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Abstract

Data mining is the process of extracting and analysing information from large databases. Graph-
ical models are a suitable framework for probabilistic modelling. A Bayesian Belief Net(BBN) is a
probabilistic graphical model, which represents joint distributions in an intuitive and efficient way.
It encodes the probability density (or mass) function of a set of variables by specifying a number of
conditional independence statements in the form of a directed acyclic graph. Specifying the structure
of the model is one of the most important design choices in graphical modelling. Notwithstanding
their potential, there is only a limited number of applications of graphical models on very complex
and large databases. A method for mining ordinal multivariate data using non-parametric BBNs is
presented. The main advantage of this method is that it can handle a large number of continuous
variables, without making any assumptions about their marginal distributions, in a very fast manner.
Once the BBN is learned from data, it can be further used for prediction. This approach allows for
rapid conditionalisation, which is a very important feature of a BBN from a user’s standpoint.
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1 Introduction

An ordinal multivariate data set is one in which the numerical ordering of values for each variable is
meaningful. A database of street addresses is not ordinal, but a database of fine particulate concen-
trations at various measuring stations is ordinal; higher concentrations are harmful to human health.
We describe a method for mining ordinal multivariate data using non-parametric Bayesian Belief Nets
(BBNs), and illustrate this with ordinal data of pollutants emissions and fine particulate concentrations.
The data are gathered from electricity generating stations and from collection sites in the United States
over the course of seven years (1999 - 2005). The database contains monthly emissions of SO2 and NOx
at different locations, and monthly means of the readings of PM2.5 concentrations at various monitor-
ing sites. SO2 is the formula for the chemical compound sulfur dioxide. This gas is the main product
from the combustion of sulfur compounds and is of significant environmental concern. NOx is a generic
term for mono-nitrogen oxides (NO and NO2). These oxides are produced during combustion, especially
combustion at high temperatures. The notation PM2.5 is used to describe particles of 2.5 micrometers
or less in diameter.

There are 786 emission stations and 801 collection sites. For most emission stations there is informa-
tion on emissions of both SO2 and NOx, but for some we only have information about one or the other.
This data set allows us to relate the emissions with the air quality and interpret this relationship.

Let us assume that we are interested in the air quality in Washington DC and how is this influenced
by selected power plant emissions (see Figure 1). Additional variables that influence the PM2.5 concen-
tration in Washington DC are the meteorological conditions. We incorporate in our analysis the monthly
average temperature, the average wind speed and wind direction.

Figure 1: Selected power plant emissions.

Definitions and concepts are introduced in Section 2, but suffice to say now that BBNs are directed
acyclic graphs where an arrow connecting a parent node to a child node indicates that influence flows
from parent to child. A BBN for Washington DC ambient PM2.5 is shown in Figure 2. This model
is similar to the one described and analysed in [25]. It involves the same 14 variables as nodes, but
the arcs between them are different. There are 5 emission stations in the following locations: Richmond,
Masontown, Dumfries, Girard and Philadelphia. For each such station, there are 2 nodes in the BBN. One
corresponds to the emission of SO2, and the other to the emission of NOx. The variable of interest is the
PM2.5 concentration in Washington DC (DC monthly concPM25). There are 3 nodes that correspond
to the meteorological conditions, namely the wind speed, wind direction and the temperature in DC.
Conditional independence relations are given by the separation properties of the graph (see Section 5);
thus nox Philadelphia and DC WindDir are independent conditional on DC Temp and DC WindSpeed. The
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methodology is designed specifically to handle large numbers of variables, in the order of several hundreds
(see [24]), but a smaller number of variables is more suitable for explaining the method.

Figure 2: BBN for Washington DC ambient PM2.5.

Most BBNs are discrete and arrows represent mathematical relationships in form of conditional proba-
bility tables. If the number of possible values for nodes is modestly large (in the order 10) such models
quickly become intractable. Thus, a variable like DC monthly concPM25 (see Figure 2) with all variables
discretised to 10 possible values, would require a conditional probability table with 109 entries. So-called
discrete continuous BBNs [6] allow continuous nodes with either continuous or discrete parents, but they
assume that the continuous nodes are joint normal. Influence between continuous nodes is represented as
partial regression coefficients [27; 33]. The restriction to joint normality is rather severe. Figure 3 shows
the same BBN as Figure 2, but the nodes are replaced by histograms showing the marginal distributions
at each node. They are far from normal. Our approach discharges the assumption of joint normality and

Figure 3: Washington DC ambient PM2.5 BBN with histograms.
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builds a joint density for ordinal data using the joint normal copula. This means that we model the data
as if it were transformed from a joint normal distribution. Influences are represented as (conditional)
Spearman’s rank correlations according to a protocol explained in Section 2. Other copulas could be used,
but (to our knowledge) only the joint normal copula affords the advantages of rapid conditionalisation,
while preserving the (conditional) independence for zero (conditional) correlation. Conditionalisation is
performed on the transformed variables, which are assumed to follow a joint normal distribution, hence
any conditional distribution will also be normal with known mean and variance. Finding the conditional
distribution of a corresponding original variable will just be a matter of transforming it back using the
inverse distribution function of this variable and the standard normal distribution function [8].

Rapid conditionalisaion is a very important feature of a BBN from a user’s standpoint. To illus-
trate, Figures 4 and 5 show the result of conditionalising the joint distribution on cold weather (275K)
in Washington and low (Figure 4) and high (Figure 5) concentrations of PM2.5 in Washington. The
differences between the emitters’ conditional distributions (black), and the original ones (gray), caused
by changing the concentration, are striking, in spite of the relatively weak correlations with Washington’s
concentrations.

Of course, rapid computations are of little value if the model itself cannot be validated. Validation
involves two steps:

1. Validating that the joint normal copula adequately represents the multivariate data, and

2. Validating that the BBN with its conditional independence relations is an adequate model of the
saturated graph.

Validation requires an overall measure of multivariate dependence on which statistical tests can be based.
The discussion in Section 3.2 leads to the choice of the determinant of the correlation matrix as an overall
dependence measure. This determinant attains the maximal value of 1 if all variables are uncorrelated,
and attains a minimum value of 0 if there is linear dependence between the variables. We briefly sketch
the two validation steps for the present example. Since we are dealing with copulae models, it is more
natural to work with the determinant of the rank correlation matrices.

If we convert the original fine particulate data to ranks and compute the determinant of the empirical
rank correlation matrix (DER) we find the value 0.1518E-04. To represent the data with a joint normal
copula, we must transform the marginals to standard normals, compute the correlation matrix, and
compute the determinant of the normal rank correlation matrix (DNR) using Pearson’s transformation
(see Section 2). This relation of correlation and rank correlation is specific to the normal distribution
and reflects the normal copula. DNR is not in general equal to DER. In this case DNR = 0.4506E-04.
Use of the normal copula typically introduces some smoothing into the empirical joint distribution, and
this is reflected in a somewhat higher value of the determinant of the rank correlation matrix.

