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Abstract

We define local probabilistic sensitivity measures as proportional to dF(X;|Z =
z)/0z, where Z is a function of random variables X1,..., X,,. These measures are
local in that they depend only on the neighborhood of Z = z, but unlike other local
sensitivity measures, the local probabilistic sensitivity of X; does not depend on
values of other input variables. For the independent linear normal model, or indeed
for any model for which X; has linear regression on Z, the above measure equals
ox,p(Z,X;)/oz. When linear regression does not hold, the new sensitivity measures
can be compared with the correlation coefficients to indicate degree of departure
from linearity.

We say that 7 is probabilistically dissonant in X; at 7 = z if Z is increasing (de-
creasing) in X; at z, but probabilistically decreasing (increasing) at z. Probabilisitic
dissonance is rather common in complicated models. The new measures are able to
pick up this probabilistic dissonance.

These notions are illustrated with data from an ongoing uncertainty analysis of
dike ring reliability.
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1 Introduction

The Dutch government is currently undertaking an extensive uncertainty ana-
lysis of dike ring reliability. The reliability of dike section 7 is expressed in terms
of the limit-state function

Z; =model factor strength, x Strength,(X1,... X;,) —
model factor load; x Load;(X,... Xi),

where strength and load are functions of uncertain parameters (global and
section-specific) Xi1,..., X;,. The model factors are used to express uncer-
tainty in the modelling of strength and load. For dike section ¢ the strength is
proportional to

3 0.25
grass factor; x roughness

1 + 0.8 * log(storm length)]? x tan(inner slope,)0-75"
g g i

Roughness and storm length are global variables, although uncertain, which
take the same value for each dike section. The grass factor and inner angle are
specific for each dike section. In the preliminary ‘in house’ analysis, the grass
factor was treated as a constant. Evidently, Z; is increasing in model factor strength;
and in roughness, and decreasing in storm length.

The load is a complicated model depending on the river Rhine discharge, the
North-Sea water level, wind, and wave attack. This model does not lend itself
for presentation here (see Van Der Meer & Janssen [7]).

The limit-state function for a dike ring consisting of k dike sections is
Z=min{Z,..., 7}

The example discussed below involves one failure mechanism, overtopping,
and some 300 uncertain parameters. Since all dike sections are exposed to
the same sea water levels, the same Rhine discharge and the same winds,
there are significant dependencies in the reliabilities of different dike sections.
Monte Carlo (MC) and First Order Reliability Methods (FORM) have been
used with an ‘in house’ assessment of uncertainty for the purpose of comparing
the dependency modelling and comparing the relative importances of various
input parameters.

In the next section, we review the FORM approach to identifying important
parameters. In Section 3, we discuss the assumptions underlying the FORM
approach in the present case. Section 4 illustrates a phenomenon called ‘local
probabilistic dissonance’. Section 5 develops a ‘Local Probabilistic Sensitivity
Measure” (LPSM), Section 6 presents some preliminary results, and a final
section gathers conclusions.



2 FORM

Suppose Z(X1,...,X,) is a ‘deterministic’ function of the random vector X =
(X1,...,X,). Assuming that 7 is analytic, we can linearize it about some point
X* = (af,...,20):

Z(X)=Z(x*) + >0 (Xs — 250 Z(x*) + ... HOT (higher order terms),

where J; denotes d/dx;. The point x* is chosen as the ‘design point’, that is
the point with greatest probability density satisfying Z(x*) = 0.

Let p; and o; denote the mean and standard deviation of X;, respectively.

