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Abstract

Bayesian Belief Nets (BBNs) have become a very popu-
lar tool to specify high dimensional probabilistic models.
Their popularity is based on the fact that influence di-
agrams capture an engineer’s intuitive understanding of
complex systems. Commercial tools with an advanced
graphical user interface that support BBNs construction
and inference are available. Thus, building and working
with BBNs is very efficient as long as one is not forced to
quantify complex BBNs. A high assessment burden of dis-
crete BBNs is often caused by the discretization of contin-
uous random variables. Until recently, continuous BBNs
were restricted to the joint normal distribution. In [1] the
’copula - vine’ approach to continuous BBNs is presented.
This approach is quite general and allows traceable and de-
fendable quantification methods, but it comes at a price:
these BBNs must be evaluated by Monte Carlo simulation.
Updating such a BBN will require re-sampling the whole
structure. The advantages of fast updating algorithms for
discrete BBNs are decisive. In this paper we combine the
reduced assessment burden and modelling flexibility of the
continuous BBNs with the fast updating algorithms of dis-
crete BBNs.

e Quantify nodes of a BBN as continuous univariate
random variables and arcs as conditional rank corre-
lations

e Sample this structure

e Use the sample file in Netica to build conditional
probability tables for a discretized version of the
BBN

e Perform fast updating.

We will address some computational problems of this ap-
proach, as well as propose ways to solve them. We illus-
trate it with some practical examples.
Keywords:bayesian belief nets, dependence modelling,
vines, multivariate probability distribution

1 Introduction

A Bayesian Belief Net (BBN) is a directed acyclic
graph, together with an associated set of proba-
bility tables. The nodes of the graph represent
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random variables, which can be discrete or con-
tinuous, and the arcs represent causal relation-
ships between variables. BBNs enable us to model
high dimensional uncertainty distributions. The
visual representation can be very useful in clar-
ifying previously opaque assumptions about the
dependencies between different variables. Appli-
cations involving high complexity in data-sparse
environments are severely limited by the exces-
sive assessment burden which leads to rapid, in-
formal and indefensible quantification. This as-
sessment burden can only be reduced by a drastic
discretization of the chance nodes. In many cases
continuous nodes would be more appropriate.
Until recently, continuous BBNs were restricted
to the joint normal distribution. In [1] the authors
introduced an approach to continuous BBNs us-
ing vines [2] together with copulas that have the
zero independence property'. In the procedure
proposed here, nodes are associated with arbi-
trary continuous invertible distributions and arcs
with conditional rank correlations, which are re-
alized by the chosen copula. In order to quantify
BBNs using the copula-vine approach, one needs
to specify all one dimensional marginal distribu-
tions and the (conditional) rank correlations.
The rank correlation specification on a vine
plus the choice of a copula with the zero indepen-
dence property, determines the whole joint distri-
bution. As presented in [1], the joint distribution
is factorized in the standard way (for BBNs) fol-
lowing a (non - unique) sampling order for the
nodes. For each term of the factorization, a D-
vine is built. The sampling algorithm consists of
sampling the 7t variable in the ordering accord-
ing to the ¥ D-vine. The sampling procedure for

1Section 2 of the paper presents a number of definitions
and preliminary results, explaining this property among
other things.
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D-vines is fully described in [3]. In the D-vines
used, the order of the variables might change,
hence in general it is not possible to represent
a BBN with just one D-vine (see section 3).

In most cases, where more than one vine is
needed, some conditional distributions have to be
calculated. These calculations consist of evaluat-
ing multiple integrals by Monte Carlo simulations.
For accurate results, a very large number of sam-
ples is needed in the sampling procedure. For each
of those samples, one will need to calculate the
numerical value of the multiple integrals. In case
of a large number of variables, one would have
to be prepared to run the model for a few days.
Moreover, updating such a BBN will require re-
sampling the whole structure every time new ev-
idence becomes available. In these cases the ad-
vantages of fast updating algorithms for discrete
BBNs are decisive. This motivates the approach
advanced in section 4 of this paper, which con-
sists of combining the reduced assessment bur-
den and modelling flexibility of the continuous
BBNs with the fast updating algorithms of dis-
crete BBNs. This can be done, using vine sam-
pling together with existing discrete BBNs soft-
ware. Even though this procedure has some at-
tractive features, remarkably in the fact that the
structure needs to be sampled just once, it also
has disadvantages. We will present a small exam-
ple in which sampling just this one time becomes
very complicated and time consuming under cer-
tain conditions.

