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Abstract. This paper proposes a new method to determine lifetime distributions for
concrete bridges and to compute the expected cost of replacing a bridge stock. The uncer-
tainty in the lifetime of a bridge can best be represented with a Weibull distribution. It
is recommended to fit this Weibull distribution on the basis of aggregating the lifetimes of
demolished bridges (complete observations) and the ages of current bridges (right-censored
observations). Using renewal theory, the future expected cost of replacing the bridge stock
can then be easily determined while taking account of the current bridge ages and the cor-
responding uncertainties in the future replacement times. The proposed methodology is
used to estimate the cost of replacing the Dutch stock of concrete bridges as a function of
time.
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1 INTRODUCTION

The Dutch Directorate General for Public Works and Water Management is respon-
sible for the management of road bridges in the Netherlands (Klatter et al. [5]). This
management can be optimised by balancing maintenance and replacement of bridges us-
ing life-cycle costing. To calculate the life-cycle cost, information on the time and cost
of bridge replacement is needed. Therefore, this paper has two objectives: determining
lifetime distributions for concrete bridges and computing the expected cost of replacement
of the current bridge stock as a function of time and age. This paper mainly focusses on
bridge replacement (defined as ‘essential maintenance’ in the BRIME report [7]).

The first objective is to perform a statistical analysis on lifetimes of demolished bridges
and ages of existing bridges. However, the general opinion on estimating a lifetime solely
on the basis of bridge replacement times is that the resulting expected lifetime is often
considerably underestimated. Although this statement is confirmed by our results, we
claim that a statistical analysis is nevertheless useful. The underestimation problem can
be resolved by fitting a probability distribution to both the lifetimes of demolished bridges
(complete observations) and the current ages of existing bridges (right-censored observa-
tions). The so-obtained estimates of the expected lifetime of a concrete bridge are more in
accordance with the usual design life. In order to properly model the ageing of bridges, the
use of the Weibull distribution is recommended. Using the maximum-likelihood method,
a Weibull distribution can be fitted to both complete and right-censored observations. An
advantage of the Weibull distribution is that the conditional probability distribution of
the residual lifetime given the current age can be analytically expressed.

The second objective is to estimate the future expected cost of replacing the bridge
stock as a function of time. This can be done by applying techniques from renewal theory.
As a matter of fact, this paper contains all the mathematical formulas that are needed to
explicitly compute the expected cost of bridge replacement over a bounded horizon when
the current ages are given.

The outline of this paper is as follows. The statistical methodology to determine the
lifetime distribution of concrete bridges on the basis of lifetimes of demolished bridges and
ages of the current bridge stock is presented in Section 2. Mathematical formulas for the
expected value of the future cost of bridge replacement over a bounded horizon are derived
in Section 3. Section 4 describes a case study on estimating the lifetime distribution of the
Dutch concrete bridges and the expected future cost of replacement of the bridge stock.
Conclusions are given in Section 5.

2 LIFETIME DISTRIBUTION OF BRIDGES

A probability distribution which is especially useful for modelling ageing is the Weibull
distribution (Barlow & Proschan [1]). A random variable X has a Weibull distribution
with shape parameter ¢ > 0 and scale parameter b > 0 if the probability density function
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of X is given by

£ (ela, ) = We(la,b) = [%] e {— [%] } To00)()- (1)

The survival function is defined by

Flala,b) = 1 — F(e|a,b) :exp{— [%H (2)

with expected value E(X) = bI'(a™! + 1).

For calculating the future replacement cost of the current bridge stock, we have to
account for their ages. To achieve this, we condition on the current life or age y and
determine the conditional probability that the lifetime X exceeds x given X > y; that is,

Pr{X>:1;|X>y}:F(:Jc|a,b,y):exp{— [%] + [%] } (3)
for x > y. The corresponding probability density function of this so-called left-truncated
Weibull distribution is then given by

LTW(z|a,b) = % [%r—l exp {— [%r + [%r} Iy 00)(). (4)

This density represents the uncertainty in the lifetime of a bridge having current age y,
where the residual (or excess) lifetime is defined as X — y. The statistical properties of
the left-truncated Weibull distribution are derived by Wingo [6].

