added as a virtual expert. These are called “vitrual weights”. The item weight 

dm has a virtual weight of 0.54237, higher than the combined weight of all experts. 

The virtual weights of the other decision makers are computed in the same way, but 

the corresponding weights of the 17 experts are not shown. 

 

The last three rows of Table 2 show the three decision makers with 47 effective seed 

variables, and where the overshoot term K for the intrinsic range is changed from the 

default value 10 to 50. In other words, the intrinsic range for each variable is the 

                                                 
6 We should reflect that every statistical hypothesis is wrong and would eventually be rejected with 
sufficient data.  No expert will be perfectly calibrated, and imperfections, with sufficient data, will 
eventually produce a poor goodness of fit. The ratio’s of scores is important when used in the 
performance based weights, but absolute scores are useful for comparing performance across studies. 
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smallest interval containing all assessed values, augmented by 50% above and below. 

All experts’ information scores increase, as the background measure to which they are 

compared has become more diffuse (the increased scores are not shown). The equal 

weight dm’s information score changes from 0.955 to 1.218, reflecting the fact that 

information is a slow function. Whereas the equal weight combination scheme is not 

affected by changing the intrinsic range, the performance based decision makers are 

affected slightly, as the experts’ weights change slightly. The virtual weight of the 

item weight decision maker drops from 0.54237 to 0.5314. 

 

The equal weight decision maker is less well calibrated and less informative than the 

performance based decision makers. Such a pattern emerges frequently, but not 

always, in such studies. 

 

From the robustness analyses performed on this expert data, we present the results for 

robustness against choice of experts. Table 3 shows the results of removing the 

experts one at a time and recomputing the item weight dm. The second and third 

columns give the information scores over all items, and seed items only, for the 

‘perturbed dm’ resulting from the removal of the expert in column 1. The fourth 

column gives the perturbed dm’s calibration. The last two columns give the relative 

information of the perturbed expert with respect to the original expert. Column 5 may 

be compared to column 2 of Table 1.  

 

The average of column 5; 0.026, should be compared with the average of column 2 in 

table 1; 0.62. This shows that the differences between the dm’s caused by omitting a 

single expert are much smaller than the differences among the experts themselves. In 

this sense the robustness against choice of expert is quite acceptable. However, it will 

be noticed that loss of expert 10 would cause a significant degradation of calibration. 

Apparently this expert is very influential on the dm, and the good performance of this 

dm is not as robust in this respect as we would like. Of course, loss of robustness is 

always an issue when we optimize performance. 

 

                                                                                                                                            
7 It can be shown that adding a dm as a virtual expert and recomputing weights yields a new dm which 
is identical to the initial dm (see Cooke 1991). 
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For selected items of interest, Table 4 compares the item weight and the equal weight 

dm’s with the in house assessments, where available, used in step 2 of the uncertainty 

analysis. The shaded cells indicate significant differences. 

  

In general the numbers in Table 4 are in the same ballpark. But there are important 

differences. The in house assessments tend to be more concentrated than the 

combined experts’ assessments. For the occurring discharge at a predicted level of 

100  litres per meter  per second the equal weight dm has a large 95% quantile. 

 

6.  Conclusions 

 

The results presented above show that the structured expert judgment approach can be 

a valuable tool in structural reliability uncertainty analysis. Expert judgment is more 

than just subjective guessing. It can be subjected to rigorous empirical control and can 

contribute positively to rational consensus. The extra effort involved in defining seed 

variables and measuring expert performance, as opposed to simple equal weighting of 

experts has paid off in this case. The experts themselves and the problem owners 

appreciate that this same effort contributes toward rational decision making by 

extending the power of quantitative analyses. Without expert judgment, any 

quantification of the uncertainty in dike reliability models would be impossible and 

the discussion would remain stalled with safety concepts which we cannot implement. 

 

Not only do we now have a defensible picture of the uncertainty in dike ring 

reliability calculations, but we can also judge where additional research effort might 

be expected to yield the greatest return in reducing this uncertainty and improving 

predictions. 