To overcome this problem, a new method for
sampling the BBN is proposed in section 5.
The influences will still be represented as (con-
ditional) rank correlations specified on D-vines.
We will transform the variables to standard nor-
mals and the (conditional) rank correlations to
(conditional) product moment correlations via
Pearson’s formula ([5]). Using the properties
of the multivariate normal distribution, we now
have a partial correlation vine specification that
uniquely determines the correlation matrix, as
shown in [2]. Further, we can induce this product
moment correlation structure using well known
methods, and transform back to the original vari-
ables.

In doing so, the possible change in order of the
variables in the D-vines does not produce any
significant inconvenience. Going from one vine
to another requires only calculating new partial
correlations. However, these calculations are not

very time consuming, so the computational time
is reduced considerably. Examples and compar-
isons will be presented at the end of this paper.

2 Definitions & Concepts

We will assume that the reader is acquainted with
the theory about discrete and gaussian BBNs.

Definition 2.1. The copula of two continuous
random variables X and Y is the joint distribu-
tion of (Fx(X),Fy(Y)), where Fx, Fy are the
cumulative distribution functions of X, Y respec-
tively.

The copula of (X,Y) is a distribution on [0, 1]?
with uniform marginal distributions.

Definition 2.2. A copula is said to have the zero
independence property if zero correlation entails
the independent copula.

A graphical model called vines was introduced in
[2]. A vine on n variables is a nested set of trees.
The edges of the ji& tree are the nodes of the
(7 + 1)t tree. Each tree in a vine has maximum
number of edges.

Definition 2.3. V is called a regular vine on n
elements if:

1. V= (T17~-~aTn);

2. T1 is a connected tree with nodes N1 =
1,...,n, and edges Fy and fori=2,...,n—
T; is a tree with nodes N; = F;_1;

8 Fori=2....n—1,a,b€ E;, #a AN b =2,
where /\ denotes the symmetric difference.

Definition 2.4. A regular vine is called a:

e D-vine if each node in Ty has the degree at
most 2 (see Figure 2.1);

o C-vine if each tree T; has a unique node of
degree n — 1. The node with maximal degree
in Ty is called the root (see Figure 2.2).

Each edge of a regular vine may be associ-
ated with a constant conditional rank correlation
which can be arbitrarily chosen in the interval
[—1, 1]. Using a copula to realize these rank corre-
lations, a joint distribution satisfying the copula-
vine specification can be constructed and it will
always be consistent. For rigorous definitions and
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Figure 2.2: C-vine on 4 variables.

proofs we refer to [3]. Each vine branch may also
be associated with partial correlations. First, we
will recall the definition of the partial correlation.

Definition 2.5. [/] Let X;...X, be random
variables. The partial correlation of X; and Xo
given X3 ...X, 18:

P12|4,..., n—P13|4,..., n'P23|4,..., n

P12|3,....n =

Partial correlations can be computed from corre-
lations using the above recursive formula.

Definition 2.6. A complete partial correlation
vine specification is a regular vine with a partial
correlation specified for each edge.

One can remark that the definition above does
not have any reference to a copula as, in gen-
eral, the partial correlation is not a property of
a copula. However, this is not the case for the
bivariate normal distribution. For joint normal
variables the partial correlation is equal to the
conditional product moment correlation, so one

can define a complete normal partial correlation
vine specification. In [2] it is shown how the no-
tion of a regular vine can be used to construct a
joint normal distribution.

Theorem 2.1. Given any complete partial corre-
lation vine specification for standard normal ran-
dom variables X1, ..., X, there is a unique joint
normal distribution for Xi,..., X, satisfying all
partial correlation specifications.

A very important result from [2] is that each par-
tial correlation vine specification uniquely deter-
mines the correlation matrix, even without the
assumption of joint normality.

Theorem 2.2. For any regular vine on n ele-
ments there is a one to one correspondence be-
tween the set of n X n positive definite correlation
matrices and the set of partial correlation specifi-
cation for the vine.

