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Abstract

We de�ne local probabilistic sensitivity measures as proportional to �E�XijZ �
z���z� where Z is a function of random variables X�� � � � � Xn� These measures are
local in that they depend only on the neighborhood of Z � z� but unlike other local
sensitivity measures� the local probabilistic sensitivity of Xi does not depend on
values of other input variables� For the independent linear normal model� or indeed
for any model for which Xi has linear regression on Z� the above measure equals
�Xi

��Z�Xi���Z � When linear regression does not hold� the new sensitivity measures
can be compared with the correlation coe�cients to indicate degree of departure
from linearity�

We say that Z is probabilistically dissonant in Xi at Z � z if Z is increasing �de�
creasing� in Xi at z� but probabilistically decreasing �increasing� at z� Probabilisitic
dissonance is rather common in complicated models� The new measures are able to
pick up this probabilistic dissonance�

These notions are illustrated with data from an ongoing uncertainty analysis of
dike ring reliability�
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� Introduction

The Dutch government is currently undertaking an extensive uncertainty ana�
lysis of dike ring reliability� The reliability of dike section i is expressed in terms
of the limit�state function

Zi�model factor strengthi � Strengthi�Xi�� � � �Xin��

model factor loadi � Loadi�Xi�� � � �Xin��

where strength and load are functions of uncertain parameters �global and
section�speci�c� Xi�� � � � �Xin� The model factors are used to express uncer�
tainty in the modelling of strength and load� For dike section i the strength is
proportional to

grass factor�i � roughness
����

�� 	 
�� � log�storm length��� � tan�inner slope
i
�����

�

Roughness and storm length are global variables
 although uncertain
 which
take the same value for each dike section� The grass factor and inner angle are
speci�c for each dike section� In the preliminary �in house� analysis
 the grass
factor was treated as a constant� Evidently
Zi is increasing in model factor strengthi
and in roughness
 and decreasing in storm length�

The load is a complicated model depending on the river Rhine discharge
 the
North�Sea water level
 wind
 and wave attack� This model does not lend itself
for presentation here �see Van Der Meer � Janssen �����

The limit�state function for a dike ring consisting of k dike sections is

Z � minfZ�� � � � � Zkg�

The example discussed below involves one failure mechanism
 overtopping

and some �

 uncertain parameters� Since all dike sections are exposed to
the same sea water levels
 the same Rhine discharge and the same winds

there are signi�cant dependencies in the reliabilities of di�erent dike sections�
Monte Carlo �MC� and First Order Reliability Methods �FORM� have been
used with an �in house� assessment of uncertainty for the purpose of comparing
the dependency modelling and comparing the relative importances of various
input parameters�

In the next section
 we review the FORM approach to identifying important
parameters� In Section �
 we discuss the assumptions underlying the FORM
approach in the present case� Section � illustrates a phenomenon called �local
probabilistic dissonance�� Section � develops a �Local Probabilistic Sensitivity
Measure� �LPSM�
 Section � presents some preliminary results
 and a �nal
section gathers conclusions�

�



� FORM

Suppose Z�X�� � � � �Xn� is a �deterministic� function of the random vectorX �
�X�� � � � �Xn�� Assuming that Z is analytic
 we can linearize it about some point
x� � �x�

�
� � � � � x�

n��

Z�X� � Z�x�� 	
Pn

i���Xi � x�
i ��iZ�x

�� 	 � � �HOT �higher order terms��

where �i denotes ���xi� The point x� is chosen as the �design point�
 that is
the point with greatest probability density satisfying Z�x�� � 
�

Let �i and �i denote the mean and standard deviation of Xi
 respectively�
Neglecting the HOT�s
 we have