For estimating the parameters of the Weibull distribution for bridge lifetimes, there are
two types of observations available: complete lifetimes of demolished bridges and right-
censored lifetimes of existing bridges. Although the latter observations do not contain
actual lifetimes, they are nevertheless a valuable source of information. At least we know
that the lifetimes of the existing bridges will be larger than their current ages. Using
maximum-likelihood estimation, the complete and right-censored observations can be used
to estimate the parameters a and b of the Weibull distribution. Let x = (21,...,2,)
denote a random sample of r complete lifetimes and y = (91, ..., )" a random sample of
m right-censored lifetimes. Using Eqgs. (1) and (2), the corresponding likelihood function
can be written as

((x,y]a,b) =ITizt £ (2:] @, ) T F (y;]a. ). (5)

The maximum-likelihood estimators & and b can be computed by numerically maximising
the logarithm of the likelihood function (5).
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3 EXPECTED COST OF REPLACEMENT

The purpose of this section is to derive the expected cost of bridge replacement while
taking account of the uncertainty in the lifetime. We assume that bridge replacement can
be approximately modelled as a discrete renewal process, whereby the renewals are the
replacements. After each renewal we start (in a statistical sense) all over again. A discrete
renewal process {N(n),n =1,2,3,...} is a non-negative integer-valued stochastic process
that registers the successive renewals in the time interval (0,n]. Let the renewal times

Ty, 15,15, ..., be non-negative, independent, identically distributed, random quantities
having the discrete probability function

Pr{Tk:Z} :pZ:F(l|a,b,0)—F(l—1|a,b,0), (6)
1 =1,2,..., where p; represents the probability of a renewal in unit time ¢. This proba-

bility function is a discretised Weibull distribution.

It is assumed that the cost associated with a renewal does not change over time and is
equal to c. The expected cost over the bounded horizon (0,n], denoted by E(K(n)), fol-
lows then directly from the expected number of renewals E(N(n)): E(K(n)) = ¢cE(N(n)).
According to Van Noortwijk & Peerbolte [4], the expected number of renewals is a solution
of the recursive equation

BONG) = i (14 B(NG = )] M
=1
for n =1,2,3... and N(0) = 0. To obtain this equation, we condition on the values of
the first renewal time 77 and apply the law of total probability. With the occurrence of
the event T} = ¢, the number of renewals is one plus the additional expected number of
renewals during the interval (¢,n], 7 = 1,...,n. Using the discrete renewal theorem (see
Feller [2, Ch. 12 & 13] and Karlin & Taylor [3, Ch. 3]), the expected long-term average
number of renewals per unit time is

E(N 1 1
fg 20D 1L (3)

e n Yzt M

being the reciprocal of the mean lifetime p. As n — oo, the expected long-term average

cost per unit time approaches ¢/ p.

The expression for the expected number of renewals over a bounded horizon (7) can
be extended to the situation in which the first bridge has age y > 0. For this purpose,
the probability distribution of the residual lifetime can be discretised in terms of

Pr{T =ily} = q:(y) = Fly +ila,by) — Fly+i—1a,by), i=12,... (9)

The expected number of renewals in time interval (0, n] when the first bridge has age y
can then be written as

n

E(N(n,y)) = qi(y) [ + E(N(n —1))], (10)

=1
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Figure 1: Histogram of (a) complete lifetimes and (b) right-censored lifetimes (current ages).

where F(N(n)) is given by Eq. (7). Because the renewal process only starts from the sec-
ond renewal on, the non-negative integer-valued stochastic process {N(n,y),n =1,2,3,...}
is called a delayed renewal process (see Karlin & Taylor [3, Ch. 5]).

In general, the expected cost of replacement of a bridge stock can now be obtained by
summing the expected replacement cost over the current ages vy1,...,ymn:

E(K(n)) = S ¢ B(N(n,y,)), (11)

where ¢; is the cost of replacing the jth concrete bridge. Accordingly, the expected cost
of bridge replacement in unit time ¢ is simply E(K(2)) — E(K(t — 1)), ¢ =1,...,n.

4 DUTCH STOCK OF CONCRETE BRIDGES

The proposed method for estimating lifetime distributions and future replacement costs
has been applied to the Dutch stock of concrete bridges in the main road network. This
stock consists of concrete underpasses, viaducts and bridges. The main purpose of this
paper is to present the methodology rather than to perform a thorough comparative
statistical analysis for all the different categories of structures. Furthermore, the data
that has been used for determining the lifetime distribution and the expected replacement
cost must still be improved. At the time of writing, the data on lifetimes of demolished
bridges and ages of current bridges was not yet complete.

4.1 Estimation of lifetime distribution

The observed lifetimes and ages of concrete bridges were aggregated. In doing so, we
gathered r = 52 lifetimes of demolished bridges (the complete observations in Figure la)
and m = 3564 ages of existing bridges (the right-censored observations in Figure 1b).
Because the right-censored observations were only available in terms of units of time of
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Figure 2: Weibull distribution estimated on the basis of (a) complete lifetimes and (b) both complete
and right-censored lifetimes.

five years, bridge replacement was modelled as a discrete-time renewal process. For 150
concrete bridges, the year of construction was unknown leading to a total number of
concrete bridges in the Netherlands of i = 3714 (adapted from Klatter et al. [5]).

