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ABSTRACT

Simple algorithms for probabilistic inversion are proposed, based on iterative sample re-weighting.
One of these, iterative proportional fitting (IPF ), dates from the 1930’s and has been studied
extensively with regard to contingency tables. A new algorithm is shown to converge even when
IPF is infeasible.
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1 Introduction

Probabilistic inversion arises in risk and uncertainty analysis when uncertainty distributions over
model parameters (called target variables) are obtained via expert judgment. Experts are often
unable to assess their uncertainty on these parameters directly, as there are no corresponding ex-
periments on which to base their judgements. Instead, experts assess other, empirically measurable
quantities (called query variables), which may, under suitable assumptions, be expressed as func-
tions of the model parameters. For examples from consequence modelling, see (Kraan and Cooke
[1], and (Harper et all [6]). In such cases distributions over the target variables must be pulled
back onto the parameter space of the model in question. Alternatively, we say that the the model
must be probabilistically inverted. The problem can be described mathematically as follows. Given
a joint distribution for Y = [Y1, Y2, ..., Yn] and functions Gi : Rm → R, i = 1, 2, . . . , n, find joint
distributions for X = [X1, X2, . . . , Xm] such that G(X) = [G1(X), G2(X), . . . , Gn(X)] ∼ Y; where
∼ means has the same distribution as. Note that this problem may be infeasible or if it is feasible
it may have more than one solution. Therefore, we must have some method of selecting a preferred



distribution in case of non-uniqueness and some method of selecting a best fitting distribution in
case of non-existence.

A few algorithms are presented in literature to solve probabilistic inversion problems, namely:
conditional sampling, PARFUM (PARameter Fitting for Uncertain Models) (Cooke [3]), Hora and
Young algorithm (see Harper et all [6]) and PREJUDICE (Kraan and Cooke [2],[10]). In this paper
we present two new algorithms for solving probabilistic inversion problems based on sample re-
weighting. The advantage of these algorithms is that they are dumb i.e. do not require intelligent
steering. This makes them suitable for generic uncertainty analysis packages. The disadvantage is
that they may be slow.

2 PARFUM

The PARFUM algorithm can be described in the following steps:

1. Choose a finite set χ ∈ Rm

2. Conditionalize the distribution of Yi on Gi(χ), calling its mass function Qi;

3. Define the minimally informative “pull back” distribution on χ whose “push forward” distri-
bution on Gi(χ) agrees with Qi, that is, for X ∈ χ

Pi(X) =
Qi(Gi(X))

#G−1
i Gi(X)

;

4. Find a distribution P on χ which “best fits” the distributions P1, P2, . . . Pn. The distribution
which minimizes the relative information

∑n
i=1 I(Pi, P ) can be found, where

I(Pi|P ) =
∑

X∈χ

Pi(X) ln

(
Pi(X)

P (X)

)
.

Let Sk = {P ∈ Rk|Pi ≥ 0,
∑k

i=1 Pi = 1}. It is not difficult to show ([3]):

Proposition 1 Let P i ∈ Sk, i = 1, ...n. Then minP∈Sk

∑n
i=1 I(P i|P ) =

∑n
i=1 I(P i|P ∗) if and only

if P ∗ = (1/n)
∑n

i=1 Pi.

The advantage of this method is that it is always feasible and easily implemented. One disadvantage
is that the conditional distributions Qi might be different to those of Yi, but this may be steered by
the right choice of χ. More serious is the fact that the push forward of P need not have marginals
that agree with the Yi. This also can be influenced by steering, but is more difficult.

An alternative approach to parameter fitting for uncertain models was first developed by Hora and
Young (see Harper et al [6]) and developed further by [10]). Whereas PARFUM solves an informa-
tion minimization problem in the parameter space (step 4), these algorithms minimize information
in the range of Yi, i = 1, . . . , n. Unlike PARFUM, this minimization problem is not always feasible
and the choice of χ is very critical. [10] apply duality theory to reduce infeasibility, eventually
arriving at a feasible problem. While these algorithms produce good results for large problems,
they require intelligent steering and are unsuitable for generic uncertainty analysis packages.