In the end of this section we will summarize some
well-known facts about the multivariate normal
distribution.

If (X,Y) has the bivariate normal distribution, a
necessary and sufficient condition for X and Y to
be independent is that p(X,Y) = 0.

In the joint normal distribution’s case, one can
find the relationship between product moment
correlation(p) and rank correlation(r) using Pear-
son’s transformation.

Proposition 2.1. [5] Let (X,Y) be a random
vector with the joint normal distribution, then:

p(X,Y) = 2sin(% - r(X,Y)).

Let X be a n-dimensional random vector with
multivariate normal distribution. Let the vector
1 be the expected value of X, and V be its co-
variance matrix. For a fixed k < n consider the
partition of X, ;4 and V' given below:

X, HMa Vaa  Vab
X: s = 7‘/Y:
(Xb>“ (/%) (Vba Vbb>

where
Xo=X1,.., Xg), Xp = (Xix1,---,X0n),
Ha = (,Uq, s 7/“6)/’ Hy = (/u’k-‘rla ce 7/1%)/7

Vii = var(Xieqapy) and Vap = cov(Xa, Xp).

The conditional variance of X; given X, is de-
noted by vary),(Xp).

Proposition 2.2. [6] (Marginal and conditional
density function): If the partitioned random vec-
tor follows the distribution:
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Vaa Vab
XaaX NN as 7V:
(X, X)) [m v = (e )

then:

(i) the marginal distribution of X, is normal with
mean o and variance Viq;

(i) the conditional distribution of (Xp|X,) is nor-
mal with the mean:

Eyjo(Xp) = 1y + Byja - (Ta — pa),

where

aa

Bb\a = %av_l

and the variance:

vary(Xp) = Vipla = Vib — VoaVaa Vab-

3 Continuous BBNs & Vines

Having put all definitions and concepts in place,
let us now consider a non-parametric continuous
BBN. As we already said, in this case, the nodes
are continuous univariate random variables and
the arcs are associated with (conditional) parent-
child rank correlations. We assume throughout
that all univariate distributions have been trans-
formed to uniforms on (0,1). The high dimen-
sional joint distribution is specified using the vine-
copula approach. Any copula may be used as
long as it represents independence as zero cor-
relation. The conditional rank correlations are
algebraically independent, and there are tested
protocols for their use in structured expert judge-
ment (these protocols are presented in Chapter
2 of [3]). One can assign rank correlations to the
arcs of a BBN according to the protocol presented
in [1]. We will illustrate this procedure with an
example.

Example 3.1. Let us consider the BBN in the
Figure 3.1.

Figure 3.1: BBN with 4 nodes and 4 arcs.

There are two sampling orders for this structure:
1,2,3,4,0r1, 3, 2, 4. Let us choose 1, 2, 3, 4.
The factorization is:

P(1)P(2]1)P(3/21) P(4]321).

We recall that the underscored nodes are the ones
which are not necessary in sampling the condi-
tioned variable. Hence, the (conditional) correla-
tions that need to be assigned to the edges of this
BBN are®: {rg1, 731,742, 743)2}. For each term i of
the factorization (i = 1,...,4), a D-vine on i vari-
ables is built. This D-vine is denoted by D? and
it contains: the variable i, the non-underscored
variables, and the underscored ones, in this or-
der. Figure 3.2 shows the D-vines on variables 2,
3 and 4.

r31 9
. H

Figure 3.2: D?, D3 D* for Example 3.1.

In the figure above, one can notice that
D? = D(3,1,2), and the order of the variables
from D* must be D(4,3,2,1). Hence, this BBN
cannot be represented as just one D-vine. In this
case the sampling algorithm consists of sampling
the it variable in the ordering according to D?,
and calculating some conditional distributions.
The procedure, which is presented below, starts
with sampling four independent, uniform (0,1)
variables, say Uy, ...,Us.

T1=U7;
—1 .
To=F o, (u2)]
g1 —1 .
z3=Fpy1 50y (FT32|1?F7‘21;501 () (43));

-1 —1
xu=F__ _ _(F
4 T'421‘E2( T43|2;F,,,32;w2(m3)(

-1
F7'41\32?Fr21‘3;FT32;m3(mg)(FT31;23("31)>(M4)))'
The BBN structure reads the conditional inde-
pendence of the variables X3 and Xs given Xj,
therefore rsp; = 0, which gives:

-1

32|13 Fryy 5 (22) (U3) = us,

Moreover, X, and X; are independent given X,
and X3, hence r4;)32 = 0, and so

20ne could just as well specify {ra1, 731,743, T42|3} in-
stead.
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u = Uy4.
T41\32;FT21\3?Fr32:w3(®2)(FT31;13(11))( 4) 4

Consequently, using the conditional indepen-
dence properties of the BBN, the sampling
procedure can be simplified as:

Tl = U,
T2 = Fr_ml;m (u2);
r3 = o us);
_ -1 -1
Ty = Fr42;12( T43\2§Fr32;12 (13)(11‘4))

The conditional distribution F).,.,,(x3) is not
given®, so it must be found by calculating:

F3\2($3) = fom fol c21(22, 21)c31 (v, 21)dx 1 dv,

where ¢;; is the density of the chosen copula
(we use Frank’s copula [9]) with correlation 71,
i€{2,3}.

For each sample, one will need to calculate the
numerical value of the double integral*. In this
case, when only one double integral needs to be
evaluated, it can be easily done without excessive
computational burden.

If some of the variables become certain, the re-
sults of sampling this model - conditional on their
values - are obtained either by sampling again the
structure (cumulative approach), or by using the
density approach. We will present both methods
in short, and for details we refer to [3].

Let us assume we learn Xy = 0.85. In the
cumulative approach the sampling procedure be-
comes:

r1=F_1 (uy);

721,22
zo = 0.85;
— -1 .
T3 = Frgl;zl (U’S)’

_ -1 -1
Ty = F7‘42;$2 (FT43\2;Fr32:m2 (xs)(u‘l))'

In the density approach, the conditialization is
made using the joint density, which can be eval-
uated as follows ([2]):

co1(xa, 1)cg1 (23, 21)caz(xa, x2)
cagj2(Fyj2(z4), Fap2(23)).

g(x1,...,28) =

Whichever of the two methods is preferred, the
double integral still needs to be evaluated for

3We recall that this represents the conditional distri-
bution F33(z3).

4 All numerical results in this paper are obtained using
Matlab.

each sample, and for any new policy.

If the BBN consists of a cycle® of 5 variables, and
the same sampling procedure is applied, a triple
integral will have to be calculated. The bigger
the cycle is, the larger the number of multiple
integrals that have to be numerically evaluated.
And yet, this is not the worst that can happen®;
an example of such a situation will be presented
in section 5 of this paper.

The BBNs that resemble real life problems will
often be quite big, and may well contain cycles of
five or more variables. Updating such a structure
is done by re-sampling the network each time a
new policy is evaluated. In the case of a large
number of variables, one would have to be pre-
pared to run the model for a few days. To over-
come this limitation we would like to combine the
vine approach to the continuous BBNs, with the
benefits of the discrete BBNs software. This is
done in section 4 below.

4 Updating with Netica

Sampling a large BBN structure every time new
evidence becomes available does not seem a very
good idea in terms of computational time. On the
other hand, sampling it just once, and employ the
easiness of use, flexibility, good visualization, and
fast updating of a commercial BBN tool, provides
an elegant solution to this problem.

In doing so, we have chosen the free demo
version (full-featured but limited in the size of
the model) of Netica'.

The hybrid method proposed can be summarized
as follows:

1. Quantify nodes of a BBN as continuous uni-
variate random variables and arcs as parent-
child rank correlations;

2. Sample this structure creating a large sample
file;

3. Use this sample file (in Netica) to build con-
ditional probability tables for a discretized
version of the continuous BBN;

5Whenever we speak of cycles, we mean undirected cy-
cles.

6More examples of BBN structures in which additional
numerical calculations are needed are presented in Chapter
6 of [3].

“http://www.norsys.com/
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4. Use Netica to visualize the network and per-
form fast updating for the discretized BBN.

In order to perform the 37¢ step, a network has to
be pre-prepared in Netica. This will contain the
nodes of the BBN, each discretized in a certain -
not necessarily small - number of states, together
with the connections. Note that nothing will
be filed into the (conditional) probability tables
corresponding to each variable. We will illustrate
this method by means of an extensive example.

Example 4.1. Flight Crew Alertness

In Figure 4.1, the so-called flight crew alertness
model is given. A discrete form of this model was
first presented in [7] and an adapted version of
it was discussed in [1]. Figure 4.1 resembles the
latest version of the model. The variables are con-
tinuous and their distribution functions are used
to transform the variables to uniforms on (0, 1).
The (conditional) rank correlations assigned to
each arc of the BBN are chosen by the authors
of [1] for illustrative purposes.

Hours of Highttime
sleep(2) flight(7)

t32=0.9 tone= 0.4

Fre flight
fimess3)

mp=-0.9

toze=l 85

Figure 4.1: Flight crew alertness model. A num-
ber is assigned to each variable (on the right hand
side of each name).

The sampling order is 1, 2, 3, 4, 5, 6, 7, 8. The
sampling procedure for this structure uses Frank’s
copula, and does not require any additional cal-
culations:

r1 = Uy
T2 = U
T3 = F7“E21§$2 (FT;3|2§11 (U3))
Ty = Ug

Ts =F! (U5)

T54;T4

_ -1 -1
T6 = FT64?$4 (FT65|4;FT54;m4($5)(u6))
T = Uy

8 = Frogias (Frggigims (Frggigoier (U8))):

Figure 4.2 below shows the BBN from example
4.1, modelled in Netica. The variables are uni-
form on the (0, 1) interval, and each is discretized
in ten states. A case file containing 8 - 10° sam-
ples, obtained using the sampling procedure de-
scribed, was imported in Netica via the option
”Relation/Incorporate Case File”. This automat-
ically creates the conditional probability tables
needed for performing inferences.
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st time on flight (5]
0

ol e a6 a0

Figure 4.2: Flight crew alertness model in Netica.

Not only is the degree of realism greater in the
continuous model, but also the quantification
of the discretized BBN would require 12,140
probabilities, whereas the quantification with
continuous nodes requires only 8 algebraically
independent conditional rank correlations.

Figures 4.3, 4.4, and 4.5 present the conditional
distribution of the variable ”Flight crew alert-
ness(8)” given certain values of the variables
”Hour of sleep(2)”, and ”Fly duty period(4)”, ob-
tained in two ways:

e using the vines-Netica updating;

e using the vines updating with the density ap-
proach.

After the sample file is imported in Netica, we
conditionalize on "Hours of sleep” € [0.2,0.3] and
"Fly duty period” € [0.8,0.9]. We can use Netica
to generate samples from the conditional distri-
bution of ”Crew alertness”. In the same manner,
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we sample from ”Hours of sleep”e [0.2,0.3]
and "Fly duty period”€ [0.8,0.9] and save the
samples that Netica generates via the option
”Network /Simulate Cases”. In the Monte-Carlo
simulation for vines updating, we will have to
re-sample the structure, in the same condi-
tions ("Hours of sleep”’€ [0.2,0.3]; ”Fly duty
period”€ [0.8,0.9]). For better results of the
comparisons, we use the samples that we saved
from Netica, in the simulation for updating with
vines.

In Figure 4.3, the conditional probability
tables from Netica were built using 10* samples.
The agreement between the two methods is
very poor, and this is because there are 103
different input vectors for node 8, each requiring
10 probabilities for the distribution of 8 given
the input. With 10* samples, we expect each
of the 10% different inputs to occur 10 times,
and we expect a distribution on 10 outcomes
to be very poorly estimated with 10 samples.
Moreover, updating with vines does not produce
a very smooth and accurate curve, also because
the simulation was performed with 10 samples.

Conditional distributions of the crew alertness

10" samples
I : s
: .
: |
09 5 Sxgpmcl
¥ ;
; -7
: : : 3 T
naf : i : : AR
] ] : .
3 3 St
o7k 5 - S e
¥ H St
] ] : v
] ; i
06k & N s,
- £ S :
o ] : 7
% : L
E”DS_ e v da
frag ] e
04k s T
W
v
03 he e
"
- ¥
L L
02 "
o ;
3 : : :
0.1 2 8I0.2<2<0.3,0.8<4<0 9 wines update with samples | &
P i | ———8I02<2<03 0 8<4<0 9 netica update
H 1 n n T 1 1

o 01 02 03 04 os 0B 07 o0s 09 1

8

Figure 4.3: Distribution of Xg|X5, X4. Compari-
son of updating results in vines and Netica using
10* samples.

In the next figure, the sample file imported in
Netica contains 8 - 10° samples which allows a
very good estimation of the conditional distribu-
tion of ” Crew alertness”. Another 10 samples for
"Hours of sleep” € [0.2,0.3] and 10* for "Fly duty
period” € [0.8,0.9] are saved from Netica and used
in the vines updating. The curves start to look

very similar indeed, but the one corresponding to
vines (alone) updating is still not smooth because
of the number of samples.

Conditional distribution of the crew alertness
10° samples frorm 8*1

08t : i
¥ //
o
08 :
] =4
a7k g e
: bs
06} o
—~ F
> I
x5k e
w :
3 &
= /
o4l s
/
03 i
o2t / :
01Fy 8I0 2<2<0 3,0.8<4<0 3 vines update with samples
Y : — — —BI0.2<2<0.3,0.8<4<0.9 netica update
T

0 I i T T L T n I i
o o1 0.2 03 0.4 05 0.6 o7 0.8 09 1

x&

Figure 4.4: Distribution of Xg|Xs, X4. Compari-
son of updating results in vines and Netica using
10* from 8 - 10° samples .

If we now do everything with the entire sample
file of 8 - 10° samples, the agreement between the
two conditional distributions is impeccable (see
Figure 4.5). This motivates the use of a very big
sample file.

Conditionai distribution of the crew alertness
8*10° sampies

8I0.2+2<0.3,0.84<0.9 vines update with samples | ¢
— — —BI0.2¢2<0.3,0.84<0.9 netica update :
n ; ; n ; :

i L L h
o 01 oz 03 04 05 0B o7 08 08 1

s

Figure 4.5: Distribution of Xg|Xs, X4. Compari-
son of updating results in vines and Netica using
8- 10° samples.

For a BBN with nodes that require a large
number of inputs (large number of parent nodes,
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discretized in fairly many states) the sample files
should also be very large. The big advantage is
that this huge sample file needs to be done once.
Note however that in some cases it might happen
that sampling the structure, even just once will
cause problems, as we already mentioned in
Section 3.

Example 4.2. Let us consider a BBN structure,
which at a first glance, seems very easy to
deal with, in the sense that it offers a lot of
information about the dependence structure.
This is presented in Figure 4.6.

Figure 4.6: BBN with 4 nodes and 5 arcs.

If the set of (conditional) rank correlations that
can be elicited is either {ra1,731, 742, 741)2, T43)21 }»
or {ra1,731,743,741|3, T42/31}, then the BBN can
be represented as one D-vine, and so the sam-
pling procedure does not require any extra
calculations.

If, for some reason, these rank correlations
cannot be specified, and the only ones which
are available are: {ro1,731,743,742|3, 41|32} the
situation worsens considerably.

The BBN can no longer be represented as one
D-vine, since the order of the variables in D? is
3,1,2, and in D* is 4, 3, 2, 1. To sample Xy, one
needs to calculate:

Tq = F4T:31'13 (Fzﬂ213~F s(@ )(F47\1123'F S (@)

: g 3(T2 I 23(T1
The conditional distribution Fy3(x2), can be
found by evaluating a similar double integral as in
Example 3.1. Furthermore, Fy23(x1) needs to be
calculated. This is, in fact, the conditional distri-
bution of Fyja(z1), given Fy2(x3). Even though
all the information needed seems to be avail-
able, evaluating the joint distribution of these two

quantile functions turns out to be a very difficult
job. Moreover at each step of its evaluation, one

should calculate the numerical value of the dou-
ble integral for Fi5(x3). This is a task that takes
time and patience.

If this kind of calculations are necessary for
such a small BBN, it is very likely that more
complicated ones will be involved in larger struc-
tures. The time spent to solve this sort of prob-
lems would be, by far, much longer than one can
afford.

