
1 INTRODUCTION

In li fe-cycle costing analyses, optimal design is usu-
ally achieved by minimising the expected value of
the discounted costs. There are three main cost-
based criteria for comparing design and maintenance
decisions over an unbounded time horizon: (i) the
expected average costs per unit time (which are de-
termined by averaging the costs over an unbounded
horizon), (ii ) the expected discounted costs over an
unbounded horizon (which are determined by sum-
ming the present discounted values of the costs over
an unbounded horizon), and (iii ) the expected
equivalent average costs per unit time (which are
determined by averaging the discounted costs). From
these three criteria, only the last two are appropriate
for optimal design decisions, because the contribu-
tion of the initial investment cost is ignored for the
first one. The notion of equivalent average costs re-
lates to the notions of average costs and discounted
costs in the sense that the equivalent average costs
per unit time approach the average costs per unit
time, as the discount rate tends to zero from above.
All three cost-based criteria can be obtained in ex-
plicit form using the renewal theorem.

Apart from the expected value of the costs, the
variance of these costs is also important to know. In
this paper, new explicit formulas will be presented
for both the variance of the discounted costs over an
unbounded horizon and the equivalent long-term av-
erage variance of the costs per unit time. As with the
expected costs, the formulas have been derived us-
ing the renewal theorem. It can be shown that the
equivalent average variance of the costs per unit

time approaches the average variance of the costs
per unit time, as the discount rate tends to zero from
above. In doing so, the equivalent average variance
of the costs per unit time approaches a known result
from renewal reward theory.

Use of the new formulas is ill ustrated by deriving
an optimal age replacement strategy for a cylinder.
For several age replacement intervals, both the ex-
pected value and the variance of the discounted costs
are determined. Because the new formulas lead to
relatively simple expressions, they can be easily im-
plemented for the purpose of li fe-cycle costing. Ex-
amples of possible applications are the models of
Frangopol (1999), Frangopol et al. (1999, 2000,
2001), Kuschel & Rackwitz (2000), Rackwitz
(2000), Speijker et al. (2000), and Van Noortwijk et
al. (1996, 1997, 1998, 2000). With these mathemati-
cal models, optimal design and maintenance deci-
sions can be made under uncertain deterioration and
reliability.

The outline of this paper is as follows. Three
cost-based criteria for comparing design and main-
tenance decisions are listed in Section 2: the average
costs per unit time, the discounted costs over an un-
bounded horizon and the equivalent average costs
per unit time. Mathematical formulas for the ex-
pected value and the variance of the discounted costs
over an unbounded horizon are derived in Section 3
and 4 respectively. These formulas are based on re-
sults of discrete-time renewal theory. In Section 5,
similar results are obtained for continuous-time re-
newal processes. Section 6 contains three ill ustra-
tions of the theory, and concluding remarks are
made in Section 7.
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2 COST-BASED CRITERIA

The purpose of this paper is to derive both the ex-
pected value and the variance of the discounted costs
of maintenance for uncertain deterioration. These
probabili stic characteristics are useful for the opti-
misation of design and maintenance. In the design
phase, the initial cost of investment has to be bal-
anced against the future cost of maintenance. In the
application phase, the cost of inspection and preven-
tive replacement have to be balanced against the cost
of corrective replacement and failure.

Usually, maintenance is defined as a combination
of actions carried out to restore a component or
structure, or to “ renew” it, to the initial condition.
Inspections, repairs, replacements, and li fetime-
extending measures are possible maintenance ac-
tions. Through li fetime-extending measures, the de-
terioration can be delayed so that failure is post-
poned and the component’s li fetime is extended.
Roughly, there are two types of maintenance: cor-
rective maintenance (mainly after failure) and pre-
ventive maintenance (mainly before failure). Cor-
rective maintenance can best be chosen if the cost
arising from failure is low (like for instance replac-
ing a burnt-out light bulb); preventive maintenance
if this cost is high (li ke for instance heightening a
dyke).

Since the planned li fetime of most structures is
very long, maintenance decisions may be compared
over an unbounded  time horizon. According to
Wagner (1975, Chapter 11), there are basically three
cost-based criteria that can be used to compare
maintenance decisions:

1. the expected average costs per unit time, which
are determined by averaging the costs over an
unbounded time horizon;

2. the expected discounted costs over an un-
bounded time horizon, which are determined by
summing the (present) discounted values of the
costs over an unbounded time horizon, under the
assumption that the value of money decreases in
time;

3. the expected equivalent average costs per unit
time, which are determined by calculating the
discounted costs per unit time.

The notion of equivalent average costs relates to the
notions of average costs and discounted costs in the
sense that the equivalent average costs per unit time
approach the average costs per unit time, as the dis-
count rate tends to zero from above. The cost-based
criteria of discounted costs and equivalent average
costs are most suitable for balancing the initial
building cost optimally against the future mainte-
nance cost. The criterion of average costs can be
used in situations in which no large investments are
made (like inspections) and in which the time value

of money is of no consequence. Often, it is prefer-
able to spread the costs of maintenance over time
and to use discounting.

3 EXPECTED VALUE OF COST

Maintenance can often be modelled as a discrete re-
newal process, whereby the renewals are the main-
tenance actions that bring a component back into its
original condition or “as good as new state”. After
each renewal we start (in a statistical sense) all over
again. A discrete renewal process { N(n),
n = 1,2,3,…} is a non-negative integer-valued sto-
chastic process that registers the successive renewals
in the time-interval (0,n]. Let the renewal times T1,
T2, T3, …, be non-negative, independent, identically
distributed, random quantities having the discrete
probabili ty function
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where pi represents the probabili ty of a renewal in
unit i. We denote the cost associated with a renewal
in unit time i by ci, i = 1,2,3,… The above-
mentioned three cost-based criteria will be discussed
in more detail i n the following subsections.

3.1 Expected average costs per unit time

The expected average costs per unit time are deter-
mined by simply averaging the costs over an un-
bounded horizon. They follow from the expected
costs over the bounded horizon (0,n], denoted by
E(K(n)), which is a solution of the recursive equa-
tion

))](([))((
1

inKEcpnKE i

n

i
i −+= ∑

=

(1)

for n = 1,2,3,… and K(0) ≡ 0. To obtain this equa-
tion, we condition on the values of the first renewal
time T1 and apply the law of total probabili ty. The
costs associated with occurrence of the event T1 = i
are ci plus the additional expected costs during the
interval (i,n], i =1,…,n. Using the discrete renewal
theorem [see Feller (1950, Chapter 12 & 13) and
Karlin & Taylor (1975, Chapter 3)], the expected
average costs per unit time are
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Let a renewal cycle be the time-period between two
renewals, and recognise the numerator as the ex-
pected cycle costs and the denominator as the ex-
pected cycle length (mean li fetime). Eq. (2) is a
well -known result from renewal reward theory [see
e.g. Ross (1970, Chapter 3)]. The limit i n Eq. (2)
exists provided that the greatest common divisor of



the integers i = 1,2,3,… for which pi > 0 is equal to
one. The simplest assumption assuring this is p1 > 0.
If ci ≡ 1 for all i = 1,2,3,… in Eq. (2), then the ex-
pected average number of renewals per unit time is:
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being the reciprocal of the mean li fetime.

3.2 Expected discounted costs over an unbounded
horizon

Discounting expected costs over an unbounded hori-
zon is based on the assumption that the value of
money decreases with time. Since the future cost can
be discounted to its present value on the basis of a
discount rate, we can compare the value of money at
different dates. In mathematical terms, the (present)
discounted value of the cost cn in unit time n is de-
fined as αncn with α = [1+(r/100)]-1 the discount
factor per unit time and r% the discount rate per unit
time, where r > 0. The decision-maker is indifferent
to the cost cn at time n and the costs αncn at time 0.
Therefore, the higher the discount rate, the more
beneficial it i s to postpone expensive maintenance
actions.

The expected discounted costs over a bounded
time horizon can be obtained with a recursive for-
mula similar to that of the expected costs in Eq. (1).
Again, we condition on the values of the first re-
newal time T1 and apply the law of total probabilit y.
In this case, however, it is desirable to account for
the discounted value of the renewal costs ci plus the
additional expected discounted costs in time-interval
(i,n], i = 1,…,n. Hence, the expected discounted
costs over the bounded horizon (0,n], denoted by
E(Kα(n)), can be written as
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for n = 1,2,3,… and Kα(0) ≡ 0. By using Feller
(1950, Chapter 13), the expected discounted costs
over an unbounded horizon can be written as
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We recognise the numerator of Eq. (4) as the ex-
pected discounted cycle costs, while the denomina-
tor can be interpreted as the probabili ty that the re-
newal process “ terminates due to discounting” . Such
a renewal process is called a terminating renewal
process since infinite inter-occurrence times can
cause the renewals to cease. The inter-occurrence
times Z1, Z2, …, of the imaginary terminating re-
newal process have the distribution
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The expected number of imaginary “discounted re-
newals” over an unbounded horizon is
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3.3 Expected equivalent average costs per unit time

The expected equivalent average costs per unit time
relate to the notions of average costs and discounted
costs. To determine this relation, we construct a new
infinite stream of identical costs with the same pres-
ent discounted value as the expected discounted
costs over an unbounded time horizon k(α). This can
be achieved easily by defining an infinite stream of
costs at times i = 0,1,2,…, which are all equal to
(1-α)k(α). Using the geometric series, we can write
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for 0 < α < 1. We call (1-α)k(α) the equivalent av-
erage costs per unit time. As α tends to 1, from be-
low, the equivalent average costs approach the aver-
age costs per unit time:
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using L’Hôpital’s rule.

3.4 Initial cost of investment

For cost-optimal investment decisions, we are inter-
ested in finding an optimum balance between the
initial cost of investment and the future cost of
maintenance, being the area of li fe cycle costing. In
this situation, the monetary losses over an un-
bounded horizon are the sum of the initial cost of in-
vestment c0 and the expected discounted future cost:
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The corresponding expected equivalent average
costs per unit time are (1-α) Lα. For investment de-
cisions, we cannot use the criterion of the expected
average costs per unit time,
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because the contribution of the initial cost to the av-
erage costs is ignored.



4 VARIANCE OF COST

The aim of this section is to derive the variance of
the discounted costs over an unbounded horizon.
This variance can be obtained by applying generat-
ing functions. As with the expected value of the dis-
counted costs over an unbounded horizon, we can
define an equivalent long-term average variance per
unit time. This equivalent average variance per unit
time approaches the average variance per unit time,
as the discount rate tends to zero from above. The
long-term average variance of the costs per unit time
is a known result in renewal reward theory [see e.g.
Wolff (1989, Chapter 2) and Tijms (1994, Chap-
ter 1)]. As far as the author knows, the expression
for the variance of the discounted costs over an un-
bounded horizon is new.

4.1 Average variance of the costs per unit time

The average variance of the costs per unit time can
be determined by averaging the variance of the costs
over an unbounded horizon. It follows from the first
and second moment of the costs over the bounded
horizon (0,n], denoted by E(K(n)) and E(K2(n)) re-
spectively. These moments solve Eq. (1) as well as
the recursive equation
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for n = 1,2,3,… This equation is obtained by condi-
tioning on the values of the first renewal time T1. In
a slightly different notation, Wolff (1989, Chapter 2)
proved that the long-term average variance of the
costs per unit term is
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The random quantity I is the cycle length with cycle
cost cI . If ci ≡ 1 for all i = 1,2,3,… in Eq. (7), then
the long-term average variance of the number of re-
newals per unit time is:
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This theorem is proved in Feller (1949). He also
showed that, as n → ∞,  N(n) is asymptotically nor-
mal with mean
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Wolff (1989, Chapter 2) showed that K(n) is as-
ymptotically normal as well .

4.2 Variance of the discounted costs over an
unbounded horizon

The variance of the expected discounted costs over a
bounded time horizon can be obtained by the recur-
sive formulas for the first and second moment of the
discounted costs. The former can be found in
Eq. (3). The latter can be obtained by conditioning
on the values of the first renewal time T1. The ex-
pected value of the square of the discounted costs
over the bounded horizon (0,n] can be written as
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for n = 1,2,3,… After some algebra, the second mo-
ment of the discounted costs over an unbounded ho-
rizon has the form
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The proof can be obtained by rewriting the recursive
relation (9) in terms of the corresponding generating
functions. The proof will be presented in a future
paper.

The variance of the discounted costs over an un-
bounded horizon can now be easily derived by com-
bining Eqs. (4) and (10); that is,
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An interesting special case arises if ci ≡ 1 for all
i = 1,2,3,… Then, the variance of the number of
imaginary “discounted renewals” over an unbounded
horizon is
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4.3 Equivalent average variance of the costs per
unit time

As with the expected value of the costs, the equiva-
lent average variance of the costs per unit time relate
to the average variance per unit time and the vari-
ance of the discounted costs over an unbounded ho-
rizon. To establish this relation, let us define the
equivalent average variance of the costs per unit
time to be
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As α tends to 1, from below, the equivalent average
variance of the costs per unit time approaches the
average variance of the costs per unit time; that is,
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The proof is rather tedious and will be presented in a
future paper. If ci ≡ 1 for all i = 1,2,3,…, then
Eq. (12) collapses to

n

nN
nN

nn

))((Var
lim))((Varlim)1(lim 2

1 ∞→∞→↑
=− α

α
α .

In Section 4, it was mentioned that the non-
discounted costs over an unbounded horizon are as-
ymptotically normal. Therefore, it is to be expected
that the discounted costs over an unbounded horizon
are approximately asymptotically normal, as long as
the discount rate is close to zero.

5 CONTINUOUS-TIME PROCESSES

Up to now, we have studied only discrete-time re-
newal processes. Similar results can be obtained for
continuous-time renewal processes; basically by re-
placing ‘summations’ with ‘ integrals’ . The variance
of the discounted costs over an unbounded horizon
should now be computed by applying Laplace trans-
forms instead of generating functions.

Let F(t) be the cumulative probabili ty distribution
of the continuous renewal time T ≥ 0 and let c(t) be
the cost associated with a renewal at time t. Using a
terminating renewal argument and applying Laplace
transforms, the expected discounted cost over an un-
bounded horizon can then be written as
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where Kα(t) represents the expected discounted costs
in the bounded time-interval (0,t], t > 0. Eq. (13)
generalises the work of Berg (1980) and Fox (1966),
who studied age and block replacement policies with
discounting. Rackwitz (2000) studied the situation
c(t) ≡ c > 0 for all t ≥ 0. In a similar manner, the sec-

ond moment of the discounted costs over an un-
bounded horizon is given by
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The continuous-time versions of the discrete-time
limit theorems (5) and (12) are as follows. As α
tends to 1, from below, the equivalent average costs
per unit time approach the average costs per unit
time:
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using L’Hôpital’s rule. Note that
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As α tends to 1, from below, the equivalent average
variance of the costs per unit time approaches the
average variance of the costs per unit time; that is,
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It should be noted that the limits for t approaching
infinity on the right-hand side of Eqs. (14) and (15)
do not always exist. In order for these limits to exist,
the renewal times should have a so-called non-lattice
distribution. A random quantity X, and its distribu-
tion, are called lattice if for some d > 0,
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For a detailed discussion on the existence of point-
wise limits of functions arising in renewal theory,
see Wolff (1989, Chapter 2).

6 ILLUSTRATIONS

This section describes three examples in which the
formulas of the expected value and the variance of
the discounted costs over an unbounded horizon can
be applied.

6.1 Flood prevention

Let the discrete inter-occurrence times of a flood be
distributed as a geometric distribution with parame-
ter p, so that
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The parameter p can be interpreted as the probabili ty
of occurrence of the flood per unit time. Further-
more, assume the cost of flood damage to be c > 0.



The expected value and the variance of the dis-
counted costs over an unbounded horizon are
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respectively. When the building cost is included as
well , these formulas can be used to design flood de-
fences (see e.g. Van Dantzig, 1956).

6.2 Poissonian failure process

The continuous-time analogue of the discrete geo-
metric distribution is the exponential distribution.
Let failures occur according to a Poisson process
with arrival rate λ, then the inter-occurrence failure
time is exponentially distributed with mean λ-1. With
the failure cost being c > 0, the expected discounted
costs over an unbounded horizon are
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Accordingly, the variance of the discounted costs
over an unbounded horizon is
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In Kuschel & Rackwitz (2000) and Rackwitz (2000),
the parameter λ represents the outcrossing rate of a
Poissonian failure process.

6.3 Age replacement

A well -known preventive maintenance strategy is
the age replacement strategy. Under an age replace-
ment policy, a replacement is carried out at age k
(preventive replacement) or at failure (corrective re-
placement), whichever occurs first, where k =
1,2,3,… A preventive replacement entails a cost cP,
whereas a corrective replacement entails a cost cF,
where 0 < cP ≤ cF.

As a simpli fied example, we study the mainte-
nance of a cylinder on a swing bridge (adapted from
Van Noortwijk, 1998). Preventive maintenance of a
cylinder mainly consists of replacing the guide
bushes and plunger, and replacing the packing of the
piston rod. In the event of corrective maintenance,
the cylinder has to be replaced completely because
too much damage has occurred. The cost of preven-
tive maintenance cP is 30,000 Dutch guilders,
whereas the cost of corrective maintenance cF  is
100,000 Dutch guilders. Both maintenance actions
bring the cylinder back into its “good as new state” .
The rate of deterioration is based on periodic li fe-

time-extending maintenance, in terms of cleaning
and sealing the cylinder. The time at which the ex-
pected condition equals the failure level is 15 years.
On the basis of the stochastic deterioration process
described by a gamma process, the annual prob-
abiliti es of failure pi, i = 1,2,3,…, can be easily
computed. It follows from Eq. (4) that the expected
discounted costs of age replacement over an un-
bounded horizon are
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Similarly, the second moment of the discounted
costs over an unbounded horizon can be written as
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Figure 1. The expected value of the discounted costs over an
unbounded horizon as a function of the age replacement inter-
val k, k = 1,…,75.

The optimal age replacement interval is the inter-
val for which the expected discounted costs over an
unbounded horizon are minimal. On the basis of an
annual discount rate of 5%, the expected discounted
costs of preventive and corrective maintenance are
displayed in Figure 1. The expected discounted costs
over an unbounded horizon are minimal for an age
replacement interval of 13 years. The standard de-
viation of the discounted costs over an unbounded
horizon is shown in Figure 2. For an age replace-
ment interval of 15 years, the standard deviation is at
a maximum.

Note that the replacement model can also be ap-
plied for determining the initial resistance of a



structure, which optimally balances the initial cost of
investment cP against the future cost of maintenance.

7 CONCLUDING REMARKS

The paper presents explicit formulas for both the ex-
pected value and the variance of the discounted costs
over an unbounded horizon. It is shown that there is
an interesting connection between the expressions
for the discounted costs and well -known results of
renewal reward theory (with respect to the long-term
average costs per unit time). The variance of the dis-
counted costs over an unbounded horizon is useful
to determine (approximate) uncertainty bounds.

The formulas can be applied in situations where
regenerative cycles can be identified; that is, after
each renewal we start (in a statistical sense) all over
again. The advantage of the expressions is that they
can be easily computed. Even when we have to rely
on Monte Carlo simulation for calculating the prob-
abili stic characteristics of both the renewal cycle
length and the renewal cycle cost, the two expres-
sions can be easily used. The reason is that both ex-
pressions can be reformulated solely in terms of ex-
pected values of simple functions of the renewal
time. Although renewal times are mainly influenced
by failures, they may also depend on inspections, re-
pairs, replacements, and li fetime extensions.

Due to the discount rate, the expressions for the
expected value and the variance of the discounted
costs over an unbounded horizon may serve as a
good approximation in situations with a bounded
time horizon larger than fifty years. On the other
hand, this paper also presents recursive formulas that
can be used to calculate the expected discounted
costs over a bounded horizon.
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Figure 2. The standard deviation of the discounted costs over
an unbounded horizon as a function of the age replacement in-
terval k, k = 1,…,75.
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