Neglecting the HOT’s, we have

Z(X) ~ Z(x") + iy (X — 27) 0, Z(x7), (1)
E(Z)~ Z(x7) + i (i — 27)0i Z(x7),
Var (Z) ~ 3, U?(aiZ)Q + 2 Z?:l,j;éi 9i(7)0;(Z) Cov (X;, X;),

and if the X;’s are all independent, Var(Z) ~ 3%, 02(9;Z)*. Now suppose
that Z is indeed linear and the X;’s are independent. Then

COV (Z, XZ) == ,O(Z, XZ')O'Zo'Z' == &Z COV (XZ,XZ) == af&Z
so that
,O(Z, Xi)dz/O'Z' = &Z(x*) (2)

Note that the LHS involves ‘global” parameters, whereas the RHS depends
on the design point x7. It is characteristic of linear models that these global
and local concepts coincide. p(Z, X;) is taken to represent the importance of
X; for Z. Note that in the FORM model this has both a global and a local
interpretation. Note also that the above makes no assumptions regarding the
distributions of the X, except the existence of the first two moments. In order
to estimate the probability of {Z = 0}, the FORM method assumes that the
X; have been transformed to standard normal variables.

Continuing,

0-% = Z?:l 0-22(822)2 = Z?:l pz(Z7 XZ)O-%
or

R = 2im pQ(Z, XZ) =L

In the terminology of linear models R* = Y- | p?(Z, X;) is the percentage of
the variance of Z that is explained by the linear model (1). If R? is less than



one, this may be caused either by dependencies in the X;’s or by contributions

from HOT’s in (1).

Several authors (see McKay [3]) propose the correlation ratio C'R; to replace
p*(Z, X;) for cases when Z is not linear:

CR; = Var (FE(Z|x;))/ Var (7).

Note that C'R; generalizes the global interpretation of importance in (2), but
not the local interpretation. Moreover, C'R; cannot be computed in a straight-
forward way by MC methods.

3 How linear is 7;?

For dike section 1, Z; is computed from a model involving many cut-offs, edges,
and non-linearities. Nonetheless, because of its complexity, the question “how
linear is Z;7” cannot be answered by inspection. Using the MC calculation
for section 4, we can assess the linearity of Z; simply by computing R*. We
find R? = 0.977, with the largest contribution 0.903 coming from one vari-
able (a ‘strength model factor’). This does not correspond at all to the partial
derivatives computed at the design point, which were dominated by the North-
Sea level. On the other hand, performing a conditional R* near the region of
greatest failure probability we find that (i) the conditional correlations are
sensitive to how the conditionalization is performed, and (ii) the conditional
R? is quite small, though still dominated by the globally dominant parameter.
This strongly suggests that Z is globally linear, as it is dominated by one vari-
able, but in the region of interest, Z ~ 0, which has very low probability mass,
Z’s behavior is highly non-linear. For this reason it is difficult to interpret the
FORM importance parameters in terms of (conditional) correlations from a
MC calculation.

4 Local Probabilistic Dissonance

The present data set affords many examples of a curious behavior which un-
derscores the need for local probabilistic sensitivity concepts. It may be the
case that Z is strictly increasing in some variable x;, but for some value z,
the conditional distribution X;|(Z = z) is stochastically decreasing in z, in the
sense that for all x

Pr{X;,>z|Z =240} <Pr{X;> 2|7 =2}



for suitably small positive 4. In this case we speak of local probabilistic disso-
nance.

A very simple example illustrates how this may arise. Let 7 = X 4+ Y with
X and Y independent. Let X be uniformly distributed on [0, 1] and let Y be
uniformly distributed on [0,1] U (2,3]. Then Z is concentrated on [0,4]. As
7 — 2 from below, the conditional distribution of X|Z becomes concentrated
at 1; however as Z — 2 from above, the conditional distribution of X|Z
becomes concentrated at 0. Hence for 2 > 4§ > 0

Pr{X > z|Z =244} < Pr{X > 2|Z = 2}.

In such cases, local sensitivity measures, like a partial derivative; indeed the
partial derivatives of Z with respect to X and Y are equal. Global measures
will not reveal the local probabilistic influence in the neighborhood of Z = 2.

We can illustrate this phenomenon with percentile cobweb plots. The percen-
tile cobweb plot of Figure 1 shows the joint distribution, in percentiles, of
7 (‘relia’) and 10 explanatory variables. From left to right the variables are:
roughness (‘rough’), storm length (‘storm’), model factors for load, strength,
significant wave period, significant wave height, and local water level (‘mload’,

rough storm mload nstrn MWURE mnuwuvht mnluat wind nsea
¥ o] IT-.
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Fig. 1. Percentile cobweb plot of the joint distribution, in percentiles, of the li-
mit-state function ‘Z’ and 15 explanatory variables.



