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ABSTRACT: In life-cycle asting analyses, optimal design is usually achieved by minimising the expeded
value of the discournted costs. Apart from the expeded value, the @rrespondng variance may be useful as
well for estimating, for example, the uncertainty bound of the cdculated discournted costs. However, genera
explicit formulas for cdculating the variance of the discourted costs over an unbouided time horizon are not
avail able yet. In this paper, explicit formulas for this variance ae presented. They can be eaily implemented
in software to optimise structural design and management. The use of the mathematical results is ill ustrated

with some examples.

1 INTRODUCTION

In life-cycle wsting analyses, optimal design is usu-
aly achieved by minimising the expeded value of
the discourted costs. There ae three main cost-
based criteria for comparing design and maintenance
dedsions over an unbounled time horizon: (i) the
expeded average @sts per unit time (which are de-
termined by averaging the wsts over an unbouned
horizon), (i) the expeded discounted costs over an
unbouneéd haizon (which are determined by sum-
ming the present discourted values of the sts over
an unboundd haizon), and (iii) the epeded
equivaent average wsts per unit time (which are
determined by averaging the discourted costs). From
these three citeria, only the last two are gpropriate
for optimal design dedsions, because the ntribu-
tion d the initial investment cost is ignored for the
first one. The nation d equivalent average @sts re-
lates to the nations of average wsts and dscourted
costs in the sense that the equivalent average wsts
per unit time gproach the average @sts per unit
time, as the discourt rate tends to zero from abowe.
All three ost-based criteria can be obtained in ex-
plicit form using the renewal theorem.

Apart from the expeded value of the wsts, the
variance of these astsis aso important to know. In
this paper, new explicit formulas will be presented
for both the variance of the discourted costs over an
unbouned haizon and the equivalent long-term av-
erage variance of the asts per unit time. As with the
expeded costs, the formulas have been derived us-
ing the renewal theorem. It can be shown that the
equivalent average variance of the wsts per unit

time gproades the aserage variance of the @sts
per unit time, as the discourt rate tends to zero from
abowe. In ddng so, the equivalent average variance
of the sts per unit time gproaches a known result
from renewal reward theory.

Use of the new formulasis ill ustrated by deriving
an optimal age replacement strategy for a cylinder.
For several age replacement intervals, bah the ex-
peded value and the variance of the discounted costs
are determined. Because the new formulas leal to
relatively simple expressons, they can be eaily im-
plemented for the purpose of life-cycle sting. Ex-
amples of possble gplicaions are the models of
Frangopd (199), Frangopd et al. (1999, 2000,
2007, Kuschd & Radkwitz (2000, Radkwitz
(2000, Speijker et a. (2000, and Van Noortwijk et
al. (1996, 19971998, 2000 With these mathemati-
cd modes, opimal design and maintenance deci-
sions can be made under uncertain deterioration and
reli ability.

The outline of this paper is as follows. Three
cost-based criteria for comparing design and main-
tenance dedsions are listed in Sedion 2: the average
costs per unit time, the discourted costs over an un-
bounad haizon and the equivalent average sts
per unit time. Mathematicd formulas for the ex-
peded value and the variance of the discounted costs
over an unboumled haizon are derived in Sedion 3
and 4 respectively. These formulas are based onre-
sults of discrete-time renewal theory. In Sedion5,
similar results are obtained for continuows-time re-
newal processes. Sedion6 contains three ill ustra-
tions of the theory, and concluding remarks are
madein Sedion 7.



2 COST-BASED CRITERIA

The purpose of this paper is to derive bath the ex-
peded value and the variance of the discourted costs
of maintenance for uncertain deterioration. These
probabili stic characteristics are useful for the opti-
misation d design and maintenance. In the design
phase, the initial cost of investment has to be bal-
anced against the future st of maintenance In the
applicaion plese, the st of inspedion and preven-
tive replacement have to be balanced against the aost
of corredive replacement and fail ure.

Usualy, maintenanceis defined as a combination
of adions carried ou to restore a comporent or
structure, or to “renew” it, to the initial condtion.
Inspedions, repairs, replacements, and lifetime-
extending measures are possble maintenance a-
tions. Through lifetime-extending measures, the de-
terioration can be delayed so that failure is post-
pored and the component’s lifetime is extended.
Roughly, there ae two types of maintenance cor-
redive maintenance (mainly after failure) and pre-
ventive maintenance (mainly before failure). Cor-
redive maintenance ca best be diosen if the st
arising from failure is low (like for instance replac-
ing a burnt-out light bulb); preventive maintenance
if this cost is high (like for instance heightening a
dyke).

Since the planned lifetime of most structures is
very long, maintenance decisions may be compared
over an unboumed time horizon. According to
Wagner (1975, Chapter 11), there ae basically three
cost-based criteria that can be used to compare
maintenance dedsions:

1. the expected average @sts per unit time, which
are determined by averaging the @sts over an
unbouned time horizon;

2. the expected dscourted costs over an wn-
bounded time horizon, which are determined by
summing the (present) discourted values of the
costs over an unbouided time horizon, undr the
asumption that the value of money decreases in
time;

3. the expected equivalent average @sts per unit
time, which are determined by cdculating the
discounted costs per unit time.

The nation d equivaent average wsts relates to the
notions of average @sts and dscournted costs in the
sense that the equivalent average csts per unit time
approad the arerage @sts per unit time, as the dis-
court rate tends to zero from above. The @st-based
criteria of discourted costs and equivalent average
costs are most suitable for baancing the initial
building cost optimally against the future mainte-
nance ®st. The aiterion o average sts can be
used in situations in which nolarge investments are
made (like inspedions) and in which the time value

of money is of no consequence Often, it is prefer-
able to spreal the wsts of maintenance over time
and to use discourting.

3 EXPECTED VALUE OF COST

Maintenance can often be modelled as a discrete re-
newal process whereby the renewals are the main-
tenance adions that bring a component bad into its
original condtion a “as good as new state”. After
ead renewal we start (in a statisticd sense) all over
again. A discrete renewal process {N(n),
n=1,2,3,...} is a nonnegative integer-valued sto-
chastic processthat registers the successve renewals
in the time-interval (O,n]. Let the renewal times T,
T,, T3, ..., ke nonnegative, independent, identically
distributed, randam quantities having the discrete
probabili ty function

P{T,=i}=p, i=123,., $Lp~=1,

where p; represents the probability of a renewal in
unit i. We dencte the st associated with a renewa
in unt time i by ¢, i1=123,... The &ove-
mentioned three ost-based criteriawill be discussed
in more detail i n the following subsedions.

3.1 Expeded average sts per unit time

The expeded average @sts per unit time ae deter-
mined by smply averaging the sts over an un-
boundd haizon. They follow from the expeded
costs over the bounded horizon (0,n], dencted by
E(K(n)), which is a solution d the reaursive equa
tion

E(K(M) = Y plo+EKM-D)] @

for n=1,2,3,...and K(0) =0. To oltain this equa-
tion, we condtion onthe values of the first renewal
time T; and apply the law of total probability. The
costs associated with occurrence of the event Ty =i
are ¢ plus the alditional expeded costs during the
interval (i,n], i =1,...,n. Using the discrete renewal
theorem [see Feller (1950, Chapter 12 & 13) and
Karlin & Taylor (1975, Chapter 3)], the expeded
average @sts per unit timeare

E(K(M) _ 37ap _ E()
seaip, E(1)

Let arenewal cycle be the time-period between two
renewals, and recognise the numerator as the ex-
peded cycle asts and the denominator as the ex-
peded cycle length (mean lifetime). Eq.(2) is a
well-known result from renewa reward theory [see
e.g. Ross(1970, Chapter 3)]. The limit in Eq.(2)
exists provided that the greatest common dvisor of

lim
n-oo n

(2)



the integers i = 1,2,3,...for which p; >0 is equal to
one. The smplest assumption asauring thisis p; > 0.
If g=1foradl i=1,23,...in Eq.(2), then the e-
peded average number of renewals per unit timeis:

E(N(n)) _ 1 _ 1
Yiaip E(1)
being the redprocd of the mean lifetime.

lim
n- oo n

3.2 Expeded dscourted costs over an unbouned
horizon

Discourting expeded costs over an unbounled hai-
zon is based on the assumption that the value of
money deaeases with time. Sincethe future st can
be discourted to its present value on the basis of a
discourt rate, we can compare the value of money at
different dates. In mathematica terms, the (present)
discourted value of the @st ¢, in unt time n is de-
fined as a"c, with a=[1+(r/100]* the discourt
factor per unit time and r% the discourt rate per unit
time, where r > 0. The decisionrmaker is indifferent
to the st ¢, at timen and the wsts a"c, at time 0.
Therefore, the higher the discourt rate, the more
beneficia it is to postpore expensive maintenance
adions.

