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ABSTRACT

Large scale numerical air pollution models are of vir-
tual importance for predicting air pollution concen-
trations and for reconstructing pollution emissions.
Since these models are far from perfect, accurate re-
sults can only be obtained by integrating the model
results with the concentration measurements that are
available, both from satellites as from ground sta-
tions. Assimilating data into a numerical air pol-
lution model is however, a procedure that required a
huge amount of computer resources. Recently a num-
ber of efficient data assimilation algorithms based on
Kalman filtering have been developed: the Ensemble
Kalman filter and the Reduced Rank Square Root fil-
ter. The later algorithms has now been implemented
in the LOTOS system for tropospheric ozone simula-
tion studies of TNO. The resulting data assimilation
system has been applied to identify the ozone gener-
ating mechanisms in the European region.
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1. INTRODUCTION

For densely populated, industrialized countries, envi-
ronmental modeling and simulation of pollution re-
duction scenarios is becoming more and more impor-
tant in view of the growing awareness of damaging
effects. Reduction and control of pollution is in gen-
eral an expensive procedure, leading to high costs for
society and industry. It is therefore necessary to de-
termine, as accurately as possible, critical levels and
to reduce and control pollution optimally so as to
minimize costs.

To accomplish predictions of transport and ex-
change of chemical and biochemical constituents, ac-
curate, three-dimensional (3D) mathematical simu-
lation models must be used. These large-scale nu-
merical models are based on the advection-diffusion

equation. They are, however, far from perfect. Errors
are introduced by fluctuations in the meteorological
input or by poorly known parameters in the model.
Furthermore, considerable uncertainty is associated
with the open boundary conditions. Since measure-
ments generally are more accurate then model pre-
dictions but limited to a small spatial scale only, it
is appealing to combine them with the model results.
This is a typical form of data assimilation: the incorpo-
ration of concentration measurements into a numeri-
cal model to improve the forecasts and to reconstruct
pollution generating mechanisms. In this project we
concentrate our attention to the prediction of tropo-
spheric ozone.

The mechanisms which lead to the formation of tro-
pospheric ozone differ considerably over Europe. At
least five clearly different areas can be distinguished:
Northern Europe (Scandinavia). Northwest and Cen-
tral Europe, Southern Europe, and two areas over
the sea, the North Sea with parts of the Atlantic,
and the Mediterranean basin. The difference in ozone
patterns and behavior are caused by a number of of-
ten interrelated phenomena. Different dynamical and
physical properties, like the differences in tempera-
ture, cloud cover and land-sea circulation, differences
in surfaces leading to differences in dry deposition,
differences in anthropogenic precursor emissions and
especially in biogene VOC-emissions, all this leads
to differences in ozone patterns over Europe. Not
only ground level ozone values will be different, also
vertical profiles will be different and subsequently
also vertical fluxes of ozone between the planetary
boundary layer and the free troposphere, and the
free troposphere and the stratosphere. The detailed
investigation into these patterns and differences is
severely hampered by the limited amount of obser-
vations available. Although the amount of observa-
tion of especially ozone has increased over the last
years, the coverage is still limited to mostly the north-
western part of the European continent. There is a
severe lack of experimental data of ozone at ground
level outside the north-western part of Europe, and
hardly any data over the North Sea and Atlantic,
and the Mediterranean Sea. Although at some loca-



tions vertical soundings are performed on a daily ba-
sis, our knowledge about the vertical profiles of ozone
in the troposphere over Europe is very scarce. These
available experimental data is insufficient to create
a full 3-D data set of ozone in the troposphere over
Europe. The three-dimensional Eulerian grid model
LOTOS which calculate ozone patterns over Europe
is available at TNO and has been used to study the
controlling phenomena of ozone over the last decade.
Combining these models with the ozone observations
from ground level, vertical soundings and satellites
by using data assimilation will lead to a coherent and
complete full 3-D ozone data set over Europe. Such a
data set will enable the differences of ozone patterns
over Europe to be studied. Especially by performing
budget studies the distinction between the influence
of long range transport and of local ozone production
can be revealed. Also vertical ozone fluxes over the
troposphere and from the stratosphere can be ana-
lyzed and determined in detail.