We can test the hypothesis whether this empirical rank distribution came from a joint normal copula
in a straightforward way. We determine the sampling distribution of the DNR by simulation. Based on
1000 simulations, we find that the 90% central confidence interval for DNR is [0.0601E-04, 0.4792E-04].
The hypothesis that the data were generated from the joint normal copula would not be rejected at the
5% level.

DNR corresponds to the determinant of the saturated BBN, in which each variable is connected
with every other variable. With 14 variables, there are 91 arcs in the saturated graph. Many of these
influences are very small and reflect sample jitter. To build a perspicuous model we should eliminate
noisy influences.

The BBN of Figure 2 has 26 arcs. To determine whether these 26 arcs are sufficient to represent
the saturated graph, we compute the determinant of the rank correlation matrix based on the BBN
(DBBN). This differs from DNR, as we have changed many correlations to zero and introduced conditional
independencies. In this case, DBBN = 1.5092E-04. We determine the sampling distribution of the DBBN
by simulation. Based on 1000 simulations, we find that the 90% central confidence interval for DBBN is
[0.2070E-04, 1.5905E-04]. DNR is within the above mentioned 90% central confidence band. A simpler
BBN involving only 22 arcs is shown in Figure 6. It has a DBBN of 4.8522E-04. The 90% central
confidence interval for this DBBN is [0.7021E-04, 5.0123E-04]. This interval does not contain DNR and
would be rejected.
In general, changing correlations disturbs the positive definiteness of the rank correlation matrix. More-
over, the nodes connected in a BBN represent only a portion of the correlations. We can apply simple

4



Figure 4: Conditionalisation on low concentration of PM2.5 for Washington DC and cold weather.

Figure 5: Conditionalisation on high concentration of PM2.5 for Washington DC and cold weather.
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Figure 6: Simplified BBN with 22 arcs.

heuristics to search for a suitable BBN model without becoming embroiled in matrix completion and posi-
tive definitness preservation because of the way we represent joint distributions in a BBN. The conditional
rank correlations in a BBN are algebraically independent and, together with the graphical structure and
marginal distributions, uniquely determine the joint distribution. These facts have been established in
[8] and are reviewed in Section 2. The key notion is to link a BBN with a nested sequence of regular vines.

In Section 3.1 we present a short overview of the existing methods for learning the structure of a BBN
from data. In order to introduce our approach we need to select a measure of multivariate dependence.
Section 3.2 contains a discussion of various such measures. In Section 3.3 we introduce our learning
algorithm, and in Section 4 we present this approach using the database of pollutants emissions and fine
particulate concentrations. In the last part of this paper we discuss alternative ways to calculate the
correlation matrix of a BBN and illustrate how these may speed up the updating algorithm.

2 Definitions & Preliminaries

In this section we present, in a more formal fashion, concepts that are used in learning the structure
of a BBN. We discuss non-parametric continuous BBNs and their relationship with the graphical model
vines.

A BBN encodes the probability density (or mass) function of a set of variables by specifying a number
of conditional independence statements in a form of a directed acyclic graph and a set of conditional
distribution functions of each variable given its parents in the graph. In Figure 2 we see that the variable
so2 Richmond does not have any parents but is a parent of nox Richmond, and of DC monthly concPM25.
nox Richmond (or DC monthly concPM25) is called a child of so2 Richmond. In non-parametric continuous
BBNs nodes represent continuous variables with invertible distribution functions and arcs are associated
with (conditional) rank correlations. Therefore, every arc in the BBN is assigned a (conditional) rank
correlation between parent and child. For example, in Figure 2 the arc between nox Philadelphia and
its parent DC Temp is associated with the rank correlation between these variables equal to 0.26. The
arc between nox Philadelphia and its other parent DC WindSpeed is associated with the rank correlation
between these variables, conditional on DC Temp, the parent with which the correlation has been already
assigned (for details see [18]). In general, if we denote with i the node nox Philadelphia, and with j,
DC WindSpeed, then DC Temp is denoted Dij and it represents the conditioning set for the arc between
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nodes i and j. The value of this conditional rank correlation is 0.33. An important result is that the
assignment of (conditional) rank correlations to the arcs of a BBN is unconstrained, meaning that we
can assign to these arcs any number between -1 and 1 and each such assignment will be consistent. This
property follows from a close relationship between non-parametric continuous BBNs with vines.

Vines were introduced in [4; 1]. A vine on n variables is a nested set of trees. The edges of the jth

tree are the nodes of the (j + 1)th tree, and each tree has the maximum number of edges. A regular vine
on n variables ia a vine on which two edges in tree j are joined by an edge in tree j + 1 only if these
edges share a common node. Further in this paper, whenever we speak of vines, we mean regular vines.

Figure 7 shows a vine that represents the same joint distribution as the BBN in Figure 2. We replaced
the name of each variable by its number in a sampling order. The numbers from 14 to 1 correspond
to DC monthly concPM25, nox Dumfries, nox Richmond, so2 Philadelphia, so2 Dumfries, nox Philadelphia,
nox Masontown, DC WindSpeed,DC WindDir, nox Girard, so2 Richmond, DC Temp, so2 Girard, so2 Mason-
town, respectively. For each edge of the vine we distinguish a constraint, a conditioning, and a conditioned
set. Variables reachable from an edge via the membership relation, form its constraint set. If two edges
are joined by an edge in the next tree the intersection and symmetric difference of their constraint sets
give the conditioning and conditioned sets, respectively. For example, the edges (10, 9) and (9, 8) of the
vine from Figure 7, are joined by an edge in the second tree. The conditioned set of this edge is (10, 8)
and the conditioning set is (9).

r10,9

r10,8|9

r98 r87 r76

r97|8

r10,7|98

r54 r43 r32 r21

r53|4 r42|3 r31|2

r52|43 r41|32

r86|7 r75|6 r64|5

r96|87 r85|76 r74|65 r63|54

r10,6|987 r95|876 r84|765 r73|654 r51|432r62|543

r10,5|9876 r94|8765 r83|7654 r72|6543 r61|5432

r10,4|98765 r93|87654 r82|76543 r71|65432

r10,3|987654 r92|876543 r81|765432

r10,2|9876543 r91|8765432

r11,2|10,9876543

r65r14,13

r14,12|13

r13,12 r12,11 r11,10

r13,11|12 r12,10|11 r11,9|10

r14,11|13,12 r13,10|12,11 r12,9|11,10 r11,8|10,9

r14,10|13,12,11 r13,9|12,11,10 r12,8|11,10,9 r11,7|10,98

r14,9|13,12,11,10 r13,8|12,11,10,9 r12,7|11,10,98 r11,6|10,987

r14,8|13,12,11,10,9 r13,7|12,11,10,98 r12,6|11,10,987 r11,5|10,9876

r14,7|13,12,11,10,98 r13,6|12,11,10,987 r12,5|11,10,9876

r14,6|13,12,11,10,987 r13,5|12,11,10,9876

r14,5|13,12,11,10,9876

r11,4|10,98765

r12,4|11,10,98765 r11,3|10,987654

r13,4|12,11,1098765 r12,3|11,10,987654 r10,1|98765432

r14,4|13,12,11,10,98765 r13,3|12,11,10,987654 r12,2|11,10,9876543 r11,1|10,98765432

r14,3|13,12,11,10,987654 r13,2|12,11,10,9876543 r12,1|11,10,98765432

r14,2|13,12,11,10,9876543 r13,1|12,11,10,98765432

r14,1|13,12,11,10,98765432

Figure 7: Vine for Washington DC ambient PM2.5.