The epeded discounted costs over a bourded
time horizon can be obtained with a reaursive for-
mula similar to that of the expeded costs in Eq. (1).
Again, we @ndtion onthe values of the first re-
newal time T, and apply the law of total probability.
In this case, however, it is desirable to acourt for
the discournted value of the renewal costs ¢; plus the
additional expeded discournted costs in time-interval
@i,n], 1=1,...n. Hence the epeded dscourted
costs over the bounded horizon (0,n], denoted by
E(Kq(N)), can be written as

a&mm=iamm+EMAn4m 3

for n=1,2,3,... and Kq(0)=0. By using Feler
(1950, Chapter 13), the expeded discourted costs
over an wtnbounadd haizon can be written as

_ E(@'c)

lim E(K, (n)) = zl_lacp 1-E(a')

1 Zl_la pl

We reaognise the numerator of EqQ.(4) as the ex-
peded dscourted cycle costs, while the denomina-
tor can be interpreted as the probabili ty that the re-
newal process*terminates due to dscourting”. Such
a renewa process is cdled a terminating renewal
process since infinite inter-occurrence times can
cause the renewals to cease. The inter-occurrence
times Z;, Z,, ..., d the imaginary terminating re-
newal processhave the distribution

Pr{z, =i}=a'p, i=123..,

=k(a). 4

and
PH{Z, =} =1-370a'p.

The expeded number of imaginary “discourted re-
newals’ over an unbouned haizonis

sna'p Pz, <o)
1-50a'p PHZ =w}

lim E(N, () =

3.3 Expeded equivalent average @sts per unit time

The expeded equivalent average @sts per unit time
relate to the notions of average @sts and dscourted
costs. To determine this relation, we construct a new
infinite stream of identicd costs with the same pres-
ent discourted value & the epeded dscounted
costs over an unbouled time horizon k(a). This can
be atieved easily by defining an infinite strean of
costs at times i =0,1,2,...,which are dl equal to
(1-a)k(a). Using the geometric series, we can write

S0 (L-a)k(a) =k(a)

for 0O<a<1. We cd (1-a)k(a) the equivalent av-
erage @sts per unit time. As a tends to 1, from be-
low, the equivalent average costs approac the aver-
age @sts per unit time:

“m (1 a)DZ| la C p| D Z|—1C p| (5)
arl - z|_1a p L Z| l|p|

using L’Ho6pita’srule.

3.4 Initial cost of investment

For cost-optimal investment decisions, we ae inter-
ested in finding an opgimum balance between the
initial cost of investment and the future st of
maintenance, being the aeaof life cycle @sting. In
this stuation, the monetary losses over an un-
bounad haizon are the sum of the initial cost of in-
vestment ¢o and the expeded dscounted future aost:

L, =¢, +IimE(K,(n)).

The orrespondng expeded equivalent average
costs per unit time ae (1-a) L,. For investment de-
cisions, we caina use the aiterion of the expeded
average Qsts per unit time,

L= i & B EK(D)

n-oo nﬁoo n

because the ontribution o the initial cost to the av-
erage wstsisignored.



4 VARIANCE OF COST

The am of this edionis to derive the variance of
the discourted costs over an unbouned haizon.
This variance can be obtained by applying generat-
ing functions. As with the expeded value of the dis-
courted costs over an unboundd haizon, we can
define an equivalent long-term average variance per
unit time. This equivalent average variance per unit
time gproaches the average variance per unit time,
as the discourt rate tends to zero from above. The
long-term average variance of the costs per unit time
is a known result in renewal reward theory [see eg.
Wolff (1989, Chapter 2) and Tijms (1994, Chap-
ter 1)]. As far as the aithor knows, the expresson
for the variance of the discourted costs over an un-
boundd haizonis new.