A statistical analysis has been performed for complete lifetimes only as well as for the
combination of complete and right-censored lifetimes. The general opinion of bridge main-
tenance managers is that a statistical analysis of replaced bridges is not useful, because
the fitted lifetime distribution would underestimate the expected lifetime considerably
(about 40 to 50 years instead of the usual design life of 80 to 100 years). The main reason
for this is that most demolished bridges were not replaced due to technical failure, but due
to a change in functional or economical requirements. Examples are bridges replaced be-
cause of insufficient load-carrying capacity due to an unexpected increase of heavy traffic
intensity. Unfortunately, there was not enough information available for making a distine-
tion between the technical, functional and economical lifetime. Therefore, the observed
lifetimes of demolished bridges can be either of these three and they were analysed as a
whole. Furthermore, it should be noted that possible changes in bridge design over time
could not yet be taking into account. This will be investigated in the future.

As expected, our statistical analysis results in an underestimation of the expected life-
time: the mean is 44 years with a coefficient of variation of 0.24. The corresponding
maximum-likelihood estimators of the shape parameter a and the scale parameter b of
the Weibull distribution are & = 4.2 and b = 48.5, respectively. The resulting Weibull
probability density function based on complete observations is shown in Figure 2a. How-
ever, when the current ages of the concrete bridge stock are included, the results change
considerably. The expected lifetime increases from 44 to 83 years! The coefficient of
variation does not change much; its value is 0.22. The maximum-likelihood estimates
are & = 5.2 and b = 90.2. The Weibull density function based on both complete and
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Figure 3: Expected cost per unit time ¢, ¢ = 1,...,n: (a) as a function of age or (b) summed over all

ages.

right-censored observations is shown in Figure 2b. Because the Weibull shape parameter
is larger than unity, both situations clearly represent ageing (Barlow & Proschan [1]).

4.2 Calculation of replacement cost

When the lifetime distribution is based on both complete and right-censored observa-
tions, the expected replacement cost over the bounded horizon (0,n] can be computed
with Eq. (11). For the purpose of illustration, we assume the replacement cost of a con-
crete bridge to be the same for all bridges. Although an old bridge is seldom replaced by
the same type of bridge, it is difficult to accurately assess the cost of such a new bridge.
Let the cost of replacement therefore be independent of time. From Klatter et al. [5],
the cost of replacement of one bridge directly follows from the replacement value of the
complete stock of m = 3714 bridges being 6.4 x 10? Euro: that is, ¢ = 1.7 million Euro.

In Figure 3a, the expected cost per unit time of five years is shown as a function of
the unit time and the bridge’s age. Summing over all the concrete bridges and their
corresponding ages gives the expected cost per unit time as shown in Figure 3b. As
expected, the uncertainty in the second replacement time is larger than the uncertainty in
the first replacement time. As the time horizon approaches infinity, the expected long-term
average cost per unit time of five years approaches m - ¢/y = 357 million Euro (compare
with the limit (8)). This average cost is thus 71 million Euro per year. Indefinitely far
in the future, our delayed renewal process thus becomes a stationary renewal process for
which the expected cost per unit time finds an equilibrium value. To account for the
replacement cost of the 150 concrete bridges with unknown years of construction, the
expected replacement cost per unit time shown in Figure 3 should finally be multiplied by
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a factor m/m = 1.04. The cost of preventive and lifetime-extending (routine) maintenance
is not included in these figures; only the cost of essential maintenance is considered.

5 CONCLUSIONS

A statistical analysis for determining the lifetime distribution of concrete bridges in
the Netherlands has been presented. A Weibull distribution was fitted to both complete
lifetimes of demolished bridges and current ages of existing bridges. Unlike the aver-
age value of the observed complete lifetimes, the expected value of the Weibull lifetime
distribution was in agreement with the usual design life. Advantages of representing
the uncertainty in the lifetime of bridges with a Weibull distribution are the possibility
to properly model ageing and to analytically derive the conditional probability density
function of the residual lifetime when the current age is given.

Using the discrete renewal theorem, the so-obtained Weibull distribution has been used
to determine the future expected cost of replacing the bridge stock. In calculating this
cost, the ages of the individual bridges were taken into account. In a case study, the
expected future cost of replacement of the Dutch concrete bridges has been estimated.
Taking account of the uncertainties in the replacement times has the advantage that the
cost is more spread out over time than in the deterministic case. Since the methodology
appears to work well, it could also be applied to other (sub)categories of structures. The
proposed methodology can be extended by distinguishing different types of lifetime (such
as technical, functional and economical), considering a possible change of bridge design
over time and varying the replacement cost over the individual structures.
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