‘mstrn’, ‘mwvpr’, ‘mwvht’, and ‘mlwat’, respectively), wind (‘wind’), North
Sea (‘nsea’) and Rhine discharge (‘rhine’). Each vertical line represents one
variable and each broken line represents one sample, intersecting each vertical
line in the appropriate percentage point. These data are obtained by first con-
ditionalizing on high, but not critical, sea and river water levels, giving 1354
samples. In 2% of these samples the dike ring actually fails corresponding to
the lowest 2% of the variable Z. These 1354 samples are uniformly distributed
over all vertical lines (for black and white visualization only 200 samples are
shown in Figure 1). Since the water levels are obtained as a sum of contribu-
tions from the North Sea and the Rhine, this conditionalization has the effect
of negatively correlating the North Sea and the Rhine discharge. These are
uncorrelated in the unconditional sample. The negative correlation is shown
by the fact that samples with high values for ‘nsea’ tend to have low values
for ‘rhine’; ‘wind’” and ‘nsea’ show a strong positive correlation.

Figures 2-3 show four conditional percentile cobweb plots, where conditioning
is done on various values of Z. The four cobweb plots correspond to conditi-
onalizing on 7 > zgs, 235 > Z > z30, 215 > Z > 210, and z5 > Z. Departure
from uniformity indicates that conditionalization affects the distribution of
the corresponding variable.

In the top cobweb plot of Figure 2 the variables ‘storm” and ‘mstrn’ differ most
strongly from uniform. ‘mstrn’ is a global model factor to which the variables
‘Strength,’ are positively coupled. We see that very high values of Z are asso-
ciated with high values of ‘mstrn’ and low values of ‘storm’. From the bottom
cobweb plot of Figure 2, we see that values of Z near the 30-th percentile
are associated with low values of ‘mstrn’ and high values of ‘storm’. From the
bottom cobweb plot of Figure 3, however, we see that values of Z between
the 0-th and 5-th percentile are associated with distributions of ‘mstrn’ and
‘storm’ which more resemble the unconditional (uniform) distributions. Hence,
in moving from Z = z5 to Z = z3¢ the conditional distribution of ‘mstrn’ is
stochastically decreasing, and ‘storm’ is stochastically increasing. These vari-
ables are dissonant in this region. Very low values of Z characteristic of dike
ring failure, are strongly associated with very high values of North Sea, and
‘mstrn’ and ‘storm’ regress to their unconditional distributions. In spite of
this, Z is strictly increasing in ‘mstrn’ and is strictly decreasing in ‘storm’.

5 Local Probabilistic Sensitivity

In the literature, ‘local sensitivity’ is taken to refer to one point (x1,...,%,)
in the sample space. Thus 07/0dx; is a local measure. For other measures, see
e.g. Strozzi et al. [6].
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Fig. 2. Two conditional percentile cobweb plots, where conditioning is done on the
limit-state function Z =‘relia’ for Z > zg5 and z35 > Z > z39.
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Fig. 3. Two conditional percentile cobweb plots, where conditioning is done on the
limit-state function Z =‘relia’ for z15 > Z > z19 and z5 > Z.



In the present case we wish to focus on a unique value of a function of the
uncertain parameters, and hence we focus on a manifold of lower dimension,
typically a hypersurface. For convenience in the following discussion, we denote
this manifold as the set

{Z =0} ={x e R"|Z(x) = 0}.

We wish to identify those components of X which are important for {Z = 0}.
For this purpose we focus on the conditional random vector X|(Z = 0), and
two approaches suggest themselves:

— compare X|(Z = 0) with X, and
— consider the rate of change with respect to Z of (some function of) X|Z at

Z =0.

The first approach may miss important local behavior at {Z = 0}. Thus the
conditional distribution of the storm length given {Z = 0} resembles its un-
conditional distribution, but it is not independent of Z. Using the conditional
expectation in the second approach affords good results which will coincide

with FORM results when the linear model (1) holds.
Consider
E(X;|Z =0).