3 Sample Re-weighting

Sample re-weighting promises to provide generic methods for probabilistic inversion which do not
require model inversion. The idea of re-weighting a sample to perform probabilistic inversion can
be sketched roughly as follows. We generate a large sample from X1, . . . , Xn, G1(X1, . . . , Xn),...,
Gm(X1, . . . , Xn, ). Let the i − th sample be denoted si ∈ Rn+m. Obviously each sample si has
the same probability of occurring. If N samples have been drawn, then the sampling distribution
assigning p(si) = 1/N approximates the original distribution from which the samples were drawn.
The idea is now to change the probabilities p(si) so as to ensure that the distributions of G1, . . . , Gm

satisfy the user specified quantile constraints. No model inversions are performed, that is, we do
not invert the function G. To achieve reasonable results, the sample size N may have to be very
large. This places strong restrictions on the type of methods which can be implemented in a generic
uncertainty analysis program.

Notation Since the variables X1, . . . , Xn play no role in choosing the weights p(si), we may leave
them out of the problem description. For notational convenience we put Yi = Gi(X1, . . . , Xn); i =
1, . . . m.

A: M variables all with N samples are grouped in matrix Y . Hence Y = [Y1, Y2, . . . , YM ] where
Ym = [Y1m, Y2m, . . . , YNm]T , i = 1, 2, . . . , M . The matrix Y can be written

Y =




Y11 Y12 . . . Y1M

Y21 Y22 . . . Y2M

. . . . . .
YN1 YN2 . . . YNM


 ;

B: We consider a vector q = [q1, q2, . . . , qK ] of lengths of inter-quantile, or inter-percentiles in-
tervals. For instance for K = 4, if we consider 5%, 50% and 95% quantiles then q =
[0.05, 0.45, 0.45, 0.05];

C: For m = 1, . . . , M, j = 1, . . . , K − 1 let rmj be a number for which P{Ym ≤ rmj} = q1 + . . . +
qj; rm,K = ∞. Define

Am
1 = {i|Ymi ∈ (−∞, rm,1]}, . . . Am

j = {i|Ymi ∈ (rm,j−1, rm,j]}, . . . Am
K = {i|YmK ∈ (rm,K−1,∞)}.

Note thatAm = {Am
j }K

j=1 is a partition of 1, . . . , N . We want the probability vector [p(1), . . . , p(N)]
to satisfy the constraint set 3 C:

for all k = 1, 2, . . . , K and all m = 1, 2, . . . , M
∑N

i=1 piIAm
k
(i) = qk

where IA denotes the indicator function of a set A

The output of a re-weighting scheme is a vector p = [p1, p2, . . . , pN ] of weights we should use such
that after re-weighting samples, the constraints C are satisfied ’as nearly as possible’.

3We note that these constraints do not really say that, e.g. ri1 is the q1 − th quantile of Yi.
Indeed, the q1 − th quantile is defined as the least number rij satisfying the above constraint. If
Yi is concentrated on a sparse number of points, then there may be many values ri,j satisfying the
above constraints.



Optimization Approaches It is natural to approach the problem of probabilistic inversion
as a constrained non linear optimization problem. The constraints C are linear, and a convex
objective function will have a unique solution, if the constraints are consistent. Minimal information
is a natural choice of objective function. This yields the following optimization problem: Find
p = [p1, p2, . . . , pN ] such that p has minimum information with respect to the uniform distribution,
under the constraints C. Good performance for this problem has been obtained with an interior
point solver, if the problem is feasible. If the problem is not feasible - and this is frequently the
case - then several lines of attack suggest themselves 4.

Iterative algorithms to solve probabilistic inversion problem Iterative algorithms involve
successively updating a probability vector [p1, . . . , pN ] so as to approach a solution satisfying con-
straints C, or satisfying these constraints as closely as possible. We define the notion of adapting a
probability measure to a partition and partition probability vector:

Definition 1 (Measure adapted to a partition; I-projection) Let A = {Aj}K
j=1 be a parti-

tion of 1, . . . , N , q = [q1, . . . , qK ] be a probability vector, and let p = [p1, . . . , pN ] be a probability
vector. Then

pAi =
K∑

j=1

I{i∈Aj}
piqj

p(Aj)
=

piqj(i)

p(Aj(i))

where p(Aj) =
∑

i∈Aj
pi is the adaptation of p to {Aj}K

j=1 with q, where qj(i) is defined by context.

