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ABSTRACT: We discuss graphicd methods which may be employed genericdly for uncertainty and
sensitivity analysis. This field is rather new, and the literature reveds very little in the way of theoreticd
development. Perhaps it is the nature of these methods that one simply ‘sees’ what is going on. Apart from
statistica reference books [Cleveland, 1993 which focus on visualizing data, the main sources for graphicd
methods are software padckages. Our focus is visualization to suppat uncertainty and sensitivity analysis. A
simple problem for illustrating four generic graphica techniques, namely tornado graphs, radar plots,
multi ple scétter plots, and cobweb pads. Uncertainty analysis codes, with o withou graphic fadliti es, were
benchmarked in a recent workshop d the technicd committee Uncertainty Modelling of the European Safety
and Reliability Association. The report [Cooke 1997 contains descriptions and references to the ades, as
well as simple test problems. An extended version of this paper will appear in [Saltelli appearing].

1. ASIMPLE PROBLEM

The following problem has been developed for the
Cambridge Course for Induwstry, Dependence
Modeing and Risk Management [Cambridge
Coursefor Industry 1998, and it servesto ill ustrate
the generic techniques. Suppcse we ae interested
in how long a ca will start after the headli ghts have
stopped working. We build a simple reliability
model of the car consisting of three components:
the battery (bat), the headlight lampbub (bulb), the
starter motor (strtr). The headlight fail s when either
the battery or the bulb fail. The ca’signition fails
when either the battery or the starter motor fail.
Thus considering bat, bub and strtr as life
variables:

headlite = min(bat, bub), ignitn = min(bat, strtr).
The variable of interest is then ign-head = ignitn -
heallite. Note that this quantity may be ather
positive or negative, and that it equals zero
whenever the battery fails before the bulb and
before the starter motor.

We shall assume that bat, bub and strtr are
independent exporential  variables with unt
expeded lifetime. The questionis, which variable
Is most important to the quantity of interest ign-
head?

2. TORNADO GRAPHS

Tornado graphs are simply bar graphs arranged
verticdly in order of descending absolute value.
The spreadshed add-on Crysta Ball performs
uncertainty analysis and gives graphic output for
sensitivity analysis in the form of tornado graphs
(withou using this designation). After seleding a
‘target forecast variable’, in this case ign-head,
Crystal Ball shows the rank correlations of other
inpu variables and aher forecast variables as in
Figure 1.

The values, in this case rank correlation
coefficients, are aranged in deaeasing order of
absolute value. Hence the variable strir  with rank
correlation 0.56 is first, and bub with rank
correlation -0.54 is =ond, and so on. When
influence on the target variable, ign-hea, is
interpreted as rank correlation, it is easy to pick
out the most important variables from such graphs.
Note that bat is shown as having rank correlation 0
with the target variable ign-head. This would
suggest that bat was completely unimportant for
ign-head.
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3. RADAR GRAPHS

Radar graphs provide another way of showing the
information in Figure 1. Figure 2 shows a radar
graph made in EXCEL by entering the rank
correlations from Figure 1. Eadh variable
corresponds to aray in the graph. The variable with
the highest rank correlationis plotted furthest from
the midpant, and the variable with the lowest rank
correlation is plotted closest to the midpant. The
red value of radar plots lies in their ability to
hande alarge number of variables. Figure 3 is a
radar plot showing six variables of interest
(radiation dcse to various organs) in dfferent
colors, against 161 explanatory variables
[Goosens et a 1997. In A3 it is possble to view
all this information at one time.
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4. MULTIPLE SCATTER PLOTS

Statisticd padkages suppat varieties of scater
plots. For example, SPSS provides a multiple
scater plot fadlity. Simulation dita produced by
UNICORN for 1000 samples has been rea into
SPSSo producethe plot matrix shown in Figure 6.
We seepairwise scdter plots of the variablesin our
problem. The first row, for example, shows the
scater plots of ign-head and, respedively, bat,
bulb, strtr, ignitn and headlite.

Figure 4 contains much more information than
Figure 1. Let (a,b) dencte the scater plot in row a
and column b, thus (1,2) denctes the second pot in
the first row with ign-head onthe verticd axis and
bat onthe horizontal axis. Note that (2,1) shows the
same scdter plot, bu with bet on the verticd and
ing-head on the horizontal axes.

Althowh Figure 1 suggested that bat was
unimportant for ign-head, Figure 4 shows that the
value of bat can say a gred ded abou ign-heal.
Thus, if bat assumes its lowest passble value, then
the values of ign-heal are severely constrained.
This refleds the fad that if bat is gnaller than bub
and strtr, then ignitn = heallite, and ign-head = 0.
From (1,3) we seethat large values of bulb tend to
asociate with small values if ign-head; if bulb is
large, then the headlight may live longer than the
ignition making ign-heal negative. Similarly, (1,4)
shows that large values of strir are asociated with
large values of ign-heal. These fads are refleded
in the rank correlations of Figure 1.

In spite of the @owve remarks, the relation between
rank correlations depicted in Figure 1 and the
scatter plots of Figure 4 is not dired. Thus, bat and
bulb are statisticaly independent, but if we look at
(2,3), we might infer that high values of bat tend to
associate with low values of bulb. This however is
an artifad of the smulation. There ae very few
very high values of bat, and as these ae
independent of bulb, the mrrespondng values of
bulb are not extreme. If we had a scater plot of the
rank of bat with the rank of bulb, then the points
would be uniformly distributed on the unit square.
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Figure 4

Figure 5 shows an owerlay scater plot. Ign-heal is
depicted onthe verticd axis, and the values for bat,
bulb and strtr are shown as blue, green and red
points respedively, when viewed in color. Figure5
Is a superpasition d plots (1,2), (1,3 and (1,4) of
Figure 5. However, Figure 5 is more than just a
superpasition. Inspeding Figure 5 closely, we see
that there ae dways a red, green and Hue paint
correspondng to ead redized value on the verticd
axis. Thus at the very top there is a green pant at

ign-head = 238 and bub dlightly greaer than zero.
There ae blue and red pants also correspondng to
ign-head = 238. These three points correspond to
the same sample. Indeel, ign-head attains its
maximum value when strtr is very large and bub is
very small. If avalue of ign-heal is redized twice
then there will be two triples of blue-green-red
points on a horizontal line @rrespondng to this
value, and it is impaossble to resolve the two
separate data points. For ign-head = 0, there ae
about 300 realizations.
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The distribution unarlying Figure 4 is 8x
dimensiona. Figure 4 dces not show this
distribution, bu rather shows 36 two-dimensional
projedions from this distribution. Figure 5 shows
more than a lledion d two dmensiond
projedions, as we cax sometimes resolve the
individual data points for bat bulb, strtr and ign-
head, bu it does not enables us to resolve dl data
points. The full distribution is siown in cobweb
plots.

5. COBWEB PLOTS

The uncetainty anaysis program UNICORN
contains a graphicd fedure that enables interadive
visualization d a moderately high dmensional
distribution. Our sample problem contains sx
randam variables. Suppse we represent the

Model: ETRTLITE: A000 sanmples of 1000 total

possble values of these variables as pardlé
verticd lines. One sample from this distribution is
a six-vedor. We mark the six values on the six
verticd lines and conred the marks by a jagged
line. If we reped this 1000 times we get Figure 6
below. We can rewmgnize the eporentia
distributions of bat, bub and strtr. Ignitn and
healite, being the minimum of independent
exporentials, are dso exporentia. Ign-heal hes a
more @mplicated dstribution. The graphs at the
top are the ‘crossdensities’; they show the density
of line @ossngs midway between the verticd axes.
The role of these in depicting dependence beames
clea when we transform the six variables to ranks
or percentiles, as in Figure 7:

Line shading is introduced to identify the four
quartiles of the left most variable. A number of
striking fedures emerge when we transform to the
percentile mbweb pot. First of al, there is a
curious hole in the distribution d ign-head. Thisis
explained as follows. On ore third of the samples,
bat is the minimum of {bat, bub, strtr}. On these
samples ignitn=heallite and ign-head = 0. Hence
the distribution d ign-heal has an atom at zero
with weight 0.33. On ore-third of the samples grtr
is the minimum and onthese samples ign-heallite
is negative, and onthe remaining third bub is the
minimum and ign-head is positive. Hence, the aom
at zero means that the percentiles 0.33 upto 0.66
are dl equal to zero. The first positive number is
the 67-th percentile.
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Figure 6
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Note the qossdensities in Figure 7. One can show
the following for two adjacent continuowsly
distributed variables X and Y in a percentile
cobweb plot

 If therank correlation between X andY = 1 then
the cross density is uniform

* If X and Y are independent (rank correlation 0
then the cross density is triangular

» If the rank correlation between X and Y = -1,
then the cross density is a spike in the middle.

Intermediate values of the rank correlation yield
intermediate pictures. The aoss density of ignitn
and heallite tends toward uriform, and the rank
correlation between these variables is 0.42.

Cobweb plots suppat interadive
condtionalization; that is, the user can define
regions on the various axes and seled only thaose
samples which intersed the dhosen region. Figure 8
shows the result of condtionalizing on ign-head =
0, Notice that if ign-heal = 0O, then bet is amost
always the minimum of {bat,bub,strtr}, and ignitn

! These statements are easily proved with a remark by Tim

Bedford. Notice that the cross density is the density of X+Y,

where X and Y are uniformly distributed on the unit square.
If X and Y have rank correlation 1, then X+Y is uniform
[0,2]; if they have rank correlation -1 then X + Y =1; if X
and Y are independent then the mass for X+Y=a is
proportional to the length of the segment x+y=a.

is aimost aways equal to heallite. Thisis refleded
in the ondtiona rank correlation between ignitn
and heallite dmost equal to 1. We see that the
condtiona correlation as in Figure 8 can be very
different from the uncondtional correlation o
Figure 7. From Figure 8 we dso see that bat is
almost always less than bulb and strtr.

Cobweb plots allow us to examine locd sensitivity.
Thus we can say, suppcse ign-hea is very large,
what values doud the other variables take? The
answer is gotten simply by condtionalizing on high
vaues if ign-head. Figure 9  shows
condtiondization on hgh values of ign-head,
Figure 10 condtionalizes on low values. If ign-
hea is high, then bet, strtr and ignitn must be
high. If ign-head is low then bat, bub and healite
must be high. Note that bat is high in ore cae and
low in the other. Hence we shoud conclude that
bat is very important bath for high values and for
low values of ign-head. This is a different
concluson than we would have drawn if we
considered orly the rank correlations of Figures 1
and 2

These fads can aso be reaily understood from the
formulaethemselves. Of course the methods come
into their own in complex problems where we
canna seethese relationships immediately from the
formula. The graphicd methods then draw our
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