If X; were independent of Z, then this conditional expectation would be simply
E(X)). If X; = Z, then clearly E(X;|Z = z) = z. This suggests a local

probabilistic sensitivity measure proportional to

OE(X;|Z = 2)
0z

2=0

By requiring agreement with the FORM measure in the case the FORM as-
sumptions hold, we can determine the appropriate proportionality constants.
Proposition 1 relates this measure to the partial derivatives of a FORM linear
approximation. This proposition is normally proved using properties of the
joint normal distribution; however the more general proof method sketched
in the Appendix can be used to obtain results under other distributional and
functional assumptions, examples of which are given in Propositions 3 and 4.

Proposition 1 Let the random vector X = (Xy,...,X,) have independent
standard normal coordinates and let

Z = X,

then X|Z is normal with



E(X;|Z = 2)=za; /17,
Var (X;|Z = 2) = ({; /1), B
p(Xi, Xj) = — o [[lilf],

where (* =" o? and Z? = 30 iz OF.
Assume now that for X; ~ N(u;, 0y):
Z =y 05X =20 [euod (X — i) /o + cipts] = Yy [eiosYs 4+ i)

for Y; = (X, — pi)/oi ~ N(0,1). Applying the above proposition, we find

OB(Xi|Z =z) OBE(o)Y;+w|Z =z2) o0BE(Y|Z=2) ola;
0z B 0z B 0z B Yy otal
From (2) we have o;a; = p(X;, Z)o., and since >-7_; U?oz? = 0%, we have

aE(XAZ == Z) . ,O(XZ,Z)O'Z

0z N o,

We therefore take
0. 0E(X;|Z = z2)

00z

LPSM,; =

(3)
as a local probabilistic sensitivity measure.

In the case of the linear model (1) we have LPSM; = p(X;, Z) in agreement
with the FORM measure. However, if linearity does not hold, LPSM can be

used to capture the local interpretation of (2) and it can be easily computed
in MC calculations.

More generally, the above result holds whenever the regression of X; on 7 is
linear:

Proposition 2 Let F(X;|Z) = kZ for some constant k, then

0. 0E(X;|Z = z2)

00z

LPSMZ == == ,O(XZ,Z)

Propositions 3 and 4 present the local probabilistic sensitivity measures for
sums of independent gamma variates (with equal scale parameters) and sums
of independent exponential variates (with different means), respectively.

Proposition 3 Let X,,..., X, be independent gamma variates with mean
a;/B and variance o; /3%, where oa; > 0 and 3 > 0 fori =1,...,n. Suppose
further that W =3"" | X; and Z =W — g for ag > 0. It is well-known that

10



the conditional probability distribution of X; when W = w s a transformed
beta distribution, i.e. that

F(azl;lg(ijgzilajiz o [ﬂ] ai=l [1 51?2] (Z:ﬂ,]#iaﬂ)_l%

for 0 < x; < w and zero otherwise. The conditional expectation of X; when

Ixgwl(zilw) =

w w

W = w equals
E(Xi|W =w) =w-a;/[Z0 o]

The local probabilistic sensitivity measure for the sum of independent gamma

distributed random quantities can be written as
2=0 2?21 Oé]‘ ‘

LPSM, iy a3 ‘ OE(X;|W =z + ap)
Vi) 32 0z

Note that the LPSM does not depend on .

Proposition 4 Let X,..., X, be independent exponential variates with mean

a; and variance o?, where o; > 0 and o; # o unless i =73, 1=1,...,n. Sup-

pose further that W =37 | X; and Z = W — ag for ag > 0. The conditional

expectation of X; when W = w = z + «aqg equals

E(Xi| W = w) = gi(w)/ fw(w),

where the function g;(w) can be found in Eq. (12) and the probability den-
sity function of the sum W = %" | X; is called the general Erlang or general
gamma distribution:

fw(w)zzn: ! X iexp{—g}. (4)

i=1 H?:l,j;éi [1 - aj/ai] o o

The general Erlang distribution has been used in theories of radioactive decay,
queuing, psychology, and reliability (see e.q. Jensen [1], McGill & Gibbon [2],
and Speijker et al. [5]). The local probabilistic sensitivity measure for the sum
of independent exponentially distributed random quantities can be written as