4.1 Average \arianceof the @sts per unit time

The average variance of the asts per unit time can
be determined by averaging the variance of the csts
over an unbouded haizon. It follows from the first
and second moment of the sts over the bourded
horizon (0,n], denoted by E(K(n)) and E(K*(n)) re-
spedively. These moments lve Eq. (1) as well as
the reaursive equation

E(K2(n) = Z P E(lG +K(n—i)) =
n (®)
=3 PlE +2GEK M=)+ E(*(n-D)

for n=1,2,3,...This equation is obtained by cond-
tioning on the values of the first renewal time T;. In
adightly different notation, Wolff (1989, Chapter 2)
proved that the long-term average variance of the
costs per unit term is

iim Var(K(n)) _ Var(c,)E*(1) + Var(l)E*(c))
nme N [E(]®
_2E(1)E(c,)Cov(l,c))
[E(D] '
The randam quantity | is the cycle length with cycle
cost g .If ¢g=1fordl i=1,23,...in EQ.(7), then

the long-term average variance of the number of re-
newals per unit timeis:

im Var(N(n)) _ Var(lz _
[E()]

N n
This theorem is proved in Feller (1949). He dso
showed that, asn — o, N(n) is asymptoticdly nor-
mal with mean

(1)

(8)

E(N(n)) ~$

and variance
nVar(l)
[E()P

Wolff (1989, Chapter 2) showed that K(n) is as-
ymptoticdly normal as well.

Var(N(n)) ~

4.2 Varianceof the discourted costs over an
unbounad haizon

The variance of the expeded dscourted costs over a
bounckd time horizon can be obtained by the reaur-
sive formulas for the first and second moment of the
discounted costs. The former can be found in
Eq. (3). The latter can be obtained by condtioning
on the values of the first renewal time T;. The &-
peded value of the square of the discourted costs
over the bounced horizon (0,n] can be written as

E(KZ(n) = 3 a” REG +K, (n-1)]*) =
| ©
=5 0™l +2GE(K, (n=D) + E(K}(n D)

forn=1,2,3,... After some dgebra, the second mo-
ment of the discourted costs over an unbouned ho-
rizon hes the form

im E(KZ () =

0 i 0 2i o 2i A2
=pp2uf OP 2oF AP, 20 AR (g
1-yh0p1-3L0%p 1-3L0°p
_,gE@'c) E(@*c)  E(@"ct)
1-E(a')1-E(@®) 1-E(a?)

The proof can be obtained by rewriting the recursive
relation (9) in terms of the correspondng generating
functions. The proof will be presented in a future
paper.

The variance of the discourted costs over an un-
bounced haizon can now be eaily derived by com-
bining Egs. (4) and (10); that is,

lim Var(K,(n)) = lim[E(KZ(n)) - E*(K,(n))]. (11)
An interesting speda case aises if ¢=1 for all
i=1,2,3,... Then, the variance of the number of

imaginary “discourted renewals’ over an unbouned
horizonis

[Zioila2i pl] B (Ziilai p|)2 .
[1_ Zioila2I p|](1_ Zfila' p|)2

LiTo Var(N,(n)) =



4.3 Equivalent average variance of the sts per
unit time

As with the expeded value of the asts, the ejuiva
lent average variance of the @sts per unit timerelate
to the average variance per unit time and the vari-
ance of the discourted costs over an unbounéd ho-
rizon. To establish this relation, let us define the
equivalent average \ariance of the wsts per unit
timeto be

(1—a2)Li[73°Var(Ka(n)) :

As a tends to 1, from below, the ejuivalent average
variance of the wsts per unit time gproaches the
average variance of the @sts per unit time; that is,

Var(K(n))
—

lim (1—aZ)LiTOVar(Ka(n)) =lim (12

atl
The proof is rather tedious and will be presented in a
future paper. If ¢=1 for al 1=1,23,..., then
Eq. (12) collapsesto

lim (1-a?)lim Var(N,(n)) = lim

arl

Var(N(n))
—

In Section4, it was mentioned that the non
discournted costs over an unboumed haizon are &
ymptoticdly normal. Therefore, it is to be expeded
that the discourted costs over an unboundd haizon
are goproximately asymptoticdly normal, as long as
the discourt rate is close to zero.

