
1 INTRODUCTION  

Decisions on sewer rehabilitation have large, long-
lasting consequences and the decisions have to be 
made under uncertainty. Annually, approximately 1 
billion Euro is invested in sewer rehabilitation in the 
Netherlands. Uncertain information about the struc-
tural condition and the hydraulic performance of the 
sewer system serves as the basis for decision-
making. Therefore, the investments involve consid-
erable risks, i.e. sewer rehabilitation that appeared to 
be dimensioned too large, or too small, or to be even 
unnecessary later on.  

In the past, however, uncertainty analysis with 
regard to sewer system rehabilitation achieved very 
limited attention. Only recently, uncertainties influ-
encing decisions on sewer rehabilitation are increas-
ingly examined. For example, when it comes to im-
pacts on receiving waters, such as CSOs (combined 
sewer overflows) and wwtp (wastewater treatment 
plant) emissions (Reda & Beck 1997 and Willems 
2000), water quality criteria such as dissolved oxy-
gen depletion (Beck 1996 and Hauger et al. 2002) or 
the assessment of eco-toxicological risks (Novotny 
& Witte 1997), risk based approaches are used to 
some extent. 

Decision-making on sewer system rehabilitation 
requires the use of models to predict compliance of 
the system with performance criteria, i.e. CSO vol-
umes and flooding. The decisions are usually based 
on a single computation of CSO volumes using a 
time series of rainfall as system loads. Consequently, 
uncertainties in knowledge of sewer system dimen-
sions and natural variability in rainfall are ignored. 
Besides, statistical uncertainties are not taken into 
account. Uncertainties in sewer system assessment, 
however, are not restricted to calculated CSO vol-

umes. The effects of CSOs on natural watercourses 
are just as much uncertain. Quantification of these 
effects is problematic because the determinative 
processes are complex and the knowledge on them is 
very limited (Harremoës & Madsen 1999). More-
over, measurement data on pollution loads from 
sewers are lacking and existing sewer models are 
unable to predict the loads (Ashley et al. 1998). 

This paper discusses the sensitivity of optimal 
storage capacity of a sewer system to uncertainties 
in model input, i.e. model parameters and rainfall 
input, using probabilistic cost-benefit analysis. 
Monte Carlo analysis is applied to systematically 
study uncertainty propagation in a sewer model. For 
this purpose, model parameters and rainfall input are 
varied in each run of the Monte Carlo simulation in 
order to compute CSO volumes. Statistical uncer-
tainty is treated by means of Bayesian estimation. 
Environmental damage is translated into a cost func-
tion. Based on estimated return periods of CSO vol-
umes the sensitivity of decisions to the input uncer-
tainties is evaluated for a discrete and a continuous 
damage cost function. The optimal storage capacity 
is determined by optimally balancing the cost of in-
vestment and the damage due to CSOs. 

2 SEWER SYSTEM ASSESSMENT FOR 
REHABILITATION PURPOSES 

Sewer systems have been designed to protect society 
from two important hazards: flooding of urban areas 
during storms and the endangering of public health 
due to exposure to faecal contamination. Besides, 
the environmental effects of CSOs should not ex-
ceed the carrying capacity of receiving natural wa-
tercourses. Overflow structures serve as emergency 
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outlets to natural watercourses when rainfall vol-
umes exceed the system capacity. 

In the Netherlands, the approach to deal with the 
environmental impacts of sewer systems aims at re-
ducing pollution loads by 50% compared to the 1985 
situation. This approach has been translated into 
practical guidelines for calculations (see e.g. Van 
Mameren & Clemens 1997). The required pollutant 
reduction is expressed in terms of maximum allow-
able CSO discharges from a sewer system of 50 kg 
COD (chemical oxygen demand) discharged to the 
receiving waters per ha contributing area and per 
year (CIW 2001).  

