
1

Generic Graphics for Uncertainty and
Sensitivity Analysis

R. M. Cooke
Dept. Mathematics, TU Delft, The Netherlands

J. M. van Noortwijk
HKV Consultants, Lelystad, The Netherlands

ABSTRACT: We discuss graphical methods which may be employed generically for uncertainty and
sensitivity analysis. This field is rather new, and  the literature reveals very  littl e in the way of theoretical
development. Perhaps it is the nature of these methods that one simply ‘sees’ what is going on. Apart from
statistical reference books [Cleveland, 1993] which focus on visualizing data, the main sources for graphical
methods are software packages. Our focus  is visualization to support uncertainty and sensitivity analysis. A
simple problem for ill ustrating  four  generic graphical techniques,  namely  tornado graphs, radar plots,
multiple scatter plots, and cobweb pots.  Uncertainty analysis codes, with or without graphic faciliti es, were
benchmarked in a recent workshop of the technical committee Uncertainty Modelli ng of the European Safety
and Reliabilit y Association. The report [Cooke 1997] contains descriptions and references to the codes, as
well as simple test problems. An extended version of this paper will appear in [Saltelli appearing].

1. A SIMPLE PROBLEM
The following problem has been developed for  the
Cambridge Course for Industry, Dependence
Modeling  and Risk Management [Cambridge
Course for Industry 1998], and it serves to ill ustrate
the generic techniques. Suppose we are interested
in how long a car will start after the headlights have
stopped working. We build a simple reliabilit y
model of the car consisting of three components:
the battery (bat), the headlight lampbulb (bulb), the
starter motor (strtr). The headlight fails when either
the battery or the bulb fail . The car’s ignition  fails
when either the battery or the starter motor fail .
Thus considering bat, bulb and strtr as li fe
variables:
headlite = min(bat, bulb),  ignitn = min(bat, strtr).
The variable of interest is then ign-head = ignitn -
headlite. Note that this quantity may be either
positive or negative, and that it equals zero
whenever the battery fails before the bulb and
before the starter motor.

We shall assume that bat, bulb and strtr are
independent exponential variables with unit
expected li fetime. The  question is, which variable
is most important to the quantity of interest ign-
head?

2. TORNADO GRAPHS
Tornado graphs are simply bar graphs arranged
vertically in order of descending absolute value.
The spreadsheet add-on  Crystal Ball performs
uncertainty analysis and gives graphic output for
sensitivity analysis in the form of tornado graphs
(without using this designation). After selecting a
‘ target forecast variable’ , in this case ign-head,
Crystal Ball shows the rank correlations of other
input variables and other forecast variables as in
Figure 1.

The values, in this case rank correlation
coeff icients, are arranged in decreasing order of
absolute value. Hence the variable strtr  with rank
correlation 0.56 is first, and bulb with rank
correlation -0.54 is second, and so on. When
influence on the target variable, ign-head, is
interpreted as rank correlation,  it is easy to pick
out the most important variables from such graphs.
Note that bat is shown as having rank correlation 0
with the target variable ign-head. This would
suggest that bat was completely unimportant for
ign-head.
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Figure 1

3. RADAR GRAPHS
Radar graphs provide another way of showing the
information in Figure 1. Figure 2 shows a radar
graph made in EXCEL by entering the rank
correlations from Figure 1. Each variable
corresponds to a ray in the graph. The variable with
the highest rank correlation is plotted  furthest from
the midpoint, and the variable with the lowest rank
correlation is plotted closest to the midpoint. The
real value of radar plots lies in their abilit y to
handle a large number of variables. Figure 3 is a
radar plot showing six variables of interest
(radiation dose to various organs) in different
colors,  against 161 explanatory variables
[Goossens et al 1997]. In A3 it is possible to view
all this information at one time.
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4. MULTIPLE SCATTER PLOTS
Statistical packages support varieties of scatter
plots. For example, SPSS provides a multiple
scatter plot facilit y. Simulation data produced by
UNICORN  for 1000 samples has been read into
SPSS to produce the plot matrix shown in Figure 6.
We see pairwise scatter plots of the variables in our
problem. The first row, for example, shows the
scatter plots of ign-head and, respectively, bat,
bulb, strtr, ignitn and headlite.

Figure 4 contains much more information than
Figure 1.  Let (a,b) denote the scatter plot in row a
and column b, thus (1,2) denotes the second plot in
the first row with ign-head on the vertical axis and
bat on the horizontal axis. Note that (2,1) shows the
same scatter plot, but with bat on the vertical and
ing-head on the horizontal axes.

Although Figure 1 suggested that bat was
unimportant for ign-head,  Figure 4 shows that the
value of bat can say a great deal about ign-head.
Thus, if bat assumes its lowest possible value, then
the values of ign-head are severely constrained.
This reflects the fact that if bat is smaller than bulb
and strtr, then ignitn = headlite, and ign-head = 0.
From (1,3) we see that large values of bulb tend to
associate with small values if ign-head; if bulb is
large, then the headlight may live longer than the
ignition making ign-head negative. Similarly, (1,4)
shows that large values of strtr are associated with
large values of ign-head. These facts are reflected
in the rank correlations of Figure 1.