 

The most obvious conclusion in this regard is that more effort should be devoted to 

calibrating the simplified version of the Zwendl model. From the engineer’s 

viewpoint, this is the most significant result of this study. The relatively large 

uncertainty in the item weight dm for this variable throws some doubt on the 

reliability calculations for dike rings performed to date. In particular, there is greater 

probability that the local water levels are under predicted by the deterministic models. 
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The greatest improvement in these results would be gained by re-calibrating the 

model Zwendl for local high water levels. We anticipate that this would lead to higher 

predictions and smaller uncertainty bands. The techniques of using structured expert 

judgement to quantify uncertainty in combination with uncertainty propagation could 

be employed to many reliability models. However, the costs and effort involved are 

significant and thus these techniques are most suitable in problems of high public 

visibility where rational consensus is important. 
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Appendix: Example of elicitation question: model term Zwendl 

 

The following is a translation of the text used to elicit the distribution of the model 

term for Zwendl. Experts were made familiar with the notion of subjective probability 

distribution and quantiles. The model term is queried in four ways, first unconditional 

on the actual local water level; then, conditional on a predicted local water level of 

2m, 3m and 4m. This was done to see if the uncertainty in the model prediction 

depended on the predicted value. There was no significant pattern of dependence in 

the experts’ responses. The unconditional assessments were used for calibrating the 

experts. 

 

In the model for predicting dike ring inundation probability, Zwendl is used to 

compute locale water levels as a function of deterministic values for the water level at 

the Meuse mouth and the Rhine discharge at Lobith. In calculating the failure 

probabilities a model term for Zwendl will be added to the water levels computed with 

Zwendl. This model term is a variable whose distribution reflects the uncertainty in 

the Zwendl calculation in the following way: 

 

Model term Zwendl = real local water level – local water level computed with 

Zwendl. 

 

We would like to quantify the uncertainty in the output of Zwendl for the dike ring 

Hoeksche Waard. This uncertainty should take into account that Zwendl uses a 

standard water level profile for the North Sea and single value for the Rhine 

discharge instead of real temporal profiles. 

 

We would like to quantify your uncertainty for the computation of local water levels 

using Zwendl. We do this by asking you to state your 5%, 25%, 50%, 75% and 95% 

quantiles for your subjective uncertainty distributions. 

 

 For an arbitrary water level what is the difference between the measured local 

water level and the water level computed with Zwendl (in m) 
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_____   _____    _____     _____  _____ 

5%  25%  50%  75%  95% 

 

 Assume that Zwendl predicts a water level of 2m above N.A.P. (the standard 

baseline water level) for a given location in the dike ring area of Hoeksche 

Waard; what is then the difference between the actually measured value of the 

local water level and the value computed with Zwendl (in m): 

 

_____   _____    _____     _____  _____ 

5%  25%  50%  75%  95% 

 

 Assume that Zwendl predicts a water level of 3m above N.A.P. (the standard 

baseline water level) for a given location in the dike ring area of Hoeksche 

Waard; what is then the difference between the actually measured value of the 

local water level and the value computed with Zwendl (in m): 

 

_____   _____    _____     _____  _____ 

5%  25%  50%  75%  95% 

 

 Assume that Zwendl predicts a water level of 4m above N.A.P. (the standard 

baseline water level) for a given location in the dike ring area of Hoeksche 

Waard; what is then the difference between the actually measured value of the 

local water level and the value computed with Zwendl (in m): 

 

_____   _____    _____     _____  _____ 

5%  25%  50%  75%  95% 
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Experts 

  1              [────────<──────#────────>─────────────]                       

  2                          [───<────#─>───]                                   

  3            [────────<────────#──────────>───────────────]                   

  4            [────────<────────#─────────────>─────────────────────]          

  5       [────<─────────────────#─────────────────>────]                       

  6   [───────────────<──────────#──────────>───────────────]                   

  7       [───────────<──────────#─────────────────>─────────────────]          

  8               [──────<───────#──────────────────────>─────────────────────] 

  9            [────────<────────#────────>────────]                            

 10            [──────────<──────#──────>──────────]                            

 11                     [──<─#>──]                                              

 12                          [─<─#────>───]                                     

 13                [─────────<───#────>────────]                                

 14 [───<─#──>─]                                                                

 15                [───────<─────#─────>───────]                                

 16            [────────<────#────────>────────]                                

 17                [─────────<───#────────>────────]                            

DM           [════════════<══════#══════>════════════]                          

Real░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▓░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 

                                       1.1                                      

Real░░░░░░░░░░░░░░░░░░░░░░░░░░▓░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 

                               0.94                                             

Real░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▓░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 

                                      1.09                                      

Real░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▓░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 

                                  0.99                                          

Real░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▓░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 

                                           1.19                                 

Real░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▓░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 

                                      1.09                                      

Real░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▓░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 

                                        1.12                        

Scale:             

  0.35                                                                       2.0      

 

Figure 1. Range graph for model factor for significant wave height and 7 realizations; ‘[‘ and ‘]’ 

denote 5% and 95% quantiles respectively, ‘<’ and ‘>’ denote 25% and 75% quantiles respectively, ‘#’ 

denotes the median, ‘dm’ is the item weight decision maker (see Table 2). 
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Experts 

  1                                  [────<───#──>────]                         

  2               [─────────────<────────#────────>─────────────]               

  3                   [─────────<────────#────────>─────────]                   

  4                          [──────<────#────>──────]                          

  5                                    [<#>]                                    

  6 [──────────────────────<─────────────#─────────────>──────────────────────] 

  7                                 [──<─#─>──]                                 

  8                             [───<────#────>───]                             

  9                                 [──<─#─>──]                                 

 10               [─────────────<────────#────────>─────────────]               

 11                                    [<#>]                                    

 12                                     [─#>──]                                 

 13                                  [─<─#─>─]                                  

 14                                 [──<─#─>──]                                 

 15                                 [──<─#─>──]                                 

 16                        [────────<────#────>────────]                        

 17                                 [──<─#─>──]                                 

DM               [══════════════<════════#════════>══════════════]              

Real░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▓░░░░░░░░░░░░░░░░░░░░░░ 

                                                         0.314294               

Real░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▓░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 

                                                  0.167234                      

Real░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▓░░░░░░░░░░ 

                                                                     0.57462    

Real░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▓░░░░░░░░░░░░░░░░ 

                                                               0.455185         

Real░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▓░░░░░░░░░░░░░░ 

                                                                 0.499724       

Real░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▓░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 

                                          -0.0075                               

Scale: 

  -0.8                                                                       0.8      

Figure 2.   Range graph for model term for local water level model Zwendl and 6 realizations from 

the measuring station Dordrecht; ‘[‘ and ‘]’ denote 5% and 95% quantiles respectively, ‘<’ and ‘>’ 

denote 25% and 75% quantiles respectively, ‘#’ denotes the median, ‘dm’ is the item weight decision 

maker (see Table 2). 

 

Expert nr  Average relative information 

w.r.t. equal weight DM 

            All variables Seed variables 

Only 

1             0.729   0.476 

2             0.578   0.574 

3             0.380   0.328 

4             0.687   0.677 

5             0.784   0.596 

6             0.428   0.368 

7             0.523   0.539 
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8             0.478   0.444 

9             0.519   0.510 

10            0.427   0.318 

11            0.837   0.723 

12            1.039   1.093 

13            0.601   0.402 

14            1.148   0.999 

15            0.410   0.375 

16            0.489   0.272 

17            0.440   0.412 

Table 1.  Average relative information of experts with respect to the equal weight decision maker, for 

all variables and for seed variables only. 

 

Expert nr  

             

Calibr. 

(effec-

tive nr 

seeds = 

47)      

Calibr. 