Let Q be the set of all probability vectors which assign mass qj to the set Aj, j = 1, ...K. Then pA

is called the I-projection of p on Q.

The term ”I-projection” is introduced by Csiszar ([4]), who shows that pA is the unique element of
Q which minimizes I(q|p), q ∈ Q.

Iterative PARFUM This iterative algorithm simply repeats the PARFUM steps. If we have
arrived at the probability vector p, we define the next iteration p′ as:

p′ =
1

M

M∑

m=1

pA
m

; (1)

p′i = pi(1/M)
M∑

m=1

qk(i)

p(Am
k(i))

. (2)

4We mention two. First, an objective function must be defined whose optimization will minimize
infeasibility. For example, one could minimize the quantity ∆:

∆ =
M∑

m=1

K∑

k=1

[
N∑

i=1

piI{Yi,m∈Ik,m} − qk]
2

Of course this quantity has nothing to do with minimum information, and has nothing in partic-
ular to recommend it. Many other choices would be equally defensible. Solvers tested thus far have
been unable to handle very large problems. Another approach would be to relax the constraints C
by replacing equality with ‘equality up to ε’. In this case the choice of ε will be driving the solution,
and this choice will be largely heuristic. Experience to date with infeasible problems has not been
wholely satisfactory



Each measure pA
m

adapts the measure p so as to satisfy the quantile constraints for variable Ym.
From the discussion of PARFUM we see that p′ is the probability vector which is ‘closest’ in the
sense of relative information to all the measures pA

m
. If p satisfies the constraints C, then

qk(i)

p(Am
k(i)

)
= 1

and p′ = p. In other words, the iterative PARFUM transformation has fixed points at all feasible
probability vectors. The following theorem shows that this algorithm always converges, even when
the constraints cannot be satisfied.

Theorem 1 Let Q1, . . . ,QM be closed convex subsets of SK = {P ∈ RK |Pi ≥ 0,
∑K

i=1 Pi = 1}.
For pj ∈ SK, let qj

i be the I-projection of pj on Qi, i = 1, ...M . Let pj+1 = (1/M)
∑M

i=1 qj
i . Then

there exits p ∈ SK such that limj→∞ pj = p.

Proof Since Qi is closed and convex, qj
i exists and is unique ([4], theorem 2.1). Define F (pj) =∑M

i=1 I(qj
i |pj) ≥ 0. By proposition 1 and the fact that qj+1

i is the I-projection of pj+1 on Qi, we have

M∑

i=1

I(qj
i |pj) ≥

M∑

i=1

I(qj
i |pj+1) ≥

M∑

i=1

I(qj+1
i |pj+1). (3)

Equality holds if and only if pj = pj+1. Thus, F (pj) is decreasing in j and converges. To show
that pj converges, pick ε > 0 and j ∈ N such that F (pj) − F (pj+1) < ε. Then

∑M
i=1 I(qj

i |pj) −∑M
i=1 I(qj

i |pj+1) < ε. Writing this inequality element-wise:

M∑

i=1

K∑

k=1

qj
i,k(ln(qj

i,k/p
j
k)− ln(qj

i,k/p
j+1
k )) < ε.

Reversing the order of summation and substituting
∑M

i=1 qj
i,k = Mpj+1

k , we find MI(pj+1|pj) < ε.
The proof is concluded by applying the inequality ([9])

K∑

k=1

|pj
k − pj+1

k | ≤
√

2I(pj+1|pj) 2

.