In spite of the above remarks, the relation between
rank correlations depicted in Figure 1 and the
scatter plots of Figure 4 is not direct. Thus, bat and
bulb are statistically independent, but if we look at
(2,3), we might infer that high values of bat tend to
associate with low values of bulb. This however is
an artifact of the simulation. There are very few
very high values of bat, and as these are
independent of bulb, the corresponding values of
bulb are not extreme. If we had a scatter plot of the
rank of bat with the rank of  bulb, then the points
would be uniformly distributed on the unit square.
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Figure 4

Figure 5 shows an overlay scatter plot. Ign-head is
depicted on the vertical axis, and the values for bat,
bulb and strtr are shown as blue, green and red
points respectively, when viewed in color.  Figure 5
is a superposition of plots (1,2), (1,3) and (1,4) of
Figure 5. However, Figure 5 is more than just a
superposition. Inspecting Figure 5 closely, we see
that there are always a red, green and blue point
corresponding to each realized value on the vertical
axis. Thus at the very top there is  a green point at

ign-head = 238 and bulb slightly greater than zero.
There are blue and red points also corresponding to
ign-head = 238. These three points correspond to
the same sample. Indeed, ign-head attains its
maximum value when strtr is very large and bulb is
very small . If a value of ign-head is realized twice,
then there will be two triples of blue-green-red
points on a horizontal li ne corresponding to this
value, and it is impossible to resolve the two
separate data points. For ign-head = 0, there are
about 300 realizations.
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The distribution underlying Figure 4 is six
dimensional. Figure 4 does not show this
distribution, but rather shows 36 two-dimensional
projections from this distribution. Figure 5 shows
more than a collection of two dimensional
projections, as we can sometimes resolve the
individual data points for bat bulb, strtr and ign-
head, but it does not enables us to resolve all data
points.  The full distribution is shown in cobweb
plots.

5. COBWEB PLOTS
The uncertainty analysis program UNICORN
contains a graphical feature that enables interactive
visualization of a moderately high dimensional
distribution. Our sample problem contains six
random variables. Suppose we represent the

possible values of these variables as parallel
vertical li nes. One sample from this distribution is
a six-vector. We mark the six values on the six
vertical li nes and connect the marks by a jagged
line. If we repeat this 1000 times we get Figure 6
below. We can recognize the exponential
distributions of bat, bulb and strtr. Ignitn and
headlite, being the minimum of independent
exponentials, are also exponential. Ign-head has a
more complicated distribution. The graphs at the
top are the ‘cross densities’ ; they show the density
of line crossings midway between the vertical axes.
The role of these in depicting dependence becomes
clear when we transform the six variables to ranks
or percentiles, as in Figure 7:

Line shading is introduced to identify  the four
quartiles of the left most variable. A number of
striking features emerge when we transform to the
percentile cobweb plot. First of all , there is a
curious hole in the distribution of ign-head. This is
explained as follows. On one third of the samples,
bat is the minimum of {bat, bulb, strtr}. On these
samples ignitn=headlite and ign-head = 0. Hence
the distribution of  ign-head has an atom at zero
with weight 0.33.  On one-third of the samples strtr
is the minimum and on these samples ign-headlite
is negative, and on the remaining third bulb is the
minimum and ign-head is positive. Hence, the atom
at  zero means that the percentiles 0.33 up to 0.66
are all equal to zero. The first positive number is
the 67-th percentile.

Figure 6
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Figure 7

Note the cross densities in Figure 7. One can show
the following for two adjacent continuously
distributed variables X and Y in a percentile
cobweb plot1:

• If the rank correlation between X and Y = 1 then
the cross density is uniform
• If X and Y are independent (rank correlation 0)
then the cross density is triangular
• If the rank correlation between X and Y = -1,
then the cross density is a spike in the middle.

Intermediate values of the rank correlation yield
intermediate pictures. The cross density of ignitn
and headlite tends toward uniform, and the rank
correlation between these variables is 0.42.

Cobweb plots support interactive
conditionalization; that is, the user can define
regions on the various axes and select only those
samples which intersect the chosen region. Figure 8
shows the result of conditionalizing on ign-head =
0, Notice that if  ign-head = 0, then bat is almost
always the minimum of {bat,bulb,strtr}, and ignitn

                                                          
1 These statements are easily proved with a remark by Tim
Bedford. Notice that the cross density is the density of X+Y,
where X and Y are uniformly distributed on the unit square.
If X and Y have rank correlation 1, then X+Y is uniform
[0,2]; if they have rank correlation -1 then X + Y = 1; if X
and Y are independent then the mass for X+Y=a is
proportional to the length of the segment x+y=a.

is almost always equal to headlite. This is reflected
in the conditional rank correlation between ignitn
and headlite almost equal to 1. We see that the
conditional correlation as in Figure 8 can be very
different from the unconditional correlation of
Figure 7. From Figure 8 we also see that bat is
almost always less than bulb and strtr.

Cobweb plots allow us to examine local sensitivity.
Thus  we can say, suppose ign-head is very large,
what values should the other variables take? The
answer is gotten simply by conditionalizing on high
values if ign-head. Figure 9 shows
conditionalization on high values of ign-head,
Figure 10 conditionalizes on low values. If ign-
head is high, then  bat, strtr and ignitn must be
high. If ign-head is low then bat, bulb and headlite
must be high. Note that bat is high in one case and
low in the other. Hence, we should conclude that
bat is very important both for high values and for
low values of ign-head. This is a different
conclusion than we would have drawn if we
considered only the rank correlations of Figures 1
and 2

These facts can also be readily understood from the
formulae themselves. Of course the methods come
into their own in complex problems where we
cannot see these relationships immediately from the
formula. The graphical methods then draw our
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attention to patterns which we must then seek to
understand.
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