(effec-

tive nr 

seeds = 

9) 

Mean relative 

information wrt 

background measure 

Total       Seeds   

 

 

Un- 

normalized 

weight 

  

Normalized 

weight with 

itemwgt DM 

1            0.00010 0.30000   1.777   1.103 0.00011 0.00024 

2            0.00010 0.30000   1.533   1.244 0.00012 0.00027 

3            0.00010 0.40000   1.146   0.803 0.00008 0.00018 

4            0.00010 0.10000   1.457   1.449 0.00014 0.00032 

5            0.00010 0.05000   2.007   1.568 0.00016 0.00035 

6            0.02500 0.80000   0.797   0.430 0.01075 0.02367 

7            0.00010 0.01000   1.065   0.951 0.00010 0.00021 

8            0.00010 0.40000   1.353   1.054 0.00011 0.00023 

9            0.00010 0.05000   1.498   1.410 0.00014 0.00031 

10           0.30000 0.95000   1.171   0.648 0.19433 0.42772 

11           0.00010 0.00500   2.152   2.132 0.00021 0.00047 

12           0.00010 0.00100   2.619   2.460 0.00025 0.00054 

13           0.00010 0.10000   1.884   1.526 0.00015 0.00034 

14           0.00010 0.00050   2.402   2.053 0.00021 0.00045 

15           0.00010 0.10000   1.247   1.240 0.00012 0.00027 

16           0.00100 0.60000   1.381   0.827 0.00083 0.00182 

17           0.00010 0.10000   1.168   1.120 0.00011 0.00025 

Item wgt DM  0.40000 0.95000   1.039   0.616 0.24642 0.54237 

Global wgt DM 0.40000 0.90000   1.000   0.572 0.22865 0.52717 

Equal wgt DM 0.05000 0.80000   0.955   0.760 0.03798 0.15444 

Item wgt K =  

50 

0.40000    1.289   0.8527 0.3411 0.5314 

Global wgt K 

= 50 

0.30000    1.470   0.9341 0.2802 0.5272 

Equal wgt 

K=50 

0.10000    1.218   1.014 0.1014 0.2521 

Table 2. Results of scoring experts and decision makers  
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  Excluded 

Expert  

Rel.Inf.to 

Background  

 Calibration Average Rel.Inf.to original 

DM 

  Name            total       Seeds only  Total Seeds only  

  None             1.039      0.616     0.4000          0          0 

  1                1.037      0.616    0.40000      0.001      0.000 

  2                1.034      0.616    0.40000      0.000      0.000 

  3                1.039      0.616    0.40000      0.000      0.000 

  4                0.921      0.616    0.40000      0.007      0.000 

  5                1.038      0.616    0.40000      0.001      0.000 

  6                0.968      0.512    0.30000      0.062      0.028 

  7                1.039      0.616    0.40000      0.000      0.000 

  8                1.030      0.602    0.40000      0.001      0.002 

  9                1.039      0.616    0.40000      0.000      0.000 

 10                0.951      0.625    0.02500      0.350      0.280 

 11                1.034      0.616    0.40000      0.001      0.000 

 12                1.037      0.615    0.40000      0.001      0.001 

 13                1.038      0.616    0.40000      0.000      0.000 

 14                1.037      0.613    0.40000      0.001      0.001 

 15                1.020      0.616    0.40000      0.001      0.000 

 16                1.044      0.616    0.40000      0.008      0.002 

 17                0.975      0.552    0.40000      0.005      0.002 

Table 3. Robustness of the item weight dm against choice of experts.  