The set Qi may be regarded as the set of vectors satisfying the i-th constraint; in particular, this
may be the set of vectors satisfying the quantile constraints for Yi. The middle term in (3) can be
written as

G(qj
1, . . . , q

j
M) =

M∑

i=1

I(qj
i |pj+1) = MH(

M∑

i=1

qj
i /M)−

M∑

i=1

H(qj
i );

where for q ∈ SK , H(q) = −∑K
k=1 qk ln(qk) is the entropy of q. If qi 6= qj for some i 6= j then

G(q1, . . . qM) > 0 by the strict convexity of H. The iterative PARFUM algorithm may be seen as
minimizing the function G, and the value of G may be taken as a measure of ’how infeasible’ the
problem is. If

⋂M
i=1Qi = ∅, then the problem is infeasible. If

⋂M
i=1Qi = Q 6= ∅ then the algorithm

is observed to converge to an element of Q 5 and G(q1, . . . qM) → 0. In this case the I-projection
of the starting point p1 on Q exists and is not in general equal to the p given by the theorem. A
sufficient condition for feasibility is given in the following:

Theorem 2 Let pij...n denote p(A1
i ∩A2

j . . .∩AM
n ). Let p be a fixed point of the PARFUM algorithm

with pij...n > 0 for all i = 1, . . . K; . . . , n = 1 . . . K; then p(Ai
j) = qj, for i = 1, . . . M and j =

1, . . . K.

5This has been observed without exception on a great many numerical experiments, but not yet
proved.



Proof: Let p...,j... denote summation over all indices other than j, then we must show p(Ai
j) =

p...,j,... = qj . Since p is a fixed point we have (there are M terms in brackets on the left hand side):

Mpij...n = pij...n(
qi

pi...

+
qj

p...,j,...

+ . . .
qn

p...,n

). (4)

Since pij...n > 0, we may divide both sides by pij...n and rearrange terms to obtain: (M − qj

p...,j,...
−

. . . − qn

p...,n
)pi,... = qi. Sum both sides over i and find (M − qj

p...,j,...
− . . . − qn

p...,n
) = 1 = qi

pi,...
. The proof

is concluded by noting that the above argument may be applied to any index 2.

It is easy to see that a fixed point of PARFUM can satisfy p...,j,... > 0 only if this also holds for
the starting point. PARFUM algorithm simply loops through the sample over and over again.
The whole sample need not be loaded in memory, but can be loaded piece wise. Hence, there
is effectively no restriction on sample size. We note that samples i and j which fall in the same
interquantile intervals, for Y1, . . . YM , will be modified in exactly the same way. Hence, if we begin
with the uniform vector pi = 1/N , then the iterated values for these samples will always be equal.

Iterative proportional fitting The iterative proportional fitting (IPF) algorithm was intro-
duced by [8] and [5]. The PARFUM algorithm adapts a starting measure to each partition, and
then averages these adaptations to obtain the next iterate. The IPF, in contrast adapts a starting
vector to the first partition, then adapts this to the second partition, and so on, cycling through the
set of partitions. A complete step thus involves adapting the current measure to all M partitions.
Hence if we have arrived at vector p, the next iteration is defined as

p′ = (. . . ((pA
1

)A
2

. . .)A
M

This algorithm was first used to estimate cell probability in a contingency table subject to certain
marginal constraints. Again, it is easy to see that if p satisfies constraints C, then p is a fixed point
of this algorithm.

The convergence of the IPF algorithm has been studied by many authors (for references, see Fien-
berg [7], and Csiszar [4]). It is not difficult to prove that if the IPF algorithm converges, then it
converges to the I-projection of the starting probability vector on the set of probability vectors sat-
isfying the constraints. Further [4] showed that starting with a probability vector p, IPF converges
if and only if there is a vector r satisfying the constraints C and satisfying:

p(A1
i1
∩ A2

i2
. . . ∩ AM

iM
= 0) ⇐⇒ r(A1

i1
∩ A2

i2
. . .AM

iM
= 0); (5)

Aj
ik

∈ Aj; k = 1, ...M. (6)

4 Conclusion

Experience with the IPF algorithm shows that it converges much faster than the iterative PARFUM
algorithm, if it converges. In some cases it will not converge, but oscillate. In applications to



probabilistic inversion using sample re-weighting, we frequently encounter infeasible problems, and
in these cases IPF procedure doesn’t converge. In practice a hybrid algorithm based pruning and
switching to iterative PARFUM in case of oscillation might be attractive.
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