LPSM; = m . 9§(a0>fw([033) (— 9;'](2@0)%/(040)7

where gi(ag) can be found in Eq. (13). A special case of the general FEr-
lang distribution, suggested by Jensen [1], arises when o; = a/(b+1—1) for

(5)

1=1,...,n:

e = B o (-2 2] (2],



The latter probability density function can be recognized as a transformed beta
distribution.

6 Results

Table 1 shows the LPSM results for (some of ) the variables in Figure 1. FORM
results for the dike ring are not available at present. Both the FORM and the
Monte Carlo calculations identify dike section 11 as the most critical dike
section. Results for dike section 11 can be compared.

The low LSPM contribution of the Rhine discharge may be exaggerated by the
negative correlation with the North Sea induced by the sampling technique.
Other variables would not be affected in this way. We see that there are sig-
nificant differences between the LPSM and the FORM measures. In light of
Proposition 1, this is most likely explained by non-linearities in the Z func-
tion. Note that the variable ‘rough’ is quite dissonant for dike section 11. This
indicates that low values of roughness are strongly associated with values of Z
somewhat above zero, but near zero, roughness regresses to its unconditional

Table 1
Probabilistic sensitivity in terms of LPSM and FORM.

Variable Dike Ring Dike Section 11 Dike Section 11

LPSM LPSM FORM
North Sea Location 0.29 -0.18 -0.043
North Sea Shape -0.046 0.23 -0.0084
North Sea Scale -0.083 0.083 -0.054
Rhine Location -0.060 0.12 -0.024
Rhine Scale -0.16 0.54 -0.078
Wind Angle Variability 0.30 0.13 0.063
Roughness -0.22 -0.24 0.012
Storm Length 0.48 -0.10 -0.013
Independent Wind Location 0 0 -0.0038
Independent Wind Scale -0.27 -0.068 0.051
Model factor Strength -0.47 -0.11 na
North Sea -1.57 -0.70 -0.72
Dependent Wind -1.41 -0.78 na
Rhine discharge -0.041 -0.12 -0.56
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distribution. Evidently, numerical measures like LPSM or indeed the FORM
measures must not be used uncritically. While they can be used to focus at-
tention on interesting variables, a full understanding of their role should be
based on graphical inspection of the joint distribution, as in Figures 2-3.

7 Summary and conclusions

For large models whose input parameters are uncertain, we are often con-
fronted with the problem of choosing a small set of ‘important’ parameters.
Global measures like (rank) correlations, or correlation ratio’s may not be ap-
propriate when we are interested in a specific region of the output variable(s).
Thus, in modelling dike ring reliability, we are not interested in the variables
driving dike ring reliability on normal days with low wind and water. Rather
we are interested in the driving variables when the dike is near failure. Of
course, on most days the dike integrity is not threatened, and global measures
will be predominantly influenced by what happens on ‘most days’.

Sensitivity measures such as partial derivatives, which are local in the input
variables may miss important local probabilistic behavior. ‘Probabilistic dis-
sonance’ is said to arise when variables are ‘deterministically increasing’ and
vet ‘probabilistic decreasing’ (or vice versa) in certain regions. Such beha-
vior is not at all uncommon in complex models, and cannot be discerned by
‘deterministic’ local sensitivity measures.

The local probabilistic sensitivity measures proposed here (3) are intended to
identify variables which are active in a submanifold defined by a given point
of the output variable. In the case of linear regression of input on output,
these measures coincide with the product moment correlation. In other cases,
comparing the local probabilistic sensitivity measures with correlations may
be used to assess the departure from linearity.

Appendix

Proof of Proposition 1 The proposition can be proved using the conditio-
nalization formula for the joint normal distribution applied to (X, ..., X,, Z),
even though the covariance matrix is singular (Rao [4]). However, a more flat-
footed proof gives more insight. The basic steps are as follows.