Z�X��Z�x�� 	
Pn

i���Xi � x�
i ��iZ�x

��� ���

E�Z��Z�x�� 	
Pn

i����i � x�
i ��iZ�x

���

Var �Z��
Pn

i�� �
�

i ��iZ�
� 	

Pn
i��

Pn
j���j ��i �i�Z��j�Z�Cov �Xi�Xj��

and if the Xi�s are all independent
 Var �Z� �
Pn

i�� �
�

i ��iZ�
�� Now suppose

that Z is indeed linear and the Xi�s are independent� Then

Cov �Z�Xi� � ��Z�Xi��Z�i � �iZ Cov �Xi�Xi� � ��i �iZ

so that

��Z�Xi��Z��i � �iZ�x
��� ���

Note that the LHS involves �global� parameters
 whereas the RHS depends
on the design point x�

i � It is characteristic of linear models that these global
and local concepts coincide� ��Z�Xi� is taken to represent the importance of
Xi for Z� Note that in the FORM model this has both a global and a local
interpretation� Note also that the above makes no assumptions regarding the
distributions of the Xi except the existence of the �rst two moments� In order
to estimate the probability of fZ � 
g
 the FORM method assumes that the
Xi have been transformed to standard normal variables�

Continuing


��Z �
Pn

i�� �
�

i ��iz�
� �

Pn
i�� �

��Z�Xi���Z

or

R� �
Pn

i�� �
��Z�Xi� � ��

In the terminology of linear models R� �
Pn

i�� �
��Z�Xi� is the percentage of

the variance of Z that is explained by the linear model ���� If R� is less than

�



one
 this may be caused either by dependencies in the Xi�s or by contributions
from HOT�s in ����

Several authors �see McKay ���� propose the correlation ratio CRi to replace
���Z�Xi� for cases when Z is not linear�

CRi � Var �E�Zjxi���Var �Z��

Note that CRi generalizes the global interpretation of importance in ���
 but
not the local interpretation� Moreover
 CRi cannot be computed in a straight�
forward way by MC methods�

� How linear is Zi�

For dike section i
 Zi is computed from a model involving many cut�o�s
 edges

and non�linearities� Nonetheless
 because of its complexity
 the question �how
linear is Zi�� cannot be answered by inspection� Using the MC calculation
for section i
 we can assess the linearity of Zi simply by computing R�� We
�nd R� � 
����
 with the largest contribution 
��
� coming from one vari�
able �a �strength model factor��� This does not correspond at all to the partial
derivatives computed at the design point
 which were dominated by the North�
Sea level� On the other hand
 performing a conditional R� near the region of
greatest failure probability we �nd that �i� the conditional correlations are
sensitive to how the conditionalization is performed
 and �ii� the conditional
R� is quite small
 though still dominated by the globally dominant parameter�
This strongly suggests that Z is globally linear
 as it is dominated by one vari�
able
 but in the region of interest
 Z � 

 which has very low probability mass

Z�s behavior is highly non�linear� For this reason it is di�cult to interpret the
FORM importance parameters in terms of �conditional� correlations from a
MC calculation�

� Local Probabilistic Dissonance

The present data set a�ords many examples of a curious behavior which un�
derscores the need for local probabilistic sensitivity concepts� It may be the
case that Z is strictly increasing in some variable xi
 but for some value z

the conditional distribution Xij�Z � z� is stochastically decreasing in z
 in the
sense that for all x

PrfXi � xjZ � z 	 	g 
 PrfXi � xjZ � zg

�



for suitably small positive 	� In this case we speak of local probabilistic disso�
nance�

A very simple example illustrates how this may arise� Let Z � X 	 Y with
X and Y independent� Let X be uniformly distributed on �
� �� and let Y be
uniformly distributed on �
� �� � ��� ��� Then Z is concentrated on �
� ��� As
Z � � from below
 the conditional distribution of XjZ becomes concentrated
at �� however as Z � � from above
 the conditional distribution of XjZ
becomes concentrated at 
� Hence for � � 	 � 


PrfX � xjZ � � 	 	g 
 PrfX � xjZ � �g�

In such cases
 local sensitivity measures
 like a partial derivative� indeed the
partial derivatives of Z with respect to X and Y are equal� Global measures
will not reveal the local probabilistic in�uence in the neighborhood of Z � ��

We can illustrate this phenomenon with percentile cobweb plots� The percen�
tile cobweb plot of Figure � shows the joint distribution
 in percentiles
 of
Z ��relia�� and �
 explanatory variables� From left to right the variables are�
roughness ��rough��
 storm length ��storm��
 model factors for load
 strength

signi�cant wave period
 signi�cant wave height
 and local water level ��mload�


Fig� �� Percentile cobweb plot of the joint distribution� in percentiles� of the li�
mit�state function �Z� and �� explanatory variables�
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�mstrn�
 �mwvpr�
 �mwvht�
 and �mlwat�
 respectively�
 wind ��wind��
 North
Sea ��nsea�� and Rhine discharge ��rhine��� Each vertical line represents one
variable and each broken line represents one sample
 intersecting each vertical
line in the appropriate percentage point� These data are obtained by �rst con�
ditionalizing on high
 but not critical
 sea and river water levels
 giving ����
samples� In � of these samples the dike ring actually fails corresponding to
the lowest � of the variable Z� These ���� samples are uniformly distributed
over all vertical lines �for black and white visualization only �

 samples are
shown in Figure ��� Since the water levels are obtained as a sum of contribu�
tions from the North Sea and the Rhine
 this conditionalization has the e�ect
of negatively correlating the North Sea and the Rhine discharge� These are
uncorrelated in the unconditional sample� The negative correlation is shown
by the fact that samples with high values for �nsea� tend to have low values
for �rhine�� �wind� and �nsea� show a strong positive correlation�

Figures ��� show four conditional percentile cobweb plots
 where conditioning
is done on various values of Z� The four cobweb plots correspond to conditi�
onalizing on Z � z��
 z�� � Z � z��
 z�� � Z � z��
 and z� � Z� Departure
from uniformity indicates that conditionalization a�ects the distribution of
the corresponding variable�

In the top cobweb plot of Figure � the variables �storm� and �mstrn� di�er most
strongly from uniform� �mstrn� is a global model factor to which the variables
�Strengthi� are positively coupled� We see that very high values of Z are asso�
ciated with high values of �mstrn� and low values of �storm�� From the bottom
cobweb plot of Figure �
 we see that values of Z near the �
�th percentile
are associated with low values of �mstrn� and high values of �storm�� From the
bottom cobweb plot of Figure �
 however
 we see that values of Z between
the 
�th and ��th percentile are associated with distributions of �mstrn� and
�storm� which more resemble the unconditional �uniform� distributions� Hence

in moving from Z � z� to Z � z�� the conditional distribution of �mstrn� is
stochastically decreasing
 and �storm� is stochastically increasing� These vari�
ables are dissonant in this region� Very low values of Z characteristic of dike
ring failure
 are strongly associated with very high values of North Sea
 and
�mstrn� and �storm� regress to their unconditional distributions� In spite of
this
 Z is strictly increasing in �mstrn� and is strictly decreasing in �storm��

� Local Probabilistic Sensitivity

In the literature
 �local sensitivity� is taken to refer to one point �x�� � � � � xn�
in the sample space� Thus �Z��xi is a local measure� For other measures
 see
e�g� Strozzi et al� ����

�



Fig� 
� Two conditional percentile cobweb plots� where conditioning is done on the
limit�state function Z ��relia� for Z � z�� and z�� � Z � z���
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Fig� �� Two conditional percentile cobweb plots� where conditioning is done on the
limit�state function Z ��relia� for z�� � Z � z�� and z� � Z�
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In the present case we wish to focus on a unique value of a function of the
uncertain parameters
 and hence we focus on a manifold of lower dimension

typically a hypersurface� For convenience in the following discussion
 we denote
this manifold as the set

fZ � 
g � fx � IRnjZ�x� � 
g�

We wish to identify those components of X which are important for fZ � 
g�
For this purpose we focus on the conditional random vector Xj�Z � 
�
 and
two approaches suggest themselves�

! compare Xj�Z � 
� with X
 and
! consider the rate of change with respect to Z of �some function of� XjZ at
Z � 
�

The �rst approach may miss important local behavior at fZ � 
g� Thus the
conditional distribution of the storm length given fZ � 
g resembles its un�
conditional distribution
 but it is not independent of Z� Using the conditional
expectation in the second approach a�ords good results which will coincide
with FORM results when the linear model ��� holds�

Consider

E�XijZ � 
��

IfXi were independent of Z
 then this conditional expectation would be simply
E�Xi�� If Xi � Z
 then clearly E�XijZ � z� � z� This suggests a local
probabilistic sensitivity measure proportional to

�E�XijZ � z�

�z

�����
z��

�

By requiring agreement with the FORM measure in the case the FORM as�
sumptions hold
 we can determine the appropriate proportionality constants�
Proposition � relates this measure to the partial derivatives of a FORM linear
approximation� This proposition is normally proved using properties of the
joint normal distribution� however the more general proof method sketched
in the Appendix can be used to obtain results under other distributional and
functional assumptions
 examples of which are given in Propositions � and ��

Proposition � Let the random vector X � �X�� � � � �Xn� have independent
standard normal coordinates and let

Z �
Pn

i�� �iXi�

then XjZ is normal with

�



E�XijZ � z�� z�i��
��

Var �XijZ � z�� �"�i���
��

��Xi�Xj����i�j��"�i"�j ��

where �� �
Pn

i�� �
�

i and "��j �
Pn

i��� i��j �
�

i �

Assume now that for Xi � N��i� �i��

Z �
Pn

i�� �iXi �
Pn

i����i�i�Xi � �i���i 	 �i�i� �
Pn

i����i�iYi 	 �i�i�

for Yi � �Xi � �i���i � N�
� ��� Applying the above proposition
 we �nd

�E�XijZ � z�

�z
�

�E��iYi 	 �ijZ � z�

�z
�

�i�E�YijZ � z�

�z
�

��i�iPn
j�� �

�
j�

�
j

�

From ��� we have �i�i � ��Xi� Z��z
 and since
Pn

j�� �
�

j�
�

j � ��Z
 we have�

�E�XijZ � z�

�z
�

��Xi� Z��i
�z

�

We therefore take

LPSMi �
�z�E�XijZ � z�

�i�z
���

as a local probabilistic sensitivity measure�

In the case of the linear model ��� we have LPSMi � ��Xi� Z� in agreement
with the FORM measure� However
 if linearity does not hold
 LPSM can be
used to capture the local interpretation of ��� and it can be easily computed
in MC calculations�

More generally
 the above result holds whenever the regression of Xi on Z is
linear�

Proposition � Let E�XijZ� � kZ for some constant k� then

LPSMi �
�z�E�XijZ � z�

�i�z
� ��Xi� Z��

Propositions � and � present the local probabilistic sensitivity measures for
sums of independent gamma variates �with equal scale parameters� and sums
of independent exponential variates �with di�erent means�
 respectively�

Proposition � Let X�� � � � �Xn be independent gamma variates with mean
�i�
 and variance �i�


�� where �i � 
 and 
 � 
 for i � �� � � � � n� Suppose
further that W �

Pn
i��Xi and Z � W � �� for �� � 
� It is well�known that

�




the conditional probability distribution of Xi when W � w is a transformed
beta distribution� i�e� that

fXijW �xijw� �
#�
Pn

j�� �j�

#��i�#�
Pn

j��� j ��i �j�

�
xi
w

��i��
�
��

xi
w

��Pn

j��� j ��i
�j

�
�� �

w

for 
 	 xi 	 w and zero otherwise� The conditional expectation of Xi when
W � w equals

E�XijW � w� � w 
 �i��
Pn

j�� �j��

The local probabilistic sensitivity measure for the sum of independent gamma
distributed random quantities can be written as

LPSMi �

qPn
j�� �j�
�q
�i�
�



�E�XijW � z 	 ���

�z

�����
z��

�

s
�iPn
j�� �j

�

Note that the LPSM does not depend on ���

Proposition � Let X�� � � � �Xn be independent exponential variates with mean
�i and variance ��

i � where �i � 
 and �i �� �j unless i � j� i � �� � � � � n� Sup�
pose further that W �

Pn
i��Xi and Z � W � �� for �� � 
� The conditional

expectation of Xi when W � w � z 	 �� equals

E�XijW � w� � gi�w��fW �w��

where the function gi�w� can be found in Eq� ���� and the probability den�
sity function of the sum W �

Pn
i��Xi is called the general Erlang or general

gamma distribution�

fW �w� �
nX
i��

�Qn
j��� j ��i ��� �j��i�

�
�

�i

exp
�
�

w

�i

�
� ���

The general Erlang distribution has been used in theories of radioactive decay�
queuing� psychology� and reliability �see e�g� Jensen 	�
� McGill � Gibbon 	�
�
and Speijker et al� 	�
�� The local probabilistic sensitivity measure for the sum
of independent exponentially distributed random quantities can be written as

LPSMi �

qPn
j�� �

�

j

�i



g�i����fW ����� gi����f �

W ����

�fW ������
� ���

where g�i���� can be found in Eq� ��
�� A special case of the general Er�
lang distribution� suggested by Jensen 	�
� arises when �i � a��b	 i� �� for
i � �� � � � � n�

fW �w� �
#�b	 n�

#�b�#�n�

�
exp

�
�
w

a

��b�� �
� � exp

�
�
w

a

��n�� �
a
exp

�
�
w

a

�
�

��



The latter probability density function can be recognized as a transformed beta
distribution�

� Results

Table � shows the LPSM results for �some of� the variables in Figure �� FORM
results for the dike ring are not available at present� Both the FORM and the
Monte Carlo calculations identify dike section �� as the most critical dike
section� Results for dike section �� can be compared�

The low LSPM contribution of the Rhine discharge may be exaggerated by the
negative correlation with the North Sea induced by the sampling technique�
Other variables would not be a�ected in this way� We see that there are sig�
ni�cant di�erences between the LPSM and the FORM measures� In light of
Proposition �
 this is most likely explained by non�linearities in the Z func�
tion� Note that the variable �rough� is quite dissonant for dike section ��� This
indicates that low values of roughness are strongly associated with values of Z
somewhat above zero
 but near zero
 roughness regresses to its unconditional

Table �
Probabilistic sensitivity in terms of LPSM and FORM�

Variable Dike Ring Dike Section �� Dike Section ��

LPSM LPSM FORM

North Sea Location ��
� ����� ������

North Sea Shape �����
 ��
� �������

North Sea Scale ������ ����� ������

Rhine Location ����
� ���
 ����
�

Rhine Scale ����
 ���� ������

Wind Angle Variability ���� ���� ���
�

Roughness ���

 ���
� ����


Storm Length ���� ����� ������

Independent Wind Location � � �������

Independent Wind Scale ���
� ����
� �����

Model factor Strength ����� ����� na

North Sea ����� ����� ����


Dependent Wind ����� ����� na

Rhine discharge ������ ����
 ����


��



distribution� Evidently
 numerical measures like LPSM or indeed the FORM
measures must not be used uncritically� While they can be used to focus at�
tention on interesting variables
 a full understanding of their role should be
based on graphical inspection of the joint distribution
 as in Figures ����

� Summary and conclusions

For large models whose input parameters are uncertain
 we are often con�
fronted with the problem of choosing a small set of �important� parameters�
Global measures like �rank� correlations
 or correlation ratio�s may not be ap�
propriate when we are interested in a speci�c region of the output variable�s��
Thus
 in modelling dike ring reliability
 we are not interested in the variables
driving dike ring reliability on normal days with low wind and water� Rather
we are interested in the driving variables when the dike is near failure� Of
course
 on most days the dike integrity is not threatened
 and global measures
will be predominantly in�uenced by what happens on �most days��

Sensitivity measures such as partial derivatives
 which are local in the input
variables may miss important local probabilistic behavior� �Probabilistic dis�
sonance� is said to arise when variables are �deterministically increasing� and
yet �probabilistic decreasing� �or vice versa� in certain regions� Such beha�
vior is not at all uncommon in complex models
 and cannot be discerned by
�deterministic� local sensitivity measures�

The local probabilistic sensitivity measures proposed here ��� are intended to
identify variables which are active in a submanifold de�ned by a given point
of the output variable� In the case of linear regression of input on output

these measures coincide with the product moment correlation� In other cases

comparing the local probabilistic sensitivity measures with correlations may
be used to assess the departure from linearity�

Appendix

Proof of Proposition � The proposition can be proved using the conditio�
nalization formula for the joint normal distribution applied to �X�� � � � �Xn� Z�

even though the covariance matrix is singular �Rao ����� However
 a more �at�
footed proof gives more insight� The basic steps are as follows�

�i� Express X� as a function g�Z�X�� � � � �Xn��
�ii� Write the conditional probability density function of X�� � � � �Xn given Z

��



as proportional to

fX�
�g�

Qn
i�� fXi

�xi��

where fXi
�xi� is the probability density function of Xi�

�iii� Reduce the above
 and set the coe�cients of x�i 
 xi
 and xixj equal to the
corresponding terms in the joint normal density for n� � variables� This
involves solving a system of simultaneous equations� Terms without any
x�s are absorbed into the proportionality constant�

�iv� Since the system of simultaneous equations has a solution
 it follows that
the conditional distribution is joint normal
 and the parameters can be
obtained from the appropriate coe�cients�

Rather than giving a general proof
 we illustrate the proof with an index�free
version for n � �� Let

Z � aW 	 bX 	 cY�

The conditonal probability density function given Z � z is proportional to

exp

�	

� ��

�
�
z � bx� cy

a

�
�

	 x� 	 y�

�
�
��
� �

If the probability density function is joint normal
 this must be proportional
to

exp

�	

� �

��� � ���

�
��x� �x

�x

��
	



y � �y
�y

�
�

� ��
�
x� �x
�x

�

y � �y
�y

���
��
� �

Expanding these expressions
 and dropping terms not involving x or y
 leads
to the equations

x��� 	 �b�a��� �x�����x��� ����� ���

y��� 	 �c�a��� � y�����y��� ����� ���

zb��� ����a���x��
�

x � ��y���x�y�� ���

zc�� � ����a���y��
�

y � ��x���x�y�� ���

bc�a�������x�y�� � ����� ��
�

Solving these equations for �x
 �y
 �x
 �y
 and � leads to the desired expres�
sions�

Some hints in solving these are as follows� Put D �
q
�a� 	 b���a� 	 c��� From

Eq� ��� follows

a������ ���D� � �x�y� ����

��



Eqs� ��
� and ���� give � � � bc�D� Putting this into ��� and ��� gives

��x � �a
� 	 c������ ��y � �a

� 	 b������

where �� � a�	b�	c�� Solving ��� and ��� for �x and �y proves the proposition
for n � �� �

Proof of Proposition � Since

E�XiZ� � E�E�XijZ�Z� � kE�Z��

and

E�Xi�E�Z� � kE��Z��

it follows that

��Xi� Z� �
k�E�Z��� E��Z��

�Z�i
�

k�Z
�i

�

�

Proof of Proposition � LetX�� � � � �Xn be independent exponential variates
with mean �i and variance ��

i 
 where �i � 
 and �i �� �j unless i � j
 i �
�� � � � � n� Suppose further that W �

Pn
i��Xi and Z � W � �� for �� � 
� By

using the general Erlang distribution given in Eq� ��� twice
 the conditional
probability distribution of Xi when W � w can be written as
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 	 xi 	 w and zero otherwise� The conditional expectation of Xi when
W � w � z 	 �� equals

E�XijW � w� �

�
nX

k��

exp f�w��kg ��kQn
j��� j ��k ��� �j��k�

�

wZ
xi��

xi
�i

exp
�
�
�
�

�i

�
�

�k

�
xi

�
dxi �

�

fW �w�
�

�
nX

k��

exp f�w��kgQn
j��� j ��k ��� �j��k�

�
�

����i � ���k�
�
�

�

�i�k

�

�
�
� �

�
� 	

�
�

�i

�
�

�k

�
w
�
exp

�
�
�
�

�i

�
�

�k

�
w
��

�
�

fW �w�
�

��



�



nX

k��

�Qn
j��� j ��k ��� �j��k�

�
�

��k��i � ��

�
exp

�
�

w

�k

�
� exp

�
�

w

�i

��
	

	
�Qn

j��� j ��i ��� �j��i�
�

w

�i

exp
�
�

w

�i

��
�

�

fW �w�
�

�
gi�w�

fW �w�
� ����

Taking the partial derivative of E�XijW � z 	 ��� with respect to z proves
Eq� ���
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