Each edge of this regular vine is associated with a (conditional) rank correlation, denoted by r, just
like the arcs of the BBN. These (conditional) rank correlations can be arbitrarily chosen in the interval
[−1, 1]. Using a copula to realise them, a joint distribution satisfying the copula-vine specification can
be constructed and it will always be consistent.

The joint distribution of a set of variables can be graphically represented as a BBN or as a regular
vine, in an equivalent way. Both in the BBN and in the vine, one will have to specify the (conditional)
rank correlations associated with the edges. In some cases these two structures require exactly the same
(conditional) rank correlations. But this is not always the case. If a (conditional) rank correlation
specification is available for the arcs of a BBN, this can be translated to a specification for the vine. This
is true when using non-constant conditional copulae (hence non-constant conditional correlations). In the
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case of normal copula, it is also true for constant conditional correlations. In the process of translating
a rank correlation specification for a BBN into a rank correlation specification for a vine additional
computations may be required. For arbitrary choice of copula this can constitute a big disadvantage in
terms of computational complexity. However for the normal copula this disadvantage vanishes [8], as we
can always recalculate required correlations for a given ordering of the variables. This is due to a number
of properties of the normal copula that are discussed below.

Some important properties of vines translate almost immediately to corresponding properties of non-
parametric BBNs. We will further present these properties.

Each vine edge may be associated with a partial correlation. The result is a partial correlation vine
specification. Partial correlations are defined as geometric averages of partial regression coefficients [36].
They can be calculated from correlations in the correlation matrix using the following recursive formula
for partial correlation [18]:

ρ12;3,...,n =
ρ12;4,...,n − ρ13;4,...,n · ρ23;4,...,n

((1− ρ2
13;4,...,n) · (1− ρ2

23;4,...,n))
1
2
. (2.1)

In [1] it is shown that each such partial correlation vine specification uniquely determines the correlation
matrix, and every full rank correlation matrix can be obtained in this way.

A partial correlation vine specification does not uniquely specify a joint distribution, moreover a given
set of marginal distributions may not be consistent with a given set of partial correlations. Nevertheless
there is a joint distribution satisfying the specified information [1]. For example a joint normal distribu-
tion. The joint normal copula has a well known property inherited from the joint normal distribution
namely: the zero partial correlation is sufficient for conditional independence. In general, conditional in-
dependence is neither necessary, nor sufficient for zero partial correlation [17]. This property of the joint
normal variables follows from two facts: the partial correlation is equal to the conditional correlation
and zero conditional correlation means conditional independence. Moreover, the relationship between
the product moment correlation (ρ) and the rank correlation (r) for joint normal, is given by Pearson’s
transformation [29]: ρ(X,Y ) = 2 sin(π6 · r(X,Y )), and it translates these properties to normal copula.

Vines are actually a way of factorising the determinant of the correlation matrix. For any vine on n
variables, the product of one minus squared partial correlations assigned to the edges of the vine, is the
same, and equal to the determinant of the correlation matrix [18]:

D =
∏

e∈E(V)

(
1− ρ2

e1,e2;De

)
, (2.2)

where E(V) is the set of edges of the vine V, De denotes the conditioning set associated with edge e, and
{e1, e2} is the conditioned set of e.

The key notion in the derivation of equation 2.2 is the multiple correlation and its relationship with
partial correlations. The multiple correlation R1:2,...,n of variable 1 with respect to 2, ..., n is:

1−R2
1:2,...,n =

D

C11
,

where D is the determinant, and C11 is the (1,1) cofactor of the correlation matrix C. It is the correlation
between 1 and the best linear predictor of 1 based on 2, ..., n. It is easy to show that [18]:

D =
(
1−R2

1:2,...,n

) (
1−R2

2:3,...,n

)
...
(
1−R2

n−1:n

)
. (2.3)

In [16] it is shown that R1:2,...,n is non negative and satisfies:

1−R2
1:2,...,n = (1− ρ2

1n)(1− ρ2
1n−1;n)(1− ρ2

1n−2;n−1,n)...(1− ρ2
12;3,...,n).

A similar factorisation of the determinant of the correlation matrix holds for the partial correlation
specification for BBNs. This factorisation plays a central role in model inference from Section 3.

Theorem 2.1. Let D be the determinant of an n-dimensional correlation matrix (D > 0). For any
partial correlation BBN specification

D =
∏(

1− ρ2
ij;Dij

)
,

where ρij;Dij
is the partial correlation associated with the arc between nodes i and j, with conditioning set

Dij, and the product is taken over all arcs in the BBN.
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Proof. To prove this fact we will use the connection between BBNs and vines. If the BBN can be
represented as a vine with the same partial correlation specification on its edges, the result follows from
equation 2.2. If this is not the case, namely if the partial correlation specification for the vine differs
from the one for the BBN, we will use equation 2.2 sequentially. Let us assume that we have a sampling
order for the variables. Without loss of generality we may consider this order as being 1, 2, ...n. We
will construct a vine for these variables which contains: variable n, the parents of variable n, and the
variables independent of n given its parents in the BBN (in this order). For example, let us consider the
BBN from Figure 8a. A sampling order of these variables is 1,2,3,4. The vine corresponding to this BBN
is shown in Figure 8b.

1 3

42

ρ31

ρ21

ρ42

ρ43;2

(a) Partial correlation speci-
fication BBN on 4 variables.

32 14

0

ρ42

ρ21;3

ρ23 ρ31

ρ43;2

(b) Partial correlation specifica-
tion vine on 4 variables.

12 3
ρ21 ρ31

0

(c) Partial correlation
specification vine on
the last 3 variables.

Figure 8: The connection between a partial correlation BBN specification and a partial correlation vine
specification.

The BBN and the vine constructed as above will have the same correlation matrix. The determinant of
the correlation matrix can be calculated using equation 2.2. The construction of the vine in this specific
way, ensures that the non-zero partial correlations that have variable X4 in the conditioned set, i.e. ρ42,
ρ43;2, are the same as the ones associated to the arcs between X2 and X4, and between X3 and X4. Using
the conditional independence statements on the BBN and the normal copula, we know ρ41;23 = 0.

In the general case, the non-zero partial correlations that have variable n in the conditioned set
correspond to partial correlations associated to the arcs of the BBN that connect n with its parents.
Therefore, the determinant of the correlation matrix will be a product that contains 1 minus these
partial correlations squared. The rest of the terms in this product correspond to the determinant of the
correlation matrix of first n− 1 variables. For the particular case above:

D =
(
1− ρ2

42

) (
1− ρ2

43;2

) [(
1− ρ2

23

) (
1− ρ2

31

) (
1− ρ2

21;3

)]
.

The product of the last 3 terms corresponds to the determinant of the correlation matrix of X1, X2, X3.
We can now reorder the variables and construct the vine from Figure 8c. Then:(

1− ρ2
23

) (
1− ρ2

31

) (
1− ρ2

21;3

)
=
(
1− ρ2

21

) (
1− ρ2

31

) (
1− ρ2

32;1

)
=
(
1− ρ2

21

) (
1− ρ2

31

)
.

For any regular vine on n − 1 variables, the product of 1 minus squared partial correlations assigned to
the edges of the vine is the same, hence we can reorder the variables such that they will correspond to
the ones from the edges of the BBN. If this is not possible for the entire vine on n−1 variables, we repeat
the previous step sequentially.

The above concepts and results will be used in our learning algorithm. A partial correlation BBN fully
characterises the correlation structure of the joint distribution and the values of the partial correlations
are algebraically independent. Unlike the correlations in a correlation matrix, the partial correlations in a
BBN need not satisfy an algebraic constraint like positive definiteness. Moreover, the partial correlation
BBN represents a factorisation of the determinant of the correlation matrix. The determinant of the
correlation matrix is a measure of linear dependence in a joint distribution. If all variables are indepen-
dent, the determinant is 1, and if there is linear dependence between the variables, the determinant is 0.
Intermediate values reflect intermediate dependence. Our learning algorithm will choose a structure for
which only arcs corresponding to large partial correlations are present. Thus we will remove arcs that
correspond to small partial correlations. Hence, we will change small partial correlations to zero while
disturbing the determinant as little as possible.
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3 Learning the Structure of a BBN

3.1 Overview of Existing Methods

Data mining is the process of extracting and analysing information from large databases. For discrete
data BBNs are often used as they describe joint distributions in an intuitive way and allow rapid condi-
tionalisation [6].

In the process of learning a BBN from data, two aspects are of interest: learning the parameters
of the BBN, given the structure, and learning the structure itself. We focus on structure learning. A
vast literature is available on this subject. Neither the space, nor the purposes of this article permits
a complete overview of existing learning methods. For example, we will omit from our discussion naive
BBNs.

Most of the current methods to learn the structure of a BBN focus on discrete or gaussian variables
[34]. There are two main classes of algorithms for learning the structure of a BBN. One class scores a
BBN structure based on how well it fits the data, and attempts to produce one that optimises the score.
A score function is used to choose the best model within the group of all possible models for the network.
This poses very difficult problems since the space of all possible structures is at least exponential in the
number of variables. Therefore computing the score of every BBN structure is not possible in all but the
most trivial domains. Instead, heuristic search algorithms are used in practice [20; 10].

The alternative approach uses constraints such as independence relations present in the data, to re-
construct the structure. A number of statistical conditional independence tests are conducted on the
data, and their results are used to make inferences about the structure [2; 34; 28].

Although many of these algorithms provide good results on some small data sets, there are still several
problems. One of these problems is that many algorithms require additional information, for example an
ordering of the nodes to reduce the search space (see [5]; [12]; [2] ). Unfortunately, this information is
not always available.

To our knowledge, the few methods that can handle non-parametric continuous variables (e.g.,[22])
can hardly be applied in domains with a large number of variables that are densely connected. Moreover
the existing BBN structure learning algorithms are slow, both in theory [3] and in practice e.g., most
constraint-based algorithms require an exponential number of conditional independence tests.

This motivates us to develop an algorithm for learning a BBN structure from data which is more
suitable for real world applications. Our goal is to learn the structure from an ordinal multivariate data
set that may contain a large number of variables. This learning algorithm will not make any assumptions
about the marginal distribution of the variables. We want to be able to learn such structures fast and
use them further, for prediction purposes.

The learning algorithm presented in Section 3.3 has been implemented into a software application,
called UniNet. UniNet allows for quantification of mixed discrete & non-parametric continuous BBNs
(the theory for non-parametric continuous BBNs is extended in [9] to include ordinal variables). The
program has a friendly interface and the simulations are very fast. BBNs with thousands of nodes can be
conditionalized on arbitrary values of random variables, whereby the conditional distribution is computed
in a few minutes. Moreover, UniNet will shortly be (freely) available on the Internet.

Comparisons of our method for learning the structure of a non-parametric continuous BBN with other
existing methods are difficult to conduct. There are several reasons for that. To our knowledge, in most
of the learning algorithms there are two approaches to deal with continuous variables. One is to assume
that the variables belong to a family of parametric distributions (e.g. [11]; [15] ), and the other one is to
use the discretised version of the variables (e.g. [7]). We use neither of the two methods.

An algorithm that deals with non-parametric continuous variables is proposed in [22]. The au-
thors of [22] develop a conditional independence test for continuous variables, which can be used by
any existing independence-based BBN structure learning algorithm. The method is evaluated on two
real-world data sets: BOSTON-HOUSING and ABALONE using the PC algorithm [34]. We inves-
tigate the structure obtained for the BOSTON-HOUSING data set. This data set is available at
http://archive.ics.uci.edu/ml/datasets.html. The data concerns housing values in suburbs of Boston.
It contains 14 variables (13 continuous variables and a binary one) and 506 samples. In the structure
presented in [22], the variable ZN is independent of all the others. If we calculate the empirical rank
correlation matrix we find that ZN is correlated with other variables with high correlations, e.g.: 0.615,
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-0.643, -0.635. This result proves to us that the method is inadequate for the problem so it would not be
useful to compare it with ours.

3.2 Multivariate Dependence Measures

Inferring the structure of a BBN from data requires a suitable measure of multivariate dependence. Mul-
tivariate dependence measures are discussed in [23; 14; 32]. In [23] Renyi’s axioms [31] for bivariate
dependence are extended for the multivariate case and some representation results are proven.

Although multivariate dependence measures are not the focus of the present study, it is convenient to
motivate the choice of such a measure by reference to a set of axioms similar to that of [23].

We propose a set of axioms that specify properties of a multivariate dependence measure. It is con-
venient to restrict such measures to the [0, 1] interval, with 1 corresponding to independence. D1,...,n

denotes such a measure. `(X1, ..., Xn) denotes the linear span of the variables (X1, ..., Xn), that is the set
of vectors which can be written as affine combinations of (X1, ..., Xn). n! is the set of all permutations of
{1, ..., n}; π is a permutation from n!; ⊥ {1, ..., n} says that the variables (X1, ..., Xn) are independent;
f1,...,n is the density of (X1, ..., Xn) and fi is the density of Xi.

We propose the following axioms:

AX 1 0 ≤ D1,...,n ≤ 1;
AX 2 ∀i, Di := 1;
AX 3 ∀π ∈ n!, D1,...,n = Dπ(1),...,π(n);
AX 4 K,J ⊆ {1, ..., n}, K ∩ L = ∅, XK ⊥ XJ =⇒ DK,J = DKDJ ;
AX 5.1 ⊥ {1, ..n} =⇒ D1,...,n = 1;
AX 5.2 ⊥ {1, ..n} ⇐⇒ D1,...,n = 1;
AX 6.1 X1 ∈ `(X2, ..., Xn) =⇒ D1,...,n = 0;
AX 6.2 D1,...,n = 0, D2,...,n > 0 =⇒ X1 ∈ `(X2, ..., Xn);
AX 7.1 X1 = g (X2, ..., Xn) on a set of positive measure, where g is a measurable function

=⇒ D1,...,n = 0;
AX 7.2 D1,...,n = 0, D2,...,n > 0 =⇒ X1 = g (X2, ..., Xn) on some set of positive measure.

We define a conditional dependence measure as:

D1,...,k;k+1,...,n =
D1,...,n

Dk+1,...,n
, Dk+1,...,n > 0.

Evidently

D1,...,n = D1;2,...,nD2;3,...,n...Dn−1;n;

where Dn−1;n = Dn−1n and we can specify a dependence measure by specifying the conditional depen-
dence measures.

We note that AX 4 is stronger than its corresponding axiom in [23], and AX 7.1 & AX 7.2 are a
bit weaker than their counterpart in [23]. Axioms 6.1 and 6.2 explicitly capture the notion of linear
dependence.

Proposition 3.1. D1,...,n = Det(C), with C the correlation matrix of X1, ..., Xn satisfies AX 1, AX 2,
AX 3, AX 4, AX 5.1, AX 6.1, AX 6.2.

Proof. Let D1,...,n = Det(C). The first three axioms and AX 5.1 are obvious. For AX 4, suppose the
correlation matrix has diagonal blocks C1,...,k and Ck+1,...,n. Let C1,...,k⊕1(k+ 1, ..., n) denote the n×n
matrix whose first k× k cells are C1,...,k, whose diagonal entries k+ 1, ..., n are 1’s, and whose other cells
are 0’s. Similarly, let 1(1, ..., k)⊕Ck+1,...,n denote the matrix whose first k diagonal entries are 1’s, whose
last k + 1, ..., n entries are Ck+1,...,n, and whose other cells are 0’s. Then:

Det(C) = Det (C1,...,k ⊕ 1(k + 1, ..., n)× 1(1, ..., k)⊕ Ck+1,...,n)
= Det (C1,...,k ⊕ 1(k + 1, ..., n))×Det (1(1, ..., k)⊕ Ck+1,...,n)
= Det(C1,...,k)×Det(Ck+1,...,n) = D1,...,kDk+1,...,n.
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To prove that axioms 6.1 and 6.2 hold, we use equation 2.3. D1,...,n is zero if and only if at lest one of
the multiple correlations in equation 2.3 is 1. If D2,...n > 0, then R2

1:2,...,n = 1, which means that X1 is
an affine combination of (X2, ..., Xn).

We will further discuss two other multivariate dependence measures. In order to introduce the first
one we will first define the concept of mutual information.

Definition 3.1. Let f and g be densities on IRn, with f absolutely continuous with respect to g;

• the relative information of f with respect to g is:

I(f |g) =
∫

1

...

∫
n

f(x1, ..., xn)ln
(
f(x1, ..., xn)
g(x1, ..., xn)

)
dx1...dxn.

• the mutual information of f is:

MI(f) = I(f |
n∏
i=1

fi).

If f is a joint normal density then: MI(f) = − 1
2 log(D), where D is the determinant of the correlation

matrix. This relation suggests that we can use e−2MI(f) as another multivariate dependence measure.
e−2MI(f) satisfies AX 5.2. In [13] it is shown that e−2MI(f) satisfies AX 7.1 and 7.2 (AX 6.2 is not
satisfied), moreover it is invariant under measurable and bijective transformations of each of the X

′

is.
Unfortunately, efficient methods for computing the sample MI are not available.

The multivariate Spearman’s correlation [32] is sometimes proposed as a measure of multivariate
dependence. For bivariate dependence, the Spearman’s rank correlation is given by [26]:

r(X1, X2) = 12
∫ 1

0

∫ 1

0

C(u, v)dudv − 3 = 12
∫ 1

0

∫ 1

0

uvc(u, v)dudv − 3. (3.1)

where C(u, v) is the copula for X1,X2, and c(u, v) is the copula density. In higher dimensions the
appropriate generalisations of the two integrals in equation 3.1 are not equal and a variety of possible
generalisations exist [32]. In three dimensions the version based on the copula density reads [32]:

r(X1, X2, X3) = 8
∫ 1

0

∫ 1

0

∫ 1

0

uvwc(u, v, w)dudvdw − 1.

Using the bivariate elliptical copula [19] with a Markov multivariate copula that satisfies c(u, v, w) =
c(u, v)c(v, w), and using the fact that for the elliptical copula E(U |V = v) = vρ(U, V ), [18], it follows
that:

r(X1, X2, X3) = 2ρ(U, V )ρ(V,W )− 1.

This entails that if ρ(U, V ) = 0, then r(X1, X2, X3) = −1, which is difficult to interpret.

On the basis of the above discussion we conclude that the determinant of the correlation matrix is
a reasonable measure of multivariate dependence. In working with non-parametric BBNs, it is more
convenient to focus on the multivariate dependence in the copula.

3.3 Learning the Structure of a Non-Parametric BBN with the Normal Cop-
ula

Suppose we have a multivariate data set. We may distinguish:

• DER = the determinant of the empirical rank correlation matrix;

• DNR = the determinant of the rank correlation matrix obtained by transforming the univariate
distributions to standard normals, and then transforming the product moment correlations to rank
correlations using Pearson’s transformation (see Section 2);

• DBBN = the determinant of the rank correlation matrix of a BBN using the normal copula.
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DNR will generally differ from DER because DNR assumes the normal copula, which may differ from the
empirical copula. A rough statistical test for the suitability of DNR for representing DER is to obtain
the sampling distribution of DNR and check whether DER is within the 90% central confidence band of
DNR. If DNR is not rejected on the basis of this test, we shall attempt to build a BBN which represents
the DNR parsimoniously. Note that the saturated BBN will induce a joint distribution whose rank de-
terminant is equal to DNR, since the BBN uses the normal copula. However, many of the influences only
reflect sample jitter and we will eliminate them from the model.