2. DATA ASSIMILATION

Existing data assimilation schemes were developed
mainly for numerical weather prediction. The most
commonly used data assimilation technique in nu-
merical weather prediction is optimal interpolation.
This however, is not an accurate method because the
correction produced by optimal interpolation is pro-
duced independently from the underlying numerical
model, and is therefore not consistent with it.

Date assimilation schemes can also be developed by
employing Kalman filtering (Ghil et al. 1981). In or-
der to use a Kalman filter for assimilating data into
a numerical transport model, this model is embed-
ded into a stochastic environment by introducing a
system noise process. In that way it is possible to
account for the inaccuracies of the underlying deter-
ministic system. By using a Kalman filter, the infor-
mation provided by the resulting stochastic, dynamic
model and the (noisy) state of the qutem With
a Kalman filter, unlike optimal mterpolatlon, the
statistics of the introduced noise are determined by
using the stochastic extension of the model. There-
fore the correction produced by this filter is consistent
with the stochastic model.

In the last decenium Kalman filtering has gained
acceptance as a powerful tool for data assimilation
(Ghil et al. 1981), especially for linear or weakly non-
linear problems. The first applications of Kalman
filtering for predicting air pollution were reported by
Desalu et al. 1974, Koda & Seinfield 1978 and Fronza
et al. 1979. The standard Kalman filter implementa-
tion imposes a very large burden on the computer for
both memory and computation times. In order to ob-
tain a computationally efficient filter, simplifications
have to be introduced. In recent literature a num-
ber of new sub-optimal scheme’s for solving large-
scale filtering problems has been proposed (Cohn
& Todling 1995, Verlaan & Heemink 1995, Evensen
1994, Fukumori & Malanotte-Rizzoli 1995).

Another approach to data assimilation which pos-
sesses many of the desirable features of Kalman filter-
ing is the adjoint method, based on optimal control

theory (see Courtier & Talagrand 1990). Here an un-
known control function is introduced into the numeri-
cal model. Using the data available, this control func-
tion is identified by minimizing a cost function that
compares the difference between the model results
and the data. In order to obtain a computationally
efficient procedure, the minimization is performed by
using a gradient based algorithm where the gradient
is determined by solving the adjoint problem. The
adjoint method is more suitable for nonlinear data
assimilation problems than Kalman filtering. How-
ever, a disadvantage of the adjoint approach is that
it requires the implementation of the adjoint model.
This is often very large programming effort compared
to the implementation of the Kalman filter.

3. THE RIFTOZ PROJECT

One of the main contributions of Delft University
of Technology and TNO to the RIFTOZ project is
to develop a data assimilation scheme for the large
scale numerical transport chemistry model LOTOS of
TNO. Since the LOTOS model is still under develop-
ment, the data assimilation method has to be flexible
and model independent. Therefore the data assim-
ilation is based on Kalman ﬁltering The Reduced
Rank S oJquare Root \1L1LQ\°¢1LL) filter i uuplcuwuuamuu
does not require a tangent linear model nor an ad-
joint model. As a result it is relatively easy to imple-
ment and completely model independent. (Verlaan

& Heemink 1995)

In the first year of the project the (first order)
RRSQRT filter has been implemented for a test prob-
lem. Experiments were performed with simulated
data to gain insight into the values of the various
parameters of the data assimilation scheme. Atten-
tion has been concentrated on the performance of
the filter with respect to the strong nonlinearity of
the chemistry model. Results have been published
by Van Loon and Heemink (1997).