5 Joint Normal Vines

All the troubles discussed until now are caused
by the different sampling order of variables from
one vine to another. To avoid these problems
we advance here a new way of realizing the rank
correlation specification on a regular vine using
the joint normal distribution instead of a copula.

Let us start with a rank correlation vine
specification on the variables X7i,...X,, with
continuous, invertible distribution functions
Fy, ..., F,. We adopt the following protocol:

1. Transform Xq,...X, to the standard nor-
mal variables Y7,...Y,, via the transforma-
tion Y; = @ Y(F;(X;)), (Vi)(i = 1,...,n),
where ® is the cumulative distribution func-
tion of the standard normal distribution.

2. Construct the vine for the standard normal
variables Yi,...,Y,. Since ®~!(F;(X;)) are
strictly increasing transformations, we assign
the same (conditional) rank correlations to
the edges of this vine.

3. To each edge of this vine assign p;jp =
2sin(% - r; jip), where {i,j} and D are the
conditioned and conditioning sets, respec-
tively, of the edge, and r; ;p is the condi-
tional correlation assigned to the correspond-
ing edge from the initial vine. We now have
a complete partial correlation vine specifica-
tion® for Yi,...,Y,. Theorem 2.1 ensures
that there is a unique joint normal distribu-
tion for Y7,...Y, satisfying all partial cor-
relation specifications. Moreover there is an
unique correlation matrix determined by this
vine (Theorem 2.2).

4. Compute the correlation matrix R using the
recursive formula from Definition 2.5.

8Conditional and partial correlations are equal for nor-
mal variables.
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5. Sample the joint normal distribution of
Y1,...,Y,, with correlation matrix R. ([8])

6. For each sample, calculate:

S ETH@))),

where ( (y), (), -, () ) s the j2 sample
from the previous step.

In this way we realize the joint distribution of
the initial variables X7, ... X,,, together with the
dependence structure specified.

In case of a BBN which cannot be represented
as one vine, we can make use of the protocol
described above. We calculate everything on
the joint normal vine, hence we can reorder the
variables and recompute all partial correlations
needed.

Further, we will present comparisons between
the ”joint normal vine” method and the copula-
vine method together with Netica updating,
using the BBN from Example 3.1. The marginal
distributions of X, X2, X3, X4 are uniform
on the interval (0,1). We sample the structure
both with the copula-vine approach, and the
joint normal vine approach. Hence, we produce
two sample files, each containing 10° samples.
The resulting files are imported in Netica, and
conditioning is performed in both cases.

The conditional distribution of X,

10° samples
! - ,

2

1

F{x |0 7<x <0.2,0.3<x _<0.4)
o
)

4
o
w

frank vine - netica updating
———normal vine - netica updating
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i i i i
0 0.1 02 03 04 05 06 o7 0s 09 1

Figure 5.1: The distribution of X4|Xi,Xs.
Frank’s Copula Vine vs Joint Normal Vine (con-
ditioning in Netica using 105 samples).

Figure 5.1 presents the conditional distribution
of the variable X4 given that X; € [0.1,0.2] and
X, € [0.3,0.4], obtained using the sample files
produced with the two methods. One can no-
tice a small disagreement between the two condi-
tional distributions. If we think of this joint nor-
mal method in terms of the copula-vine method,
where we made use of the normal copula, we can
say that the difference between the two condi-
tional distributions from Figure 5.1 is due to the
different choice of copula.

Another way of comparing these methods is
to calculate and compare the two sample cor-
relation matrices. The matrix presented below
corresponds to the sample file obtained using the
copula-vine approach:

1 0.4031 0.7028 0.3746
0.4031 1 0.2843  0.2028
0.7028 0.2843 1 0.5201
0.3746  0.2028 0.5201 1

The next matrix is obtained using the sample file
generated with the joint normal vine method:

1 0.4000 0.6974 0.3843
0.4000 1 0.2837 0.1985
0.6974  0.2837 1 0.5271
0.3843 0.1985 0.5271 1

Comparing the two matrices one can observe
differences of order 1073, which represent a rea-
sonable result taking into account the sampling
erTors.

The big advantage of this method is that the
simulation runs for a few seconds, whereas with
the previous sampling algorithm (in which ad-
ditional calculations were necessary) the results
were available in hours.

