
1 INTRODUCTