
1 INTRODUCTION

Probabilistic design of river dikes is usually based
on estimates of the design discharge. In The Neth-
erlands, the design discharge is defined as the dis-
charge with an average return period of 1,250 years.
Extreme quantiles, such as the design discharge are
usually determined by fitting various probability
distributions to the available observations. [See for
example DH & EAC-RAND (1993), Castillo (1988),
and Van Gelder (1999)]. Probability plots and good-
ness-of-fit tests (such as chi-square and Kol-
mogorov-Smirnov) are commonly used to select an
appropriate distribution.

A major practical difficulty in fitting probability
distributions is that there is often a limited amount of
data for determining extreme quantiles. The associ-
ated return period is large compared with the length
of the period of observation. In The Netherlands, ob-
served flood discharges are available for a period of
98 years only. There is a large statistical uncertainty
involved in estimating extreme quantiles when using
these observations. The maximum-likelihood
method has been recognised as one of the best pa-
rameter estimation methods (Galambos et al., 1994)
and it is especially suitable when there is a large
number of observations. A drawback of the maxi-
mum-likelihood method is that statistical uncertain-
ties cannot be taken into account.

Another consequence of sparse data is that more
than one probability distribution seems to fit the ob-
servations and only a few can be rejected. Different
distributions usually lead to different extrapolated
values and the goodness-of-fit tests for selecting the
appropriate distribution are often inconclusive. The
tests are more concentrated on the central part of the
distribution than the tail. As an alternative, the Bay-
esian method can be used to determine weights for
quantifying how well a probability distribution fits
the observed data while taking account of the statis-
tical uncertainties involved.

Predictive exceedance probabilities are obtained
using two different Bayesian computation methods:
numerical integration and Markov Chain Monte
Carlo (MCMC). MCMC methods can be used to
draw samples from the posterior density of the un-
known statistical parameters; it is essentially Monte
Carlo integration using cleverly constructed Markov
chains. The chains are constructed so that the de-
pendent samples are distributed according to the
posterior distribution. The most widely used Markov
chain simulation technique is the Metropolis algo-
rithm.

The pros and cons of the numerical integration
method and the MCMC Metropolis algorithm are
given. Both Bayesian computational methods have
been successfully applied to estimate the discharge
of the river Rhine with an average return period of
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1,250 years, while taking account of the statistical
uncertainties involved.

In this paper, a Bayesian method for estimating
design discharges is presented. Section 2 considers
Bayesian estimation of both parameters and quan-
tiles associated with large average return periods.
Section 3 and 4 are devoted to determining non-
informative prior distributions and Bayes weights,
respectively. Section 5 presents two well-known
computational methods for calculating posterior dis-
tributions and predictive exceedance probabilities:
numerical integration and Markov Chain Monte
Carlo. In Section 6, the two Bayesian computational
methods are compared by performing a Bayesian
statistical analyis of the annual maximum discharges
of the river Rhine. Section 7 ends with conclusions.

2 BAYESIAN ESTIMATION

According to (amongst others) Slijkhuis et al. (1999)
and Siu & Kelly (1998), uncertainties in risk analy-
sis can primarily be divided into two categories: in-
herent uncertainties and epistemic uncertainties. In-
herent uncertainties represent randomness or
variability in nature. For example, even in the event
of sufficient data, one cannot predict the maximum
discharge that will occur next year. In this paper, we
study inherent uncertainty in time (e.g., fluctuation
of the discharge in time). Epistemic uncertainties
represent the lack of knowledge about a physical
system. In this paper, we study statistical uncertainty
(due to lack of sufficient data); it includes parameter
uncertainty (when the parameters of the distribution
are unknown) and distribution-type uncertainty
(when the type of distribution is unknown). Statisti-
cal uncertainty can be reduced as more data becomes
available.

The only statistical theory which combines mod-
elling inherent uncertainty and statistical uncertainty
is Bayesian statistics. The theorem of Bayes (1763)
provides a solution to the problem of how to learn
from data. In the framework of estimating the pa-
rameters θθ = ′( ,..., )θ θ1 d  of a probability distribution�
( | )x θθ , Bayes’ theorem can be written as
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with

�
( | )x θθ = the likelihood function of the observations

x = ′( ,..., )x xn1  when the parametric vec-
tor θθ = ′( ,..., )θ θ1 d  is given,

π ( )θθ = the prior density of θθ = ′( ,..., )θ θ1 d  before
observing data x = ′( ,..., )x xn1 ,

π ( | )θθ x = the posterior density of θθ = ′( ,..., )θ θ1 d

after observing data x = ′( ,..., )x xn1 , and

π ( )x = the marginal density of the observations
x = ′( ,..., )x xn1 .

The likelihood function 
�
( | )x θθ  represents the inher-

ent uncertainty of a random variable X  when θθ  is
given, whereas the prior density π ( )θθ  and the poste-
rior density π ( | )θθ x  represent the statistical uncer-
tainty in θθ . This statistical uncertainty in θθ  is pa-
rameter uncertainty. Using Bayes’ theorem, we can
update the prior distribution to the posterior distri-
bution as soon as new observations become avail-
able. The more observations that are available, the
smaller the parameter uncertainty. If a random vari-
able X  has a probabili ty density function 

�
( | )x θθ  de-

pending on the parametric vector θθ , then the likeli-
hood function "( ,..., | )x xn1 θθ  of the independent
observations x = ′( ,..., )x xn1  is given by
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The marginal density π ( )x  is obtained by integrating
the likelihood 

�
( | )x θθ  over θθ . Note that the maxi-

mum-likelihood estimate of the parametric vector θθ
is defined as the estimate 

�
θθ , which maximises the

likelihood function � ( | )x θθ  as a function of θθ .
The cumulative distribution function and the sur-

vival function of the random variable X  are denoted
by F x( | )θθ  and F x( | )θθ , respectively. The posterior
predictive probability of exceeding x0  is
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Besides representing parameter uncertainty on the
basis of Bayesian statistics, distribution-type uncer-
tainty can also be taken into account using so-called
Bayes factors or Bayes weights (see Section 4).

3 NON-INFORMATIVE PRIORS

For the purpose of f lood prevention, we would like
the observations to ‘speak for themselves’ , espe-
cially in comparison to the prior information. This
means that the prior distribution should describe a
certain ‘ lack of knowledge’ or, in other words,
should be as ‘vague’ as possible. For this purpose,
so-called non-informative priors have been devel-
oped.

The pioneer in using non-informative priors was
Bayes (1763) who considered a uniform prior. How-
ever, the use of uniform priors is criti cised because
of a lack of invariance under one-to-one transforma-
tions. The physicist Sir Jeffreys (1961, Chapters 3-4)
was the first to produce an alternative to solely using
uniform non-informative priors. His main motiva-
tion for deriving non-informative priors (currently



known as Jeffreys priors) were invariance require-
ments for one-to-one transformations. For decades,
there has been a discussion going on whether the
multivariate Jeffreys rule is appropriate. We believe
that the following statement made by Dawid (1999)
is right: “we do not consider it as generally appro-
priate to use other improper priors than the Jeffreys
measure for purposes of ‘f ully objective’ formal
model comparison” . The main advantage of the Jef-
freys prior is that it is always both invariant under
transformations and dimensionless. For examples of
Jeffreys priors, see the Appendix.

In explaining the derivation of non-informative
Jeffreys priors, we refer to Box & Tiao (1973, Sec-
tion 1.3). Let x = ′( ,..., )x xn1  be a random sample
from a multi -parameter probabili ty distribution with
likelihood function � ( | )x θθ . When the probabili ty
distribution obeys certain regularity conditions, then
for suff iciently large n , the posterior density func-
tion of parametric vector θθ  is approximately normal,
and remains approximately normal under mild one-
to-one transformations of x = ′( ,..., )x xn1 . As a con-
sequence, the prior distribution for θθ  is approxi-
mately non-informative if it is taken proportional to
the square root of Fisher’s information for a single
observation. The elements of Fisher’s information
matrix are
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and the corresponding non-informative Jeffreys prior
is defined by

J I I i j dij( ) | ( )| det ( ), , ,...,θθ θθ θθ= = = 1 .

4 BAYES FACTORS AND BAYES WEIGHTS

The Bayesian approach to hypothesis testing origi-
nates from the work of Jeffreys (1961). He devel-
oped a methodology for quantifying the evidence in
favour of a scientific theory using the so-called
Bayes factor. This factor is the posterior odds of the
null hypothesis when the prior probability on the
null is one-half. A recent overview on Bayes factors
can be found in Kass & Raftery (1995).

Assume the data x = ′( ,..., )x xn1  to have arisen
under one of m  models Hk , k m= 1,..., . These hy-
potheses represent m  marginal probability densities
π ( | )x Hk , k m= 1,..., . Given the prior probabilities
p Hk( ), k m= 1,..., , the data produce the posterior
probabilities p Hk( | )x , k m= 1,..., , where

 p H jj

m
( )=∑ =1 1 and p H jj

m
( | )x=∑ =1 1.

These posterior probabilities can be obtained using
Bayes’ theorem as follows:
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is denoted by the Bayes factor. The marginal densi-
ties of the data under model Hk , π ( | )x Hk , can be
obtained by integrating with respect to the probabil-
ity distribution of the uncertain parametric vector
θθ k k dk= ′( ,..., )θ θ1  with number of parameters d :

π π( | ) ( | , ) ( | )x xH H H dk k k k k k= I " θθ θθ θθ , (5)

where π ( | )θθ k kH  is the prior density of θθ k  under
model Hk  and "( | , )x θθ k kH  is the likelihood function
of the data x  given θθ k  and Hk .

If the prior distribution is the non-informative,
improper, Jeffreys prior then the marginal density of
the data x = ′( ,..., )x xn1  given in Eq. (5) can be diffi-
cult to compute. A possible solution is to approxi-
mate the logarithm of the marginal density using the
Laplace expansion (De Bruijn, 1981, Chapter 4).
The logarithm of the marginal density of the data
can then be approximated by
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for n → ∞ , where 
�
θθ  is the maximum-likelihood es-

timator for the probability model H , d  is the num-
ber of parameters of the probability model H , and n
is the number of observations [see Tierney & Ka-
dane (1986), Draper (1995), and Dawid (1999)]. Ac-
cordingly, the marginal density can be approximated
by
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for n → ∞ . The second and third terms on the right-
hand side of Eq. (6) form the Bayesian information
criterion for model selection (Schwarz, 1978). The
first term on the right-hand side, ( ) log( )d 2 2π , has
been mostly omitted. However, we confirm the
statement of Draper (1995) that its inclusion im-
proves the accuracy of approximations to the mar-
ginal density.

An advantage of the above Laplace expansion is
the possibility to use output of classical statistics
software (maximum-likelihood estimators). Despite
the fact that the relative error in the Bayes factor
using the Laplace expansion has, in general, an ac-
curacy of O( )1 , the approximation appears to work
rather well in practice (see Van Noortwijk et al.,
2001).



It remains to choose the prior weights p Hk( ). For
formal model comparison, we propose to use equal
prior weights: i.e., p H m k mk( ) , ,...,= =1 1 .

The posterior predictive probabilities of exceed-
ing x0  are calculated using the non-informative Jef-
freys prior. Using the Bayes weights p Hk( | )x ,
k m= 1,..., , the weighted predictive probability of
exceeding x0  is then defined by

Pr{ | } ( | ) Pr{ | , }X x p H X x Hk k
k

m

> = >
=

∑0 0
1

x x x , (8)

where Pr{ | , }X x Hk> 0 x  is the predictive probability
of exceeding x0  under likelihood model Hk ,
k m= 1,..., .

5 BAYESIAN COMPUTATION

In this paper, predictive exceedance probabilities are
obtained using two different Bayesian computation
methods: numerical integration and Markov Chain
Monte Carlo (MCMC).

5.1 Numerical integration

In situations where the posterior joint probability
density function of a parametric vector
θθ = ′( ,..., )θ θ1 d  cannot be expressed in explicit form,
we have to resort to approximations. For low-
dimensional parametric vectors, we may define dis-
crete distributions in the same way as they were ap-
plied to quantify the uncertainty in the shape pa-
rameter of a Weibull distribution in Soland (1969)
and Mazzuchi & Soyer (1996a, 1996b). For con-
venience, the approximation method will be ex-
plained for a likelihood function � ( | )x θ  having only
one unknown parameter θ . For multi-parameter dis-
tributions, the formulas can be easily extended. Let
us assume the prior density of θ  to be the non-
informative Jeffreys prior J( )θ  and the posterior
density of θ  to be based on the conditionally inde-
pendent observations x = ′( ,... )x xn1 .

By replacing the integral in Bayes’ theorem (1)
with a summation, the continuous posterior density
function π θ( | )x  can be discretised as
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j k= 1,..., , with θ L  and θU  being the lower and up-
per bound for θ , respectively. In order to obtain a
close approximation to the posterior density func-
tion, the interval ( ; )θ θL U  should be chosen as wide

as necessary and numerically possible. Suitable
bounds can be determined on the basis of an ap-
proximate posterior density such as a (transformed)
normal distribution with mean equal to the posterior
mode and covariance matrix equal to the inverse of
the expected Fisher information matrix. Conver-
gence to normality of the posterior can often be im-
proved by transformation (e.g., by taking the loga-
rithm of a non-negative parameter). Also the number
of subdivisions k  should be suitably large. The non-
informative prior probability function of θ  is a nor-
malised Jeffreys prior; that is,
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The predictive mean of a function f ( )θ  can now be
easily approximated by

E f f pj j
j
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5.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods can
be used to draw samples from the posterior density.
MCMC is essentially Monte Carlo integration using
cleverly constructed Markov chains. The chains are
constructed so that the dependent samples are dis-
tributed according to the posterior distribution of the
unknown statistical parameters. The most widely
used Markov chain simulation technique is the Me-
tropolis algorithm (Metropolis et al., 1953). Clearly
written overviews on MCMC methods can be found
in Gelman et al. (1995, Chapter 11) and Carlin &
Louis (2000, Chapter 5).

MCMC is based on sampling from a Markov
chain with the property that after a sufficiently long
burn-in period, the samples will be approximately
from the posterior distribution of the parameters. Let
us generate a sequence of parametric vectors
{ , , , ...}( ) ( ( )θθ θθ θθ0 1) 2 , such that at each time t ≥ 0 , the
next parametric vector θθ (t+1)  is drawn from the tran-
sition distribution p t t( | )( ( )θθ θθ+1)  depending only on
the current state of the chain θθ ( )t . This means that
given θθ ( )t , the next state θθ (t+1)  does not depend on
the further history of the chain { , ,..., }( ) ( (θθ θθ θθ0 1) 1)t− .
This sequence is called a Markov chain with transi-
tion distribution or kernel q( | )⋅⋅ . Due to the Mark-
ovian structure, the samples are dependent.

The basic idea of the Metropolis algorithm will
be described next. In this algorithm the next state
θθ (t+1)  is chosen by first sampling a candidate point
θθ∗  from a so-called proposal density q t( | )( )θθ θθ∗  that
depends on the current state θθ ( )t . The Metropolis al-
gorithm assumes the proposal density to be symmet-
ric; that is, q qt t( | ) ( | )( ) ( )θθ θθ θθ θθ∗ ∗=  for all θθ∗  and θθ ( )t .
The proposal density is also called the candidate or
jumping density. An example of a proposal density



is a multivariate normal distribution with mean θθ ( )t

and suitably chosen fixed covariance matrix. The
candidate θθ∗  is accepted with probability α( , )( )θθ θθt ∗

where
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If the candidate is accepted, the next state be-
comes θθ θθ(t+ ∗=1) . If the candidate is rejected, the
chain remains at θθ θθ( ( )t t+ =1) . Both acceptance and
rejection counts as an iteration of the algorithm.
When a candidate is sampled for which π ( | )x θθ∗  and
thus π ( | )θθ∗ x  is zero, we must continue sampling un-
til we have a candidate for which π ( | )x θθ∗ > 0. Re-
markably, the stationary distribution (for which the
Markov chain gradually ‘forgets’ its initial state) is
exactly the posterior distribution π ( | )θθ x . The sta-
tionary distribution from which we would like to
have samples is also called the target distribution.
The proof and regularity conditions that the so-
obtained distribution p t t( ) ( ) ( )( | )θθ θθ 0  converges to the
stationary distribution can be found in Tierney
(1994, 1996) and Roberts (1996).