5 CONTINUOUS-TIME PROCESSES

Up to now, we have studied ony discrete-time re-
newal processes. Similar results can be obtained for
continuows-time renewal processes; basicadly by re-
pladng ‘summations with ‘integrals’. The variance
of the discourted costs over an unbouned horizon
shoud now be computed by applying Laplace trans-
formsinstead of generating functions.

Let F(t) be the aumulative probabili ty distribution
of the continuots renewal time T >0 and let c(t) be
the st asociated with arenewal at timet. Using a
terminating renewa argument and applying Laplace
transforms, the expeded dscourted cost over an un-
bounced haizon can then be written as

fo a'c(t)dF(t)

Im E(K, ()= 25

(13

where K(t) represents the expeded dscourted costs
in the boundd time-interval (0], t>0. Eq.(13)
generdi ses the work of Berg (1980 and Fox (1966,
who studied age and Hock replacement palicies with
discourting. Radkwitz (2000 studied the situation
c(t)=c>0for al t=0.Inasmilar manner, the sec-

ond moment of the discourted costs over an un-
boundd haizonisgiven by

lim E(KZ (1) =
_ ng’ a'‘c(t)dF(t) [, ac(t)dF(t) N [y a®c(t)dF(t)

0
1-[a'dF(t) 1-a®drF(t)  1-fa®dF(t)

The continuows-time versions of the discrete-time
limit theorems (5) and (12) are & follows. As a
tends to 1, from below, the equivalent average @sts
per unit time gproach the average wsts per unit
time:

lim (~loga)lim E(K, (1)) = lim E(l:(t))

atl

(14)

using L’Ho6pita’ s rule. Note that

J’ma‘dt:—i.
0 loga

As a tends to 1, from below, the equivalent average
variance of the wsts per unit time gproaches the
average variance of the @sts per unit time; that is,

Var(K(t))
— (15

It shoud be noted that the limitsfor t approadiing
infinity on the right-hand side of Egs. (14) and (15)
do nd aways exist. In order for these limitsto exist,
the renewal times $roud have aso-caled nan-lattice
distribution. A randam quantity X, and its distribu-
tion,are cdled latticeif for somed > 0,

s2 Pr{X =id} =1.

For a detailed discusson onthe existence of point-
wise limits of functions arising in renewal theory,
seeWolff (1989,Chapter 2).

lim (-loga®) Itim Var(K,(t)) = Itim

atl

6 ILLUSTRATIONS

This sdion describes three examples in which the
formulas of the expeded value and the variance of
the discourted costs over an unbounéd haizon can
be gplied.

6.1 Flood prevention

Let the discrete inter-occurrence times of a flood ke
distributed as a geometric distribution with parame-
ter p, so that

p = pl-p)T

The parameter p can be interpreted as the probabili ty
of ocaurrence of the flood per unit time. Further-
more, assume the st of flood camage to be ¢ > 0.

i=123,...



The expeded vaue and the variance of the dis
counted costs over an unbouned horizon are

I|m E(K,(n)) = Ep

and

2
lim Var(K, (n)) = - Cp(1- )¢,
n-o l-a
respedively. When the building cost is included as
well, these formulas can be used to design flood de-
fences (see eg. Van Dantzig, 1956.

6.2 Poissonianfailure process

The mntinuows-time analogue of the discrete geo-
metric distribution is the exporentia distribution.
Let failures occur acording to a Poison process
with arrival rate A, then the inter-occurrence failure
time is exporentially distributed with mean A™%. With
the fallure st being ¢ > 0, the expeded dscourted
costs over an unboued haizonare

I|m E(K, (1)) = _E Ac.

Accordingly, the variance of the discourted costs
over an unboued horizonis

lim Var(K, (t)) = - 5
tow loga
In Kuschel & Radkwitz (2000 and Radkwitz (2000,

the parameter A represents the outcrossng rate of a
Poissonian fail ure process

6.3 Age replacement

A well-known preventive maintenance strategy is
the age replacement strategy. Under an age replace-
ment palicy, a replacement is carried ou at agek
(preventive replacement) or at failure (corredive re-
placement), whichever occurs first, where k=
1,2,3,... A preventive replacement entails a @st cp,
whereas a @rrective replacement entails a @st Cr,
where 0 < cp < Cr.