(i) Express X; as a function g(7Z, X,..., X,).
(ii) Write the conditional probability density function of Xi,..., X, given Z

13



as proportional to

Tx () Ty fx,(24),

where fx,(x;) is the probability density function of X;.

(iii) Reduce the above, and set the coefficients of z%, z;, and z;z; equal to the
corresponding terms in the joint normal density for n — 1 variables. This
involves solving a system of simultaneous equations. Terms without any
x’s are absorbed into the proportionality constant.

(iv) Since the system of simultaneous equations has a solution, it follows that
the conditional distribution is joint normal, and the parameters can be
obtained from the appropriate coefficients.

Rather than giving a general proof, we illustrate the proof with an index-free
version for n = 3. Let

Z =aW +bX + ¢Y.

The conditonal probability density function given Z = z is proportional to

2
exp{_l[(z—bwi—cy) R }
2 a

If the probability density function is joint normal, this must be proportional

o= | () (52 - (52 ()|

Expanding these expressions, and dropping terms not involving x or y, leads

to

to the equations

221+ (b/a)?) =2 /[o2(1 — p?)], (6)

VL (e/a)) =y /o1 — )], (7)

2b(1 = p*)/a? = po [0l — ppy /020y, (8)
ze(l — p?)/a? :/ly/ai — pha/0w0y], (9)
be/a> = —p/la,o,(1 — p*)]. (10)

Solving these equations for p,, p,, 05, 0y, and p leads to the desired expres-
sions.

Some hints in solving these are as follows. Put D = \/(a2 + b%)(a® + ¢?). From
Eq. (6) follows

/(1= p*)D] = 0,0, (11)

14



Eqgs. (10) and (11) give p = — be/D. Putting this into (6) and (7) gives
o = (a®+ )2, o = (a® + b))/,

€T Y

where (? = a®+b?+c*. Solving (8) and (9) for u, and p, proves the proposition
for n = 3. O

Proof of Proposition 2 Since
E(X;Z) = E(BE(X:|2)7Z) = kE(Z?)
and
E(X)E(Z) = kE*(Z),
it follows that

p( X, Z) = KE(Z?) - E*(Z)] _ koy

070 gy

Proof of Proposition 4 Let X,,..., X, beindependent exponential variates

2

with mean «; and variance a;, where a; >0 and o; # «; unless 1 =7, 1 =

1,...,n. Suppose further that W = 3", X; and Z = W — ag for ap > 0. By
using the general Erlang distribution given in Eq. (4) twice, the conditional
probability distribution of X; when W = w can be written as

Fxaw (@il w) =

1 z; n 1 1 w— x;
—exp{——}x — x—exp{— }
Q; ; kZ::z ITis, otk (1 —aj/ar] Ok

Zn: ! xiexp{—ﬂ}

k=1 H?:Lj;ek [1 - aj/ak] Qg Qg

for 0 < x; < w and zero otherwise. The conditional expectation of X; when
W =w = z 4+ ag equals

E(X| W = w) =
Zn; e:p{—w/ozk}/ozk] y / %GXP{_ [i_i] :1:2} 2. 1

a k= Hj:z,j;ék [1 - aj/ak

:Z”: exp{—w/ay} y 1 1

el | FP [11— aj/lak] [1/c; — 1/1ak]2 >1< oo 1
h [1 - (H [a_i_ oz_k] w) eXp{_ [a_f oz_k] wH “Fwlw)

15




B (kzi:z | J [1 — a; /o) 8 [Oék/oi' — 1] [exp {_ Oz%} - P {_ O%H +

+ ! « Y ex {_2})x L
M [ —aj/a] o DU o fw(w)

_ gi(w)
Sw(w)

(12)

Taking the partial derivative of F(X;|W = z + ag) with respect to z proves
Eq. (5), where

gi(an) =
0 | 1

:f; s [ — /o] [Oék/gjk— 1] [eXp {_ %} —p {_ Z_ZH N
- H?=1,j¢z'1[/1ai afai] ? P {_ %} ' (13)
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