  

 

Frequency yearly maximum North 

Sea  4.5m 

5% 25% 50% 75% 95% 

in house  0.00015 0.00029 0.00040 0.00068 0.00118 

item weights 0.00002 0.00014 0.00053 0.00184 0.00299 

Equal wgts 0.00001 0.00022 0.00056 0.00162 0.00450 

      

Sea level rise in 100 yr: increment 

to  2.5m water level 

5% 25% 50% 75% 95% 

item weights -0.003 0.19 0.39 0.60 0.81 

equal weights -0.28 0.22 0.36 0.58 0.99 

      

100yr maximum North Sea level 5% 25% 50% 75% 95% 

item weights 3.49 3.89 4.10 4.50 5.00 

equal weights 3.12 3.80 4.24 4.66 5.50 

      

Probability yearly maximum 

Rhine discharge  16000 m3/s 

5% 25% 50% 75% 95% 

item weights 1.10E-05 1.58E-04 6.27E-04 1.57E-03 4.11E-03 

equal weights 8.52E-06 1.59E-04 7.06E-04 1.72E-03 5.15E-03 
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Modelterm Zwendl for prediction 

= 4m 

5% 25% 50% 75% 95% 

in house -0.25 -0.1 0 0.1 0.25 

item weights -0.91 -0.39 0.00 0.39 0.94 

equal weights -0.61 -0.15 0.04 0.22 0.65 

      

Modelfactor wave height for 

prediction =  1m 

5% 25% 50% 75% 95% 

in house 0.83 0.93 1.00 1.08 1.20 

item weights 0.58 0.85 1.00 1.15 1.43 

equal weights 0.54 0.85 1.00 1.17 1.57 

      

Modelfactor wave periode for 

prediction = 4s 

5% 25% 50% 75% 95% 

in house 3.34 3.71 4 4.31 4.8 

item weights 2.77 3.40 4.49 4.60 5.33 

equal weights 2.40 3.54 4.06 4.63 6.25 

      

Critical discharge for prediction = 

50l/s/m 

5% 25% 50% 75% 95% 

in house 23 36 50 69 109 

item weights 18 34 49 118 207 

Equal weights 12 34 64 115 185 

      

Occurring discharge for 

prediction = 100l/s/m 

5% 25% 50% 75% 95% 

in house 46 73 100 137 218 

item weights 30 62 100 150 240 

equal weights 23 70 101 130 526 

 Table 4. Comparison of in house, item weight dm and equal weight dm for items of interest 
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EXERCISES 

1. Suppose that a dike section has a probability of 8  10-6 per year of failing. 

Suppose a dike ring consists of 50 dike sections, and suppose that the failures 

of different sections are independent. What is the probability per year that the 

dike ring fails? 

2. (Continuation) Instead of assuming independence, suppose that the event that 

one dike ring fails is the conjunction of two equally probable events, one event 

concerns only factors local to the given dike section and is independent of 

similar events at other dike sections; the other event concerns meteorlogical 

factors factors which affect all dike sections in the same way.  What is the 

probability that the dike ring fails? 

3. Two experts have assessed their 5%, 50% and 95% quantiles for 10 

continuous variables for which the realizations have been recovered. For the 

first expert, 3 realizations fall beneath his 5% quantile, 2 fall between the 5% 

and 50% quantile, 2 fall between the 50% and 95% quantile, and 3 fall above 

the 95% quantile. For the second expert, 1 realization falls below the 5% 

quantile, 7 fall between then 5% and 50% quantiles, one falls between the 

50% and 95% quantile, and 1 falls above the 95% quantile.  Compute the 

calibration scores for these two experts. 

4. Two experts assess their 5%, 50%and 95% quantiles for an unknown relative 

frequency. For the first expert these quantiles are 0.1, 0.25, 0.4; and for the 

second expert these quantiles are 0.2, 0.4, 0.6.  Use a uniform backgroun d 

meaure on the interval [0, 1] and compute the Shannon relative information in 

ech expert’s assessment using the minimum information density for each 

expert, subject to the quantile constraints. 

5. (Continuation) Compute the equal weight combination for the two experts in 

exercise 4, and compute the Shannon relative information of this combination 

relative to the uniform background measure on [0, 1]. 

6. (Continuation) Use the calibration scores from exercise 3 and the information 

scores from exercise 4 to compute the item-weight combination for the 

variable in exercise 4. What is the Shannon relative information for this 

combination relative to the uniform background measure on [0, 1]? 
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