In the second year of the pI'OJeCt the RRSQRT filter
Ildb Ut:t:[l lIIlplUVt:(,l U_y lIl(,lLl(,llIlg bt:(,()ll(,l Ul(,lt:l bt:l[[lb
in the algorithm. This new approach was evaluated
in detail by using the test model with simulated data
(see Segers et al. 1998). Furthermore the filter imple-
mentation was also coupled with the LOTOS model.

In the final phase of the project the filter technique
has been applied on the LOTOS model. First, sim-
ilar experiments as which were done with the test
model has be applied with LOTOS in order to judge

the svetem nerformance. Thege tests oave an indica-
tne sysiem periormance. 11ese 1esis gave an Indaicy

tion of the required computing power. Second, the
actual assimilation of real data with LOTOS calcula-
tions has been done by using the CRAY T3E of Delft
University of Technology.

4. RESULTS WITH THE LOTOS SYSTEM

An important aspect of the RRSQRT filter is the
computational efficiency. Here the dominating pa-
rameter is the number of modes used. The compu-
tational burden increase approximately linearly with
this number. At the other hand also the accuracy of
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Figure 1. LOTOS grid and measurement sites.

the data assimilation scheme increases with the num-
ber of modes. The experiments have shown that ap-
proximately 50 modes seems to be a good choice for
atmospheric chemistry models. As a result the total
computational burden will be 50-60 times the com-
putational afford required for the underlying LOTOS
model. Here we note that the filter implementation
contains a lot of parallelism that can be exploited to
improve the performance of the filter implementation
on the CRAY T3E of Delft University of Technology
considerably.

To find a useful specification of uncertainties in the
LOTOS model, a sequence of assimilation experi-
ments has been performed. The available set of mea-
surements consists of hourly measured ground level
values of ozone, measured at 34 sites in Germany and
The Netherlands. The data from 17 of these sites are
assimilated, while the other are only diagnosed (fig-
ure 1). The first week of august 1997 was taken as
assimilation period.

One of the assimilation experiments made use of un-
certainties specified for different emissions. The LO-
TOS model recognizes four types of emitted pollu-
tants (VOC,NO,,50,,and CO), emitted from 5 dif-
ferent antropogenic source categories; VOC is also
emitted from 3 biogene sources. These emissions were
supposed to vary from hour to hour with a standard
deviation of 25% around their deterministic value.
Spatial fluctuations in the variations are neglected.
Because the measurement sites used for assimilation
are located in in a rather small area, the later is not
problematic. In fact, the chosen specification reflects
the case of systematic error in the (modeling of the)
emission data bases.

If all 23 emissions are specified to be uncertain in
the way described, the filter is able to decrease the
residue (difference between calculations and measure-
ment data) with a maximum of about 30% in com-
parison with a non filtered simulation (figure 2). The
improvement of the results is best shown by the de-
creased residue of the diagnosed sites, which have not
been used in the assimilation process, but are only in-
fluenced by the assimilation of other data.

Figure 3 shows the ozone concentrations as calculated
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Figure 2. Mean residues during the assimilation pe-
riod versus the mean residues from a background run
(a single LOTOS run without assimilation). The
dashed line denotes equality, while the dotted lines
denote a difference of £30%.
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Figure 3. Ozone concentrations measured and calcu-
lated at the assimilated site Eibergen.

for the assimilated site Eibergen in The Netherlands.
Without assimilation, the model overestimates the
ozone concentrations, especially during the first days
of the selected period. If however the available data is
assimilated, the mean concentration almost perfectly
follows the data after an initialization period of two
days.

Investigation of the actual variations in the emissions
used by the filter to reduce the residues, resulted in
a selection of 8 emission data bases of the 23 in to-
tal, for which the chosen specification of uncertainty
is most useful in an assimilation procedure. All of
these selected emissions had an antropogenic source;
this reflects the fact that biogene sources have a mi-
nor impact on the ozone concentrations in Western
Europe where the measurements sites involved in this
study are located.