The same kind of results we find when we
examine the structure from Example 4.1.

Figure 5.2 shows the conditional distribution
of the variable "Flight crew alertness(8)” given
the variables "Hour of sleep(2)” and ”Fly duty
period(4)”. We can again notice that the choice
of copula produces a small discrepancy between
the curves. Comparing the two sample correla-
tion matrices for this example we find that the
maximum difference is 8 - 1073,



Proceedings of the 2005 ENBIS5 Conference

Contional distribution of the erew alertness
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Figure 5.2: The distribution of Xg|Xa, Xy.
Frank’s Copula Vine vs Joint Normal Vine (con-
ditioning in Netica using 8 - 10° samples).

A very important feature of this method is that
conditioning can be done theoretically. Since all
the calculations are performed on a joint normal
vine, any conditional distribution will also be a
normal with the mean and variance given by the
formulas in Proposition 2.2. Finding the condi-
tional distribution of the corresponding original
variable will just be a matter of transforming it
back using the inverse distribution function of
this variable and the standard normal distribu-
tion function.

6 Conclusions

Vines and Bayesian belief nets, in combination
with copula’s, provide practical and flexible ways
of stipulating high dimensional distributions.
We have presented the copula-vine approach to
continuous BBNs, addressed its computational
problems and proposed ways to solve them.

Quite often, real life problems are modelled
with large BBNs, which might contain big cycles.
In most cases, in the copula-vine approach ex-
tra calculations are needed in order to sample a
structure. These calculations are numerical eval-
uations of multiple integrals, which are very time
consuming. Moreover, updating such a structure
is done by re-sampling the network each time a
new policy is evaluated. A large model could run
for days.

We have shown how to overcome this limita-

10

tion by making use of the advantages of BBNs
software. We sampled the structure just once,
imported the sample file in Netica and performed
fast updating for the discretized version of the
BBN. Not only do we increase the degree of real-
ism by using continuous variables, but we also
considerably decrease the number of quantities
that must be assessed for the quantification of the
discretized BBN (example 4.1 requires 8 number
instead of 12,140).

On the other hand, for a large BBN, which
contains nodes with many parents, discretized in
fairly many states, a very large sample file is
needed in Netica. Furthermore, we presented a
very simple example in which unexpected prob-
lems appear and make this one time sampling
very complicated and time consuming. If this
happens for a small BBN, it is very likely that
for a larger one, more difficulties will emerge.

These problems are caused by the different or-
dering of variables in the D-vines that represent
the BBN structure. We solved this issue by real-
izing the rank correlation specification on a joint
normal vine. We transformed the rank correlation
vine to a partial correlation vine on standard nor-
mal variables; computed the correlation matrix
and sample from a joint normal distribution with
standard normal margins and a given correlation
matrix. We transformed back, and in this way, we
realized the joint distribution of the initial vari-
ables with the specified dependence structure. In
the joint normal vine we can re-order the variables
and compute the re-ordered partial correlations,
using the properties of the joint normal distribu-
tion. Hence, no extra calculations are involved.
The big advantage is that the computational time
reduces from hours to seconds.

The joint normal vine method might seem very
similar to the joint normal transform method pre-
sented in [10]; [11], but the presence of vines is
crucial in avoiding the problems encountered in
the later method. In the joint normal transform
approach, the rank correlation matrix must be
first specified and then induced by transforming
distributions to standard normals and generating
a dependence structure using the linear properties
of the joint normal. Specifying a rank correlation
matrix can be a very difficult task. Moreover, it
is not always possible to find a product moment
correlation matrix generating a given rank cor-
relation matrix via Pearson’s transformation, as
showed in chapter 4 from [3]. Using the joint nor-
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mal vine approach we avoid this problems because [11] Iman, R. and Helton, J., A comparison
we do not specify a rank correlation matrix, but of uncertainty and sensitivity analysis tech-
rather a rank correlation vine. niques for computer models, tech. report,

A very attractive feature of this algorithm is NUREG/CR-3904 SANDS84-1461 RG, Albu-
that conditioning can be done theoretically. We querque, 1985.

are presently working on refining this procedure
and plan to publish the results elsewhere.
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