Assessing sewer overflows requires the use of a 
continuous rainfall series of a certain length, taking 
into account the interdependency of storm events 
and dry periods, thus enabling the calculation of re-
turn periods of the effects of medium and heavy 
storms. The Dutch guidelines prescribe a rainfall se-
ries with an interval of 15 minutes as observed dur-
ing the years 1955-1979 in De Bilt (the Nether-
lands). Adding pollutant concentrations to calculated 
CSO volumes would enable the assessment of envi-
ronmental impacts. However, these calculated pol-
lutant loads are rather uncertain, since the prevailing 
pollutant concentrations in overflow volumes are 
unknown and the knowledge of determinative proc-
esses is limited.  

In case a sewer system does not comply with the 
discharge limits several interventions can be 
planned, such as building additional in-sewer stor-
age, enlarging pumping capacity, cleaning of sewers 
or improving pumping station performance. 

3 UNCERTAINTIES IN SEWER SYSTEM 
ASSESSMENT 

We can conclude from the previous that each as-
sessment contains a certain measure of uncertainty 
because it is based on calculated CSO volumes and 
their pollutant loads. Therefore, the question, which 
arises, is which elements in the assessment of sewer 
systems should be acknowledged as uncertain and to 
what extent are decisions sensitive to such uncertain-
ties.  

 
Figure 1. Uncertainties influencing sewer system assessment: 
external inputs/driving forces, the system itself or effects of the 
functioning of the system. 

 

Uncertainties can be part of the external inputs, the 
system itself or the effects of the functioning of the 
system (see Figure 1). Input comprises a wide range 
of relevant driving forces, whereas output reflects 
the interests of parties that depend on the perform-
ance of the sewer system. Uncertainties may cause 
wrong decisions. 

3.1 Input uncertainties 
Uncertainties in external inputs may result from 
rainfall measurement errors (Rauch et al. 1998), spa-
tial and temporal variability in rainfall (Schilling & 
Fuchs 1986, and Lei & Schilling 1996 and Willems 
1999), variation in dry weather flow (dwf) due to 
varying inputs from households (Butler 1991 and 
Butler et al. 1995) and leaking groundwater (Clem-
ens 2001).  

Besides, uncertainty is introduced because the 
rainfall runoff process is described in a strongly 
simplified way in the model. Variability of runoff in 
time and local differences in runoff parameters (ini-
tial losses, infiltration, etc) is not taken into account 
and knowledge of processes is insufficient (Van de 
Ven 1989 and Clemens 2001).  

Finally, hydraulic performance is assessed assum-
ing perfect technical functioning of all objects in a 
sewer system leading to uncertainty in model as-
sumptions. For example, risk of technical failure of 
pumping stations, settling of sewer pipes and clog-
ging of culverts are not taken into consideration. 

3.2 System uncertainties 
The data set applied in a sewer model is never en-
tirely perfect. Data errors (geometric structure of the 
sewer system, catchment area, runoff parameters, 
etc.) considerably influence calculation results (Price 
& Osborne 1986 and Clemens 2001). 

Sewer models are imperfect because the physical 
phenomena are not exactly known and some vari-
ables of lesser importance are omitted for efficiency 
reasons. This results in model uncertainty with re-
spect to hydraulics (Beck 1996 and Lei & Schilling 
1996) and in-sewer processes determining sewage 
composition (Ashley et al. 1998). Besides, model 
uncertainties may stem from estimation (or calibra-
tion) of model parameters (Price & Catterson 1997 
and Clemens 2001) and numerical calculation errors 
(Clemens 2001).  

In addition, the influence of time dependent 
sewer deterioration is not accounted for in hydraulic 
sewer assessments. Except for biogenic sulphuric 
acid corrosion of sewer pipes there are no reliable 
models describing sewer deterioration because 
knowledge of deterioration processes (e.g. clogging, 
root intrusion, fouling, ingress of soil and longitudi-
nal or radial pipe displacement) is limited. There-
fore, assessment of sewer deterioration is performed 



by means of visual inspection and coding of obser-
vations. However, the assumed relationship between 
observations and actual structural deficiencies is de-
batable. As a result, prediction of the remaining op-
erational life of sewers highly depends on the limita-
tions of the assessment method. 

3.3 Impact uncertainties 
It is generally accepted that the quality of natural 
watercourses deteriorates due to CSOs (see e.g. 
House et al. 1993). Deterioration comprises water 
quality changes (dissolved oxygen, polluted sedi-
ments, etc.), human health risks and aesthetic con-
tamination (floating waste, algal growth, etc.).  

However, the severity is uncertain because CSOs 
are intermittent loads and their composition strongly 
varies (Beck 1996). Measurement data of pollution 
loads from sewers are unavailable and current sewer 
models are unable to predict them (Ashley et al. 
1998). Moreover, translation of uncertain pollutant 
loads to effects on natural watercourses and their 
ecology is problematic because the knowledge of 
water quality processes is rather limited and the re-
silience of receiving water bodies is uncertain (Sha-
nahan et al. 1998 and Harremoës & Madsen 1999). 
Therefore, environmental regulations based on 
available knowledge also incorporate uncertainties. 

In addition, the valuation of environmental effects 
may also give rise to uncertainties in sewer assess-
ments. Some authors claim that environmental ef-
fects can be quantitatively expressed in terms of 
money (see e.g. Crabtree et al. 1999 and Novotny et 
al. 2001). Others, on the other hand, oppose to this 
approach and value the effects in a more qualitative 
way (see e.g. Nijkamp & Van den Berg 1997 and 
Gilbert & Janssen 1998). An example of the former 
is the ‘Contingent Valuation Method’ as applied to 
urban water management by Novotny et al. (2001) 
which explores the public ‘willingness to pay’ for 
environmental restoration projects. Authors support-
ing the more qualitative approach, however, stress 
that quantitative valuation is unable to take into ac-
count uncertain and imprecise information that plays 
an important role in environmental impact model-
ling. 

3.4 Uncertain future developments 
Because of the long operational life of sewers (30-60 
years) future developments significantly influence 
the system performance, not only developments in 
system input but also in public perception and pol-
icy-making. There are a number of examples of in-
frastructure designs that failed to meet a change in 
the demand for the goods or services it supplied 
(Hall 1980). Future developments with respect to 
sewer assessment include deterioration of sewers, 

change of regulations, climatic change, change of 
public perception of the environment and develop-
ment of receiving water quality. 

4 RISK BASED OPTIMISATION OF IN-SEWER 
STORAGE 

As stated before, CSOs may cause serious deteriora-
tion of receiving water quality. Therefore, their in-
fluence should be reduced. One obvious intervention 
to reduce effects is to enlarge the in-sewer storage in 
such a way that CSO emissions diminish.  

Currently, however, uncertainty and risk are not 
taken into account in decision-making on interven-
tions such as enlarging the storage (see e.g. NEN-
EN 752-4). As a result wrong decisions are possible 
because the effectiveness of a proposed intervention 
(e.g. construction of additional in-sewer storage) de-
pends on the quality of the information supporting 
the decision-making. 

Economic optimisation, as applied for dike design 
by Van Dantzig (1956), would enable decision-
making on additional storage considering uncertain-
ties in sewer system dimensions and natural variabil-
ity in rainfall. It determines the optimal storage vol-
ume by a minimisation of total cost comprising 
initial investment for construction and cost of envi-
ronmental damage due to overflows. Expected total 
costs are discounted over an unbounded horizon as-
suming that the value of money decreases with time. 

According to Van Dantzig (1956), the decision 
problem can be formulated as follows (see Figure 2): 
‘Determine the optimal storage volume of the sewer 
system taking into account the cost of building in-
sewer storage, the environmental damage in case of 
an overflow and the frequency distribution of CSO 
volumes.’ 

 
Figure 2. Schematic representation of the decision problem: 
enlarging in-sewer storage capacity in order to prevent CSOs 
(optimal storage volume = in-sewer storage (S0) + additional 
storage (~v )). 
 