Although the proposal density can be arbitrarily
chosen, the convergence largely depends on the pro-
posal density. On the one hand, a proposal density
with large jumps to places far from the support of
the posterior has low acceptance rate and causes the
Markov chain to stand still most of the time. On the
other hand, a proposal density with small jumps and
high acceptance rate may cause the chain to move
slowly and to get stuck in one state. A great advan-
tage of the Metropolis algorithm is that it only de-
pends on the posterior density through ratios of the
form π π( | ) ( | )* ( )θθ θθx xt . Hence, the posterior density
π ( | )θθ x  only needs to be known up to a normalising
constant!

Although general advice can not be given, many
studies pointed out that taking a multivariate normal
distribution as proposal density often leads to accu-
rate results [see, e.g., Tierney (1994) and Gelman et
al. (1996)]. Suppose a likelihood model has a d -
dimensional parametric vector θθ = ′( ,..., )θ θ1 d  (pos-
sibly after transformation) defined on the d -
dimensional Euclidean space IRd . Useful transfor-
mations are taking logarithms of non-negative quan-
tities and taking logits of quantities that lie between
0 and 1. When the number of observations n  is suf-
ficiently large and the prior is non-informative, all
probability distributions that are used to estimate de-
sign discharges obey regularity conditions for which
the posterior distribution of θθ  is approximately nor-
mal and remain approximately normal under mild
one-to-one transformations of θθ  (see Section 3). Be-
cause the posterior distribution is approximately
normal, the proposal density should ideally also be
normal with the same covariance structure as the
posterior. This covariance matrix ΣΣ  can be ap-

proximated by the inverse Fisher information matrix
for a sample of n  observations evaluated at the
maximum-likelihood estimator 

�

θθ; that is,
ΣΣ θθ= −[ ( )]

�

nI 1 [see, e.g., Carlin & Louis (2000, Sec-
tion 5.2)]. Recall that the Fisher information matrix
for a single observation is denoted by I( � )θθ  (see Sec-
tion 3).

It should be noted that Gelman et al. (1996) pro-
posed a slightly different proposal density. For pos-
terior distributions being a d -dimensional spherical
normal distribution, they showed that the optimal
symmetric proposal density has the following prop-
erties. Firstly, its covariance matrix is approximately
[ .4]2 2 d  times the covariance matrix of the posterior.
Secondly, the acceptance rate of the corresponding
Metropolis algorithm is approximately 44% for
d = 1 and 35% for d = 2. Note that these acceptance
rates apply to posterior densities having independent
components. Summarising, Gelman et al. (1996) ad-
vice to “choose the scaling of the proposal density so
that the average acceptance rate of the algorithm is
roughly ¼”. A suitable starting point of the Me-
tropolis algorithm is the maximum-likelihood esti-
mator; that is, θθ θθ( )

�

0 = .
Summarising, the proposal density can best be a

d -dimensional normal distribution with mean θθ ( )t

and fixed covariance matrix ΣΣ θθ= −[ ( � )]nI 1 multiplied
by [ .4]2 2 d . How to draw random samples from a
multivariate normal distribution is explained in Car-
lin & Louis (2000, Section A.2.2). For the estima-
tion of design discharges, the proposal density pre-
sented above appears to perform well.

6 DISCHARGE OF THE RIVER RHINE

In Van Noortwijk et al. (2001), a Bayesian analysis
using numerical integration has been applied to the
annual maximum discharges of the river Rhine at
Lobith during the period 1901-1998. The Bayes
weights in Eq. (4) were determined for seven prob-
ability distributions: the exponential, Rayleigh, nor-
mal, lognormal, gamma, Weibull and Gumbel. On
the basis of a statistical analysis, the location pa-
rameter was chosen to be 2,125 m3/s. This location
parameter followed by maximising the weighted
marginal density of the observations, where Bayes
weights have been attached to the seven individual
marginal densities. A Bayesian method of taking ac-
count of the statistical uncertainty in the location pa-
rameter will be presented in a future paper.