As a simplified example, we study the mainte-
nance of a cylinder on a swing bridge (adapted from
Van Noortwijk, 1998. Preventive maintenance of a
cylinder mainly consists of replacing the guide
bushes and dunger, and replacing the packing of the
piston rod. In the event of corredive maintenance,
the cylinder has to be replaced completely becaise
too much damage has occurred. The st of preven-
tive maintenance cp is 30,000 Dutch guilders,
whereas the @st of corredive maintenance cq is
100,000 Dutch guilders. Both maintenance ations
bring the cylinder back into its “good as new state”.
The rate of deterioration is based on periodic life-

time-extending maintenance, in terms of cleaning
and seding the cylinder. The time & which the ex-
peded condtion equals the failure level is 15yeas.
On the basis of the stochastic deterioration process
described by a gamma process the anua prob-
abilities of falure p, 1=1,2,3,..., can be easly
computed. It follows from Eq. (4) that the expeded
discounted costs of age replacement over an un-
bouncd haizonare

lim E(K, () = (5.0'R)C +a* (155, R)G
l [(Z' 1a p)+a (l ZI lp|)]

Similarly, the seand moment of the discourted
costs over an unbouned haizon can be written as

lim E(KZ(n)) =

[‘(Z| la p)C +a (1 Z| lp|)c
1-[(ziua'p) +a“(1- z._lp)]
(Z|—1a pI)CF +02k(1_2i:1 pi)CP +
1 [(Z. 102|p)+02k(1_2ik1pi)]
(Z| 102Ip)c +02k(l Z| lpl)c
1= [(zaa”p)+a*(1-35p)]

[] cost of preventive replacement
Il cost of corrective replacement

1.5-

Dutch guilders
R

0.5

10 20 30 40 50 60 70
Age replacement interval [unit time]

Figure 1. The expeded value of the discounted costs over an
unbounded horizon as a function of the age replacement inter-

The optimal age replacament interva is the inter-
val for which the expeded dscounted costs over an
unbouneéd haizon are minimal. On the basis of an
annual discourt rate of 5%, the expeded discournted
costs of preventive and corrective maintenance are
displayed in Figure 1. The expeded dscounted costs
over an unboumled haizon are minimal for an age
replacement interval of 13 years. The standard de-
viation d the discourted costs over an unbouned
horizon is $own in Figure2. For an age replace-
ment interval of 15 years, the standard deviationis at
amaximum.

Note that the replacement model can also be g-
plied for determining the initial resistance of a



structure, which optimally balances the initial cost of
investment cp against the future st of maintenance.

7 CONCLUDING REMARKS

The paper presents explicit formulas for both the ex-
peded value and the variance of the discounted costs
over an unboued haizon. It is srown that there is
an interesting conrection between the expressons
for the discourted costs and well-known results of
renewa reward theory (with resped to the long-term
average sts per unit time). The variance of the dis-
courted costs over an unbounéd haizon is useful
to determine (approximate) uncertainty bound.

The formulas can be gplied in situations where
regenerative cycles can be identified; that is, after
ead renewal we start (in a statisticad sense) al over
again. The alvantage of the expressons is that they
can be eaily computed. Even when we have to rely
on Monte Carlo simulation for cdculating the prob-
abilistic dharaderistics of both the renewa cycle
length and the renewal cycle wst, the two expres-
sions can be easily used. The reasonis that both ex-
pressons can be reformulated solely in terms of ex-
peded values of simple functions of the renewal
time. Although renewal times are mainly influenced
by fail ures, they may also depend oninspections, re-
pairs, replacements, and lifetime extensions.

Due to the discourt rate, the expressons for the
expeded value and the variance of the discourted
costs over an unboumled haizon may serve & a
good approximation in situations with a boundd
time horizon larger than fifty years. On the other
hand, this paper also presents recursive formulas that
can be used to cdculate the expeded dscourted
costs over abourded haizon.

X 104

2.5

=
3
T

[
T

Dutch guilders

o
3

10 20 30 40 50 60 70
Age replacement interval [unit time]
Figure 2. The standard deviation of the discounted costs over

an unbounded horizon as a function of the aje replacement in-
terval k, k=1,...,75.
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