The cost of enlarging the storage capacity is propor-
tional to the volume, i.e. the cost of building an addi-
tional m3 diminish with increasing volumes. It can 
be described as, 



I I v= 0
0 75.  (1) 

where I0 is investment per m3 storage volume (Euro) 
and v is storage volume to be built. 

The expected cost of damage due to overflows is 
discounted over an unbounded time horizon, 
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where D0 is the cost resulting from an overflow 
event (Euro), Pf(v) is the probability of failure of 
sewer system given an overflow event occurs, TCSO 
is the average return period of overflow events (y), α 
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with λ=1/(TCSO) being the frequency of overflows, 
p=Pf(v) being the probability of failure of the sewer 
system and a Poisson process describing overflow 
events, the expected costs of failure per year can be 
discounted over an unbounded time horizon as fol-
lows, 
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Subsequently, the economic optimum of the storage 
volume is found by minimising total cost. 

 
Figure 3. Economic optimisation of storage volume. (I0=2000 
Euro, D0=2000 Euro (constant cost function), r=4.0 %). 

 
Assuming D0 is constant (see Figure 6), i.e. each 
overflow event has an immediate effect which is in-
dependent of its volume, and CSO volumes are 
Weibull distributed (Korving 2002), the optimal 
storage volume can be calculated given the variables 
I0, D0 and r. For example, for the sewer system of 
‘De Hoven’, the Netherlands, (see Section 5) with I0 
= 2000 Euro, D0 = 2000 Euro and r = 4.0% the op-
timum storage volume becomes 2.9 mm this equals 
370 m3 (Figure 3). The cost function appears to be 
relatively flat around the optimal volume indicating 
some robustness of the decision to be taken. 

5 SENSITIVITY ANALYSIS OPTIMAL 
STORAGE SEWER SYSTEM ‘DE HOVEN’ 

Risk based optimisation is applied to the sewer sys-
tem of ‘De Hoven’. Storage capacity is optimised 
taking into account (1) uncertainties in knowledge of 
sewer system dimensions, (2) natural variability in 
rainfall and (3) uncertainties in the cost function de-
scribing damage due to CSOs. Uncertainties in both 
system dimensions and rainfall input are separately 
modelled by means of Monte Carlo simulation. Sub-
sequently, the expected value of the optimal storage 
is determined. Finally, the sensitivity of optimal vol-
ume to uncertainty in parameters of the cost function 
describing environmental damage is studied. 

The influence of variations in system dimensions 
(storage capacity, pumping capacity and contribut-
ing areas) and natural variability in rainfall on the 
optimal storage volume of a sewer system is studied 
by modelling the sewer system of ‘De Hoven’. The 
catchment ‘De Hoven’ (2200 inhabitants) is situated 
in the Netherlands on the banks of the river IJssel in 
the city of Deventer and comprises 12.69 ha paved 
catchment area. The sewer system (storage 865m3 = 
6.82mm) is of the combined type and comprises one 
pumping station (119m3/h = 0.94mm/h) transporting 



the sewage to a treatment plant and three CSO struc-
tures (external weirs).  

5.1 Sewer model 
The sewer system is modelled as a reservoir with an 
external weir and a pump (Figure 4). The rainfall 
runoff is modelled with the so-called NWRW 4.3 
model (Figure 4), the standard rainfall runoff model 
in the Netherlands. In this model evaporation, infil-
tration, storage on street surfaces and overland flow 
are modelled as described in Van Mameren & 
Clemens (1997). The model input is a 10-year rain-
fall series (1955-1964) of KNMI (De Bilt, the Neth-
erlands). Dwf is assumed constant (26.4 m3/h). 

 

 
Figure 4. Sewer model comprising a rainfall runoff model 
(NWRW 4.3) and a reservoir model with external weir and 
pump. 

5.2 Modelling uncertainties in system dimensions 
The influence of variability in four sewer system 
dimensions is studied: storage volume (S), pumping 
capacity (pc), contributing area (A) and overflow 
coefficient (CC). These dimensions are assumed to 
be normally distributed and independent. Averages 
and standard deviations are based on expert judge-
ment (Clemens 2001).  