In this paper, the results of numerical integration
and MCMC are compared. To assure a proper com-
parison, we use the same location parameters as in
Van Noortwijk et al. (2001); that is, 2,125 m3/s.
Given equal prior weights, the Bayes posterior
weights of the seven probability distributions can be
found in Table 1. They have been computed on the
basis of the Laplace approximation. Recall that the



Laplace approximation can be applied when the
number of observations is large.
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Figure 1. Predictive exceedance probability of annual maxi-
mum river Rhine discharge using numerical integration.
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Figure 2. Predictive exceedance probability of annual maxi-
mum river Rhine discharge using Markov Chain Monte Carlo.

Using the Laplace expansion for the Bayes
weights, the Rayleigh and Weibull distribution ap-
pear to fit best with Bayes weights of 57% and 32%,
respectively. The Bayes estimate of the discharge
with an average return period of 1,250 years is
15,856 m3/s using numerical integration and
15,857 m3/s using MCMC with 20,000 samples.
Figures 1 and 2 show both the empirical exceedance
probability and the predictive exceedance probabili-
ties using numerical integration and MCMC, re-
spectively. Using the maximum-likelihood method
combined with the obtained Bayes weights, the es-
timate of the discharge with an average return period
of 1,250 years decreases to 15,546 m3/s. As ex-
pected, taking account of parameter uncertainty re-
sults in larger design discharges.

The results for numerical integration coincide
with the results for MCMC. Both computational
techniques utilise important results from the maxi-
mum-likelihood estimation. For example, the ex-
pected Fisher information matrix is used both for

determining suitable numerical integration bounds
and for specifying the MCMC proposal densities.

Disadvantages of numerical integration are that
we must specify lower and upper bounds, as well as
the method of discretisation, beforehand. These dif-
ficulties can be overcome by Markov chain simula-
tion though in this situation the proposal density
must be assessed. Because the number of statistical
parameters is rather small (maximally two), numeri-
cal integration outperforms MCMC in computing
time. Another advantage of numerical integration is
that it is much more intuitive than MCMC. The ad-
vantage of MCMC, however, is that uncertainty
bounds (for example, in terms of the 5th and 95th
percentile; see Figure 2) can be easily obtained from
the MCMC samples.

Table 1. Prior and posterior Bayes weights as well as the
1/1250 quantile for the annual maximum river Rhine discharge.

1/1250 quantile
of discharge

Distribution Prior
weight

Posterior
weight
(Laplace)

Numeri-
cal inte-
gration

MCMC

Exponential 0.1429 0.0000 >22,000 >22,000
Rayleigh 0.1429 0.5719   15,715   15,717
Normal 0.1429 0.0480   13,593   13,583
Lognormal 0.1429 0.0000 >22,000 >22,000
Gamma 0.1429 0.0072   18,702   18,713
Weibull 0.1429 0.3156   14,996   14,984
Gumbel 0.1429 0.0573   19,340   19,349
Bayes
combination

1.0000 1.0000   15,856   15,857

Finally, we remark that the estimated discharges in
this paper are results of the proposed Bayesian
method, and are therefore not statutory. The statu-
tory Design Discharge of the Rhine at Lobith is cur-
rently set at 16,000 m3/s (Van De Langemheen &
Berger, 2002).

7 CONCLUSIONS

In this paper, the discharge of the Rhine at Lobith
with an average return period of 1,250 years has
been determined taking account of the statistical un-
certainties involved. Statistical uncertainty occurs
due to a lack of data. It can be subdivided into pa-
rameter uncertainty (when the parameters of a distri-
bution are unknown) and distribution-type uncer-
tainty (when the type of distribution is unknown).
Bayes estimates and Bayes weights can be used to
account for parameter uncertainty and distribution-
type uncertainty respectively. Using Bayes weights,
it is possible to discriminate between different prob-
ability models and to quantify how well a distribu-
tion fits the data.

Predictive exceedance probabilities can be ob-
tained using either numerical integration or Markov



Chain Monte Carlo (MCMC). The results for both
computational methods coincide. Because the num-
ber of statistical parameters is rather small , numeri-
cal integration requires less computing time than
MCMC. Another advantage of numerical integration
is that it is much more intuitive than MCMC. The
advantage of MCMC is that uncertainty bounds can
be easily obtained from the MCMC samples.
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APPENDIX: PROBABILITY DISTRIBUTIONS
AND THEIR JEFFREYS PRIORS

This Appendix contains the probabili ty distributions
which are considered in the statistical analysis of the
annual maximum discharges, as well as their non-
informative Jeffreys priors.