A suitable way to judge the performance of the
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Figure 4. Sample mean M, and sample standard de-
viation S, of the ratio p between the actual residue
and its expected standard deviation taken over the
assimilation period, for each available site. The ratio
has a theoretical distribution of N(0,1). The actual
sample means are sometimes rather close to zero, but
a standard deviation of one is never reached.

Kalman filter, is to compare the actual residues with
their expected standard deviation. The later can be
extracted from the covariance matrix of the state,
and is in fact an impression of how accurate the fil-
ter guesses that the residue is. The ratio p between
the residue and its guessed standard deviation is in
theory N(0,1) distributed. In practice however, the
spread of the ratios has a standard deviation larger
than one, because the actual residues are often much
larger than a few times their expected standard devi-
ation. This is also the case for the previous described
filter experiment (figure 4). The underestimation of
the standard deviation of the residues indicates that
the noise specification chosen here does not account
for all uncertainties in the model, and that other
specifications of uncertainty should be examined.

In order to extend the noise specification and to in-
crease the filter performance, the impact of uncer-
tainties in the upper boundary conditions was ex-
amined. Instead of using deterministic aloft concen-
trations, a new boundary condition was formed us-
ing total ozone columns measured with the GOME
satellite instrument. Because of the large height of
the columns in comparison with the height of the
LOTOS grid (about 2 km), they could not serve as
measurements directly. Debruyn et al. (1998) calcu-
lated daily values for the total ozone column in the
first 9 km of the troposphere from the raw GOME
data, with a standard deviation of 40%-50%. These
columns served to calculate mean aloft concentration;
a grid of stochastic variations (forced by 16 param-
eters) was added to the new aloft concentrations in
order to represent the error.

Assimilation of data using a selected number of
uncertain emissions in combination with the new
boundary condition, did however not resulted in an
additional decrease of the residues. Comparison of
the new model output with the output of a model
using the original boundary conditions showed that

there is hardly any difference in calculated ground
level concentrations. Similar, specification of uncer-
tainties in the aloft concentrations did not have a
significant impact on the results in case of an assim-
ilation experiment. Even the ratio between residue
and expected standard deviation was not improved
through the increased amount of available uncertain-
ties. These results show that the impact of the upper
boundary on ground level concentrations is minor.

In spite of the minor impact of the upper bound-
ary, the large amount of GOME data which is avail-
able makes the idea of using it still interesting. Use
of the GOME data as measurements will be compli-
cated through the limited height of the LOTOS grid,
and the large error present in the profiles. The op-
erational Kalman filter is however a suitable tool to
decide what the minimum accuracy of the profiles
should be in order to have a significant impact in a
data assimilation procedure, and this will be subject
of further research. Besides, the increased availability
of accurate measurements in the vertical by means of
balloon soundings makes it possible to examine the
impact of assimilation of satellite data on the accu-
racy of LOTOS calculations at higher grid layers.

Systematic research of the impact of other (groups
of) stochastic parameters on the assimilation results
should result in a minimal stochastic extension of the
LOTOS model for use in data assimilation. Increase
of the number of uncertain parameters improves the
results, but also implies an increased demand on
computation capacity. Continued experiment should
therefore point out uncertainties responsible for the
majority of the residue.

5. CONCLUSIONS

The results up to now indicate that the assimilation
of data into the LOTOS model with a Kalman fil-
ter procedure is feasible. The nonlinearities do not
seem to cause serious problems and the computa-
tional burden of the algorithm is large but not too
large. For the final computations, however, a very
powerful computer was required (CRAY T3E). The
filter results with the real data show a good perfor-
mance of the system. In a number of measurement
locations that have not been used in the assimilation
procedure, the model results with assimilated data
are 10% 3209 more accurate then the oricinal model

Qe 1vU /0~ ovu /0 IMIOIC allurait witil vl Origilia: IMOGet

results. The use of GOME data does not seem to
have have a significant impact on the results in the
current setup.
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