A Monte Carlo simulation of 500 runs is per-
formed. In each run a random value of the model pa-
rameters (S, pc, A, CC) is drawn from the probabil-
ity distribution functions. The parameter values are 
drawn independently, since their covariances are 
equal to 0 in the reservoir model. The samples are 
substituted in the reservoir model.  

 
Table 1. Variations in system parameters (Clemens 2001). 
System parameter µ σ CV (%) 
S (m3) 865.00 43.25 5.0 
pc (m3/h) 119.00 5.95 5.0 
A (ha) 12.69 0.64 5.0 
CC (m0.5/s) 1.40 0.35 25.0 

5.3 Modelling natural variability in rainfall 
Natural variability in rainfall is described with a spa-
tial rainfall generator (Willems 2001). The generator 
has been especially developed for the small spatial 

scale of urban catchments. Therefore, a detailed de-
scription of individual rain cells is required. Spatial 
distribution of rainfall intensity in an individual rain 
cell is assumed Gaussian shaped. The generator is 
based on a model that distinguishes rainfall entities 
at different macroscopic scales, i.e. rain cells, cell 
clusters, and small and large meso scale areas (rain-
storms) (see Figure 5). The model structure is two-
fold: a physically based part describing individual 
rain cells and cell clusters and a stochastic part de-
scribing the randomness in the sequence of the dif-
ferent rain cells and storms. 

 
Figure 5. Schematic representation of spatial structure of rain-
fall including rain cells and meso scale areas or rainstorms 
(adapted from Willems 2001), where sx is spatial extent of rain 
cell in moving direction, sy is spatial extent of rain cell perpen-
dicular to moving direction, θ is average moving direction of 
rain cells, ls is spatial extent of rainstorm (meso scale area) and 
i is number of rain gauges. 

 
Data from a dense network of rain gauges in Ant-
werp (Belgium) have been used for generator cali-
bration. The calibrated rain properties comprise 
moving velocity, moving direction, spatial extent 
and intensity of rain cells, and inter-arrival times of 
rain cells and rainstorms. 

Based on the above-mentioned properties of the 
rainfall the spatial rainfall generator has been con-
structed (see Willems 2001). Subsequently, using a 
random generator a large number of rain cells can be 
simulated taking into account their interdependen-
cies. The generated time series of spatial rainfall has 
the same statistical properties as the data observed 
with the rain gauge network.  

A Monte Carlo simulation of 500 runs is per-
formed. In each run a random time series of rainfall 
volumes is generated. Although a spatial rainfall 
field is generated, only the volumes generated at a 
central location in Antwerp are used as system loads 
for the sewer model.  

The rainfall generator calibrated for Antwerp can 
be used in ‘De Hoven’ because the generated rainfall 
series show considerable agreement with rainfall 
measurements in Ukkel (Belgium) in terms of IDF 
(Intensity-Duration-Frequency) relationships (Wil-
lems 2001). The Ukkel measurements, for their part, 



are similar to rainfall data observed in De Bilt (the 
Netherlands) with respect to IDF relations (Vaes et 
al. 2002). 

5.4 Estimation of distribution type and statistical 
parameters 

The calculated CSO volumes from the Monte Carlo 
simulations, as described in 5.2 and 5.3, are summed 
over the individual storm events and analysed statis-
tically. Using Bayes weights the distribution func-
tion with the best fit to the CSO data is chosen (see 
e.g. in Van Noortwijk et al. 2001). . Exponential, 
Rayleigh, normal, lognormal, gamma, Weibull and 
Gumbel distributions are considered. The Bayesian 
approach quantifies both inherent and statistical un-
certainty  

The Weibull distribution type appears to fit best 
with the CSO data, has the largest Bayes weight 
(Korving et al. 2002). Therefore, it is chosen to de-
scribe the CSO volumes per storm event statistically. 
Given the CSO data v = (v1,…,vn) the shape parame-
ter a and the scale parameter b of the Weibull 
distribution, 
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are estimated using the Maximum Likelihood 
method. The corresponding survival function of the 
Weibull distribution is defined as, 

F v v
b

a

a f = −FH
I
K

RST
UVW

exp  (8) 

5.5 Cost functions describing environmental 
damage 

Two types of cost functions are considered to model 
environmental damage due to overflows: a discrete 
and a continuous cost function (Figure 6). The dis-
crete case is described in Section 4.  

The continuous cost function is a more realistic 
description of the environmental effects of over-
flows. If damage is assumed to be a function of the 
actual overflow volume, the cost function can be de-
scribed as,  
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where v is an actual overflow volume, which is a 
random quantity, ~v  is the storage volume to be built, 
a1 and b1 are parameters on which the shifted 
Weibull-shaped cost function is dependent. They 
differ from the parameters a and b of the Weibull 

distribution describing the inherent uncertainty of 
overflow volumes. 

 
Figure 6. Cost functions describing environmental damage due 
to CSOs, v is an actual overflow volume, which is a random 
quantity, and ~v  is the storage volume to be built. 

 
Since the overflow volume v is a random quantity, in 
the actual calculation the expectation of Eq. (9) is 
required, 
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In Eq. (10) the Weibull distribution describing actual 
CSO volumes has been introduced. Since v ≥ ~v  for 
all ~v , the left-truncated Weibull distribution is con-
sidered. This distribution can be obtained from the 
Weibull by conditioning on values larger than ~v , 
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Using the left-truncated Weibull distribution, the ex-
pected damage (Eq. (10)) can be reformulated as, 
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The integral is numerically solved using Monte 
Carlo simulation. In each Monte Carlo run a value is 
sampled from the left-truncated Weibull distribution. 



Subsequently, the expectation of the damage cost 
can be given by, 

E D V D P v

v v
b

no f

i

a

i

n

a f a f≈

− − −F
HG
I
KJ

R
S|
T|

U
V|
W|

L
N
MM

O
Q
PP=

�
~

exp
~

1
11

1

 (13) 

where n is the number of runs in the Monte Carlo 
simulation and vi is a sample from left-truncated 
Weibull distribution. 

The parameters a1 and b1 in the Weibull-shaped 
cost function describing environmental damages are 
estimated as follows. Let vL be the CSO volume at 
which the damage cost becomes almost constant, i.e. 
the damage cost is almost D0, say, 0.99*D0 (see 
Figure 6). Let vM be half of this volume, i.e. vM=vL/2 
(see Figure 6). The cost at vM is equal to 0.5 *D0. 
The value of vM determines the steepness of the cost 
function (Eq. (9)). Choosing vM completes the de-
scription of the Weibull-shaped cost function be-
cause it is uniquely described with two percentiles 
(vM and p(vM), vL and p(vL)). According to Eq. (9) 
p(v) is defined as, 
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Finally, the expected costs of damage are substi-
tuted in the total cost function similar to Eq. (4) and 
Eq. (5). 

5.6 Sensitivity analysis of optimal storage volume 
Using both types of cost functions the storage vol-
ume is optimised. For each Monte Carlo simulation 
(n=500) this results in a set of 500 optimal volumes. 
The set represents the uncertainty in storage volume 
to be built resulting from either system dimension 
uncertainty or natural variability in rainfall.  

The uncertainty in storage due to input uncertain-
ties can be expressed in the expected value of the 
optimal volume, which is given by, 
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where Vopt(i) is the optimal storage volume resulting 
from the ith run and n is the total number of runs in 
the Monte Carlo simulation (n=500). Besides, the 
95% uncertainty interval of optimal volumes (i.e. 
95% of calculated values of Vopt is within the given 
boundaries) is calculated to reflect the distribution.  

The results based on the discrete damage function 
are shown in Table 2 (first row), whereas Table 3 
(first row) presents the results with respect to the 
continuous case. 