Exponential distribution
A random variable X  has an exponential distribution
with scale parameter θ > 0 if the probabili ty density
function of X  is given by

Ex( | ) exp ( )( , )x
x

I xθ
θ θ

= −%&'
()* ∞

1
0 ,

where I xA( ) = 1 if x A∈  and I xA( ) = 0 if x A∉  for
every set A. The Jeffreys prior is

J( )θ
θ

= 1
.



Rayleigh distribution
A random variable X  has a Rayleigh distribution
with quasi-scale parameter θ > 0 if the probability
density function of X  is given by

Ra( | ) exp ( )( , )x
x x

I xθ
θ θ

= −%&
'

(
)
*

∞
2 2

0 .

The Jeffreys prior for the Rayleigh distribution is

J( )θ
θ

= 1
.

Normal distribution
A random variable X  has a normal distribution with
mean m  and precision r > 0 if the probability den-
sity function of X  is given by

N( | , ) exp ( )x m r
r r

x m= �
�

�
� − −%&'

()*2 2

1

2 2

π
.

The joint Jeffreys prior of the mean m  and precision
r  of a normal distribution is

J m r
r

( , ) = 1

2
.

Lognormal distribution
A random variable X  has a lognormal distribution
with parameters m  and r > 0 if the probability den-
sity function of X  is given by

LN( | , ) exp (log( ) )x m r
r

x

r
x m= �

�
�
� − −%&'

()*2

1

2

1

2 2

π
I x( , )( )0 ∞ .

Hence, if log( )X  has a normal distribution, then X
has a lognormal distribution. The joint Jeffreys prior
of the parameters m  and r  of a lognormal distribu-
tion is

J m r
r

( , ) = 1

2
.

Gamma distribution
A random variable X  has a gamma distribution with
shape parameter a > 0 and scale parameter b > 0 if
the probability density function of X  is given by

Ga( | , )
( )

exp ( )( , )x a b
b

a
x bx I x

a
a= −−

∞Γ
1

0: ? ,

where

Γ( )a t e dta t

t
= − −

=

∞
I 1

0

is the gamma function for a > 0. The Jeffreys prior
for the gamma distribution is

J a b
a a

b
( , )

( )
=

′ −ψ 1
.

The function ′ψ ( )a  is the first derivative of the
digamma function:

′ = ∂
∂

= ∂
∂

ψ ψ
( )

( ) log ( )
a

a

a

a

a

2

2

Γ

for a > 0. It is called the trigamma function. The
digamma function and the trigamma function can be
accurately computed using algorithms developed by
Bernardo (1976) and Schneider (1978), respectively.

Weibull distribution
A random variable X  has a Weibull distribution
with shape parameter a > 0 and scale parameter
b > 0 if the probability density function of X  is
given by

We( | , ) exp ( )( , )x a b
a

b

x

b

x

b
I x

a a

= �
! 

"
$#
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'
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)
*

−

∞

1

0 .

The Jeffreys prior for the Weibull distribution is

J a b
b

( , ) = 1

6

π
.

Remark: An alternative parameterisation of the
Weibull distribution is using the quasi-scale pa-
rameter
~
b ba=
instead of the scale parameter b . For calculating
posterior distributions and predictive exceedance
probabilities using numerical integration, the param-
eterisation in terms of the scale parameter is to be
recommended. This is because the dependency be-
tween scale parameter and shape parameter is
smaller than the dependency between quasi-scale pa-
rameter and shape parameter.

Gumbel distribution
A random variable X  has a Gumbel distribution
with location parameter a  and scale parameter b > 0
if the probability density function of X  is given by

Gu( | , ) exp exp expx a b
b

x a

b

x a

b
= − −%&'

()*
− − −%&'

()*
%
&
'

(
)
*

1
.

The Jeffreys prior for the Gumbel distribution is

J a b
b

( , ) = 1

62

π
.