Searching for a perspicuous model by eliminating arcs from the saturated graph is a data compression
technique, and may be compared with other compression techniques. Factor analysis [21] for example
seeks to express all variables as linear combinations of a smaller number of variables. Compression is
accomplished by lowering the rank of the correlation matrix. The method of model selection presented
in [35], in contrast, seeks to eliminate influences between variables i and j when the partial correlation
between them, given all other variables, is suitably small. In other words, the method from [35] com-
presses by setting partial correlations of maximal order equal to zero. However the zeroing operation may
perturb the positive definiteness of the correlation matrix. Both factor analysis and the method in [35]
assume a joint normal distribution. Here, the joint normality assumption is relaxed to the assumption
of a normal copula. Setting partial correlations in a BBN equal to zero does not encounter the prob-
lem of positive definiteness, due to the connection between BBN’s and regular vines described in Section 2.

If the BBN is not saturated, then DBBN > DNR. We will use the result from Theorem 2.1 in
building a BBN from data, in the context of the normal copula vine approach. Having a conditional rank
correlation specification for the arcs of a BBN and using the normal copula, entails a partial correlation
BBN specification. Moreover, the zero partial correlations will correspond to the conditional independence
statements encoded in the BBN structure. We will build the BBN by adding arcs between variables only
if the rank correlation between those two variables is among the largest. We will also remove arcs from
the BBN, which correspond to very small rank correlations. The heuristic we are using is that partial
correlations are approximately equal to conditional rank correlations. This is a reasonable approximation
if we consider the following: we use the normal copula to realise the (conditional) rank correlations
associated to the arcs of the BBN; the relation between (conditional) rank correlation and conditional
(product moment) correlation is calculated using Pearson’s transformation; for joint normal variables,
the conditional (product moment) correlations and the partial correlations are equal.

The procedure for building a BBN to represent a given data set is not fully automated, as it is
impossible to infer directionality of influence from multivariate data. Insight into the causal processes
generating the data should be used, whenever possible, in constructing a BBN model. Because of this
fact, there are different BBNs that are wholly equivalent, and many non-equivalent BBNs may provide
statistically acceptable models of a given multivariate ordinal data set.

The result of introducing arcs to capture causal or temporal relations is called a Skeletal BBN. The
general procedure can then be represented as:

1. Verify that DER is not outside the plausible central confidence band for DNR;

2. Construct a Skeletal BBN;

3. If DNR is within the 90% central confidence band of the determinant of the Skeletal BBN, then
stop, else continue with the following steps;

4. Find the pair of variables (Xi, Xj) such that the arc (i, j) is not in the BBN and r2ij is greater than
the squared rank correlation of any other pair not in the BBN. Add an arc between nodes i and j,
and recompute DBBN together with its 90% central confidence band;

5. If DNR is within the 90% central confidence band of DBBN, then stop, else repeat step 4.

The 90% central confidence band may be replaced by the the 95% or 99% central confidence bands. This
choice will only make a difference if the number of samples is very large.

The resultant BBN may contain nodes that have more than one parent. If the correlations between the
parents of a node are neglected in the BBN (i.e. if the parents are considered independent), then DBBN
will be different for different orderings of the parents. These differences will be small if the neglected
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correlations are also small.
In general, there is no ”best” model; the choice of directionality may be made on the basis of non-

statistical reasoning. Some small influences may be included because the user wants to see these influences,
even though they are small. There may be several distinct BBNs which approximate the saturated BBN
equally well.

4 Ordinal PM2.5 Data Mining with UniNet

We illustrate our method for learning a BBN from data using an ordinal multivariate data set that we
briefly introduced in Section 1. The data are gathered from electricity generating stations and from
collection sites in the United States over the course of seven years (1999 - 2005). The data base contains
monthly emissions of SO2 and NOx in different locations and monthly means of the readings of PM2.5

concentrations at various monitoring sites. Since we have monthly data over the course of seven years,
the data set will contain 84 multivariate samples.

There are 786 emission stations and 801 collection sites. Meteorological information on temperature
wind speed and wind direction is also available at, or near, all cites. Although the method is designed
to handle large numbers of variables, we adopt a smaller set for purposes of illustration. We consider
one collector at Washington D.C. temperature, wind speed and wind direction at Washington DC, and
emissions from five stations which are upwind, under prevailing winds, and emit large quantities of SO2

and NOx: Richmond, Masontown, Dumfries, Girard and Philadelphia (see Figure 9). The goal is to build
a BBN that captures the dependence structure between these variables, using the approach presented in
the previous section. All analysis and graphs are produced by the UniNet software.

Figure 9: BBN on 14 nodes with no arcs.

The distinctive feature of this approach is that we take the one dimensional marginal distributions
directly from the data, and model the dependence with the joint normal copula. The hypothesis that the
dependence structure in the data is that of a joint normal copula can be tested by the method described
in Section 1. Once we have a suitable copula, we can condition any set of variables on values of any other
set of variables.

Standard regression analysis also computes conditional distributions. For data sets like that encoun-
tered here, however, the BBN approach with the normal copula offers several advantages:

• We obtain the full conditional distribution, not just the mean and variance.
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• We do not assume that the predicted variable has constant conditional variance, indeed the condi-
tional distributions do not have constant variance.

• The emitters tend to be strongly correlated to each other and weakly correlated to the collectors,
hence if we marginalize over a small set of upwind emitters, we have many ”missing covariates” with
strong correlations to the included covariates. This will bias the estimates of the regression coeffi-
cients. The BBN method, in contrast, simply models a small set of variables, where other variables
have been integrated out. There is no bias; the result of first marginalising then conditionalising is
the same as first conditionalising then marginalising.

• The set of regressors may have individually weak correlations with the predicted variable, but may
be collectively important. On small data sets, the confidence intervals for the regression coefficients
may all contain zero and their collective importance would be missed.

The discussion in the previous section led to the choice of the determinant of the rank correlation matrix
as an overall dependence measure. This determinant attains the maximal value of 1 if all variables are
independent, and attains a minimum value of 0 if there is linear dependence between the ranked variables.
Figures 10 and 11 compare the empirical rank correlation matrix with the normal rank correlation matrix.
It can be noticed that the highest correlations are in the same positions in both matrices. Moreover all
differences are of order of 10−2. For 84 samples, the approximate upper critical values of Spearman’s
rank correlation, are given in the table below [30]:

Table 1: Critical values of Spearman’s rank correlation for 84 samples.

N α = 0.05 α = 0.025 α = 0.01 α = 0.005
84 0.181 0.215 0.254 0.280

The α values correspond to a one-tailed test of the null hypotheses that the rank correlation is 0.
Figure 9 shows the 14 variables, as nodes in a BBN with no arcs. Hence, we start by considering

these variables as being independent. We obtain DBBN = 1. In general, if the BBN is not saturated,
then DBBN > DNR. Following the general procedure presented in the previous section we start adding
arcs between variables whose rank correlation (in the normal rank correlation matrix) are among the
largest. By doing so, we decrease the value of DBBN. UniNet allows us to visualise the highest rank
correlations (see Figure 11). We add 16 arcs to the BBN, most of which correspond to the highest rank
correlations. Nevertheless, our interest is to quantify the relation between Washington DC and the rest of
the variables involved, hence we also add arcs that carry information about their direct relationship. The
resultant BBN is shown in Figure 12. UniNet calculates from data the (conditional) rank correlations
that correspond to the arcs of the BBN.