 
Table 2. Expected value of optimal volume (in mm) using dis-
crete damage function (r=4.0% and I0=2000€). System dimen-

sion uncertainty and natural variability in rainfall are separately 
considered. 
 Dimension uncertainty Variability rainfall 

 E(Vopt) 
(mm) 

95% interval 
(mm) 

E(Vopt) 
(mm) 

95% interval 
(mm) 

D0=2500€ 4.09 2.25 - 5.84 1.17 0 - 2.68 
D0=2250€ 3.50 1.73 - 5.23 0.71 0 - 2.00 
D0=2750€ 4.63 2.77 - 6.40 1.67 0 - 3.32 
 
Subsequently, the sensitivity of calculated optimal 
storage to uncertainty in the assumed cost functions 
has been tested. For this purpose, the value of D0 in 
Eq. (2) is both increased and decreased with 10%. In 
the continuous damage function the values of D0 and 
vM are changed with 500 € and 2mm respectively. 
This implies varying parameters a1 and b1 in Eq. (9). 
The results are presented in the remainder of Table 2 
and Table 3. 

 
Table 3. Expected value of optimal volume (in mm) using con-
tinuous damage function (r=4.0%and I0=2000€). System di-
mension uncertainty and natural variability in rainfall are sepa-
rately considered. 
 Dimension uncertainty Variability rainfall 

 E(Vopt) 
(mm) 

95% interval 
(mm) 

E(Vopt) 
(mm) 

95% interval 
(mm) 

D0=7500€ 
vM=5mm 5.23 3.15 – 7.01 1.15 0 - 5.79 

D0=7000€ 
vM=5mm  4.56 0 – 6.54 0.67 0 – 4.81 

D0=8000€ 
vM=5mm 5.78 3.77 – 7.46 1.71 0 – 6.15 

D0=7500€ 
vM=3mm 7.59 5.86 – 9.21 4.40 0 – 8.11 

D0=7500€ 
vM=7mm 1.76 0 – 4.80 0.07 0 - 3.76 

 
The results show considerable variation in calculated 
CSO volumes resulting from uncertainty of sewer 
dimensions and variability in rainfall. Besides, varia-
tion increases with increasing return period. Subse-
quently, variability in CSO volumes is transferred to 
uncertainty in optimal storage volumes (see 95% un-
certainty interval in Table 2 and Table 3). 

The cost of damages due to CSOs, however, is 
difficult to estimate in absence of sufficient data. 
Therefore, estimation of optimal storage volumes by 
minimising expected total cost is uncertain. Sensitiv-
ity analysis shows that the optimal volume is rather 
sensitive to changes in the damage cost (D0) for both 
cost functions and the steepness of the cost function 
(vM) for the continuous case only.  

Uncertainty in sewer dimensions results in larger 
expected optimal volumes but mostly smaller vari-
ability within these volumes than rainfall variability. 
Compared to current practice (CIW 2001) the addi-
tional storage should be at least 2.18mm (given a 
pumping capacity of 0.7mm/h plus dwf the storage 
volume should exceed 7+2mm). With respect to di-
mension uncertainty the calculated values are 
slightly larger. 



Uncertainty analysis of the cost function is 
needed to quantify the relative influence of all sig-
nificant uncertainties in the calculation of the opti-
mal storage volume. 

6 CONCLUSIONS 

Combining probabilistic optimisation techniques and 
currently available deterministic sewer models en-
ables assessment of uncertainty in sewer rehabilita-
tion on the basis of calculated CSO volumes. 

The paper presents a risk based approach to opti-
mise the required storage volume of a sewer system 
in order to comply with performance criteria. Sensi-
tivity of optimal storage to uncertainty in model pa-
rameters, natural variability in rainfall and uncer-
tainty in type and parameters of the cost function 
describing environmental damage is taken into ac-
count. 

The results show that there is considerable varia-
tion in optimal storage volume due to the uncertain-
ties in calculated CSO volumes. Besides, uncertainty 
of sewer dimensions predominantly causes uncer-
tainty. Therefore, investing in more accurate knowl-
edge of the dimensions is worth while. In conclu-
sion, uncertainty analysis of the cost functions is 
needed in order to allow for the lack of knowledge 
of environmental damages due to CSOs. 
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