The determinant of the rank correlation matrix based on the new BBN differs from DNR, as this BBN
is not saturated. It hypothesises conditional independence where the data exhibits small partial correla-
tions. In this case DBBN = 3.6838E-04 and its 90% central confidence interval is [0.5552E-04, 3.7000E-04].
We notice that DNR is not within this interval. In consequence, we need to add more arcs to the BBN.
Following the same idea of quantifying direct influence on the air quality in Washington DC, we add 4
more arcs. The resultant BBN with 20 arcs is shown in Figure 13.

The 90% central confidence interval for the determinant of the rank correlation matrix based on the
new BBN is [0.4617E-04, 2.6188E-04] and DNR is still outside this interval.

Adding arcs that do not necessarily correspond to the highest correlations might increase the number
of iterations needed in order to obtain a valid structure. Moreover, the resultant BBN becomes more
complicated. Nevertheless, there are situations in which we are more interested to represent certain direct
influences between our variables, rather than obtaining a sparse structure.

We continue by adding arcs that correspond to the highest correlations from the matrix. We obtain
the BBN from Figure 14.

The value of DBBN for the last BBN is 1.4048E-04. DNR falls inside the confidence interval for
DBBN, which is [0.1720E-04, 1.6270E-04]. We conclude that this BBN with its conditional independence
relations is an adequate model of the saturated graph.
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Figure 10: The empirical rank correlation matrix of the 14-dimensional distribution.

Figure 11: The normal rank correlation matrix of the 14-dimensional distribution.
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Figure 12: BBN on 14 nodes with 16 arcs.

Figure 13: BBN on 14 nodes with 20 arcs.
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We can continue looking for a more convenient representation (with less arcs) by changing very small
correlations to zero, while disturbing the determinant as little as possible. We will now remove 4 arcs
from the BBN (see Figure 15). DBBN changes to 1.5092E-04. This change is not significant, so the new
BBN on 26 arcs is an adequate model as well. If we further reduce the number of arcs, we obtain the
structure from Figure 6, whose determinant is 4.8522E-04, and would be rejected. Using the 95% instead
of the 90% central confidence interval would not change the conclusions of our analysis.

Another procedure for building a BBN to represent a given data set, would be to begin with one of
the possible saturated graphs, rather than with the empty one. The saturated BBN will induce a joint
distribution whose rank determinant is equal to DNR, since the BBN uses the normal copula. Further
we will remove those arcs that are associated with very small (close to zero) correlations, such that the
value of DNR stays inside the confidence interval for DBBN.

It is worth mentioning that the BBN structure learned from the data set, using one approach or
another, will not be unique. Adding/deleting different arcs from the BBN may provide a different
suitable structure.

Figure 14: BBN on 14 nodes with 30 arcs.

5 Alternative Ways to Calculate the Correlation Matrix of a
BBN

In both learning the structure of the BBN and the conditioning step, which was briefly presented in Section
1, an important operation is calculating the correlation matrix from the partial correlations specified. To
do so, we are repeatedly using equation 2.1. When working with very large structures, this operation
can be time consuming. In order to avoid this problem we will further present a number of results that
will reduce the use of equation 2.1. It is known that a BBN induces a (non-unique) sampling order and
that variable X is independent of variable Y given its parents in the graph, Pa(Y ), if X precedes Y in
the sampling order. Our aim is to obtain a conditioning set D, which entails conditional independence,
smaller than the set of parents. In this case our algorithm to calculate the correlation matrix from partial
correlations specified on the BBN will calculate ρXY from ρXY ;D rather than from ρXY ;Pa(Y ).
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Figure 15: BBN on 14 nodes with 26 arcs.

5.1 Notation and Definitions

We begin with the notation used in this section and assume that the reader is familiar with basic concepts
of graph theory. All definitions presented in this section can be found in the literature, e.g. [27]. Capital
letters, e.g. X, denote a single variable. Sets of variables are denoted in bold, e.g. A. The sets of
ancestors, children and descendants of X are expressed as An(X), Ch(X) and Desc(X), respectively. We
consider X an ancestor of itself, i.e.: An(X) = X∪

⋃
Y ∈Pa(X)

An(Y ). To describe conditional independence

between variables X and Y given Z we write X ⊥ Y |Z. X ⊥ Y if X ⊥ Y |∅. Moreover, X 6⊥ Y |Z means
that X and Y are not conditionally independent given Z. Hence they are conditionally dependent. ℘
denotes an undirected path.

A joint distribution represented by a BBN must satisfy a set of independence constraints imposed by
the structure of the graph. A graphical criterion that characterises all of these structural independence
constraints is the d-separation criterion.

Definition 5.1. If A, B and C are three disjoint subsets of nodes in a BBN, then C is said to d-
separate A from B if there is no path between a node in A and a node in B along which the following
two conditions hold:

• every node with converging arrows is in C or has a descendant in C and

• every other node is outside C.

Figure 16 explains the above definition graphically.
If a path satisfies the conditions above, it is said to be active. Otherwise it is said to be blocked by C. Two
variables, X and Y are d-separated if no path between them is active. X and Y are called d-connected
if there is any active path between them.

In [34] a node with converging arrows is called a collider. A colliderless path is a path that does not
contain any collider.

If X and Y are d-separated by Z we will write Dsep(X;Y |Z).

Remark 5.1. Dsep(X;Y |∅) implies the absence of a colliderless path between X and Y .
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Figure 16: D-separation of A & B by C.

5.2 Minimal d-separation set

The d-separation described above provides a very useful connection between a BBN structure and the
corresponding set of distributions that can be represented with that structure. In particular, [27] shows
that if Dsep(X;Y |Z) in a BBN structure, then for any distribution that can be represented by that
structure (X ⊥ Y |Z). Therefore, the absence of an arc guarantees a set of independence facts. On the
other hand, the existence of an arc between variables X and Y in the graph, does not guarantee that the
BBN will exhibit dependence between X and Y . To ensure this dependence one will have to make the
assumption of faithfulness. A distribution is faithful to a BBN if X ⊥ Y |Z implies Dsep(X;Y |Z). This
means that there is a BBN structure, such that the independence relationships among the variables in
the distribution are exactly those represented by the BBN by means of the d-separation criterion. We
will further present a number of results that can help us to reduce the set of conditioning variables that
guarantees conditional independence between X and Y .

Proposition 5.1. Let X and Y be two nodes of a BBN. Then X ⊥ Y |An(X) ∩An(Y ).

Proof. X ∈ An(Y ) ⇒ X ∈ An(X) ∩ An(Y ) ⇒ X ⊥ Y |An(X) ∩ An(Y ). The same argument holds if
Y ∈ An(X).

Let us assume that X 6∈ An(Y ) & Y 6∈ An(X). The paths between X and Y go through:

1. An(X) ∩An(Y ), or

2. An(X) ∩Desc(Y ), or

3. Desc(X) ∩An(Y ), or

4. Desc(X) ∩Desc(Y ).

All paths in the situations 2, 3 and 4 contain a collider. From Definition 5.1 it follows that An(X)∩An(Y )
d-separates X from Y , hence X ⊥ Y |An(X) ∩An(Y ).

However the intersection of the ancestors of X and Y may contain more variables than Pa(Y ). In this
case it is more convenient to calculate ρXY starting from ρXY ;Pa(Y ) = 0.

Proposition 5.2. Let X and Y be two nodes of a BBN. Under the faithfulness assumption, if X ⊥ Y
then An(X) ∩An(Y ) = ∅.

Proof. X ⊥ Y ⇒ Dsep(X;Y |∅). Remark 5.1 implies that each path between X and Y contains a collider.
Let us assume An(X) ∩ An(Y ) 6= ∅ and let Z ∈ An(X) ∩ An(Y ). Then, there exist a path ℘ from X to
Y , through Z such that, ℘ does not contain a collider. This contradiction concludes the proof.

From the previous two propositions we can conclude that under the faithfulness assumption X ⊥ Y iff
An(X) ∩An(Y ) = ∅.
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Proposition 5.3. Let X be a node of a BBN and Pa(X) = A ∪ B such that A ∩ B = ∅ and A ⊥ B.
Under the faithfulness assumption, if Y ∈ An(A), then X ⊥ Y |A.

Proof. If Y ∈ A, then X ⊥ Y |A. Let us consider the case when Y 6∈ A, then Y ∈ An(A) \A.
A ⊥ B⇒ An(A) ∩An(B) = ∅ ⇒ An(A) ⊥ An(B). Because B ⊂ An(B) we conclude that An(A) ⊥ B.
But {A, Y } ⊂ An(A). Then {A, Y } ⊥ B. Using this and the fact that A ⊥ B, we can write:

P (Y |A,B) =
P (Y,A,B)
P (A,B)

=
P (Y,A|B)P (B)
P (A)P (B)

=
P (Y,A)
P (A)

= P (Y |A) . (5.1)

This means that Y ⊥ B|A. Using also Y ⊥ X| (B,A), we can conclude Y ⊥ (X,B) |A (see [6; 35]). This
implies X ⊥ Y |A.

We will further define the boundary of the intersection of ancestors of two nodes in a BBN with respect
to one of them as follows:

bdX (An(X) ∩An(Y )) = {Z ∈ An(X) ∩An(Y ) : ∃ Ch(Z) ∈ An(X) \An(Y )}.

Similarly:

bdY (An(X) ∩An(Y )) = {Z ∈ An(X) ∩An(Y ) : ∃ Ch(Z) ∈ An(Y ) \An(X)}.

The proposition below shows that instead of taking the intersection of ancestor sets of X and Y as in
Proposition 5.1 it is enough to consider the boundary of this intersection.

Proposition 5.4. Let X and Y be two nodes of a BBN such that X 6∈ An(Y ) and Y 6∈ An(X). Under
the faithfulness assumption:

X ⊥ Y |bdX (An(X) ∩An(Y )) and

X ⊥ Y |bdY (An(X) ∩An(Y )) .

Proof. By symmetry, it suffice to prove only one of the relations above. Let C = An(X) ∩ An(Y ) and
C∗ = bdX (An(X) ∩An(Y )). It follows that C∗ ⊆ C and X ⊥ Y |C. Let us assume X 6⊥ Y |C∗. Then
there exist an active path ℘ between X and Y . Because Dsep(X;Y |C), the path ℘ must be blocked by
a node Z ∈ C \C∗. Then Z ∈ An(X) ∩An(Y ) such that any Ch(Z) belongs either to An(X) ∩An(Y ),
or to An(Y ) \ An(X). Since X 6∈ (An(X) ∩An(Y )) it follows that any path going from Z along ℘ has
to go through a node from C∗ in order to reach X which contradicts the fact that ℘ is an active path. It
follows that C∗ is a separator for X and Y .

Corollary 5.1. In the context of the previous proposition:

• If X ∈ An(Y ) then :

– X ⊥ Y |bdY (An(X) ∩An(Y )) and

– bdX (An(X) ∩An(Y )) = ∅.

• If Y ∈ An(X) then:

– X ⊥ Y |bdX (An(X) ∩An(Y )) and

– bdY (An(X) ∩An(Y )) = ∅.

Under the faithfulness assumption, the proof of the above corollary is trivial.
If we are in the conditions of Proposition 5.3 we definitely have a smaller conditioning set then the

set of parents. If, on the other hand, we want to calculate the correlation of two nodes which are non
ancestors of one another, we can compare the set of parents with the boundaries of the intersection of
ancestors and decide which conditioning set will facilitate the calculation.

As an example consider the BBN from Figure 2. Choose the following sampling order: so2 Masontown
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(1), so2 Girard (2), DC Temp (3), so2 Richmond (4), nox Girard (5), DC WindDir (6), DC WindSpeed (7),
nox Masontown (8), nox Philadelphia (9), so2 Dumfries (10), so2 Philadelphia (11), nox Richmond (12),
nox Dumfries (13), DC monthly concPM25 (14). Using this sampling order and referring the variables
with their indices in the sampling order we can write two relations:

• 14 ⊥ 12|Pa(14) and

• 14 ⊥ 12|bd12 (An(12) ∩An(14)).

The set Pa(14) contains 8 variables, whereas the set bd12 (An(12) ∩An(14)) contains only 3 variables.

It is clear that with the above results we can reduce the use of equation 2.1 in calculating the correlation
matrix. However we also have to account for the time spent to collect information about the ancestors
of each node.

6 Conclusions and Future Research

In this paper we have described a method for mining ordinal multivariate data using non-parametric
BBNs. The main advantage of this method is that it can handle a large number of continuous vari-
ables, without making any assumptions about their marginal distributions, in a very fast and efficient
way. Inferring the structure of a BBN from data requires a suitable measure of multivariate dependence.
The discussion in this paper led to the choice of the determinant of the correlation matrix as an overall
dependence measure. This determinant attains the maximal value of 1 if all variables are independent,
and attains a minimum value of 0 if there is linear dependence between the variables. As mentioned
and motivated previously, we actually work with the determinant of the rank correlation matrices. The
determinant of the rank correlation matrix is not such an intuitive measure. Maybe a better measure of
multivariate dependence would be the mutual information, but calculating the empirical mutual infor-
mation for large dimensions is a complicated task. Another open issue related to this topic is to perform
more reliable statistical tests for the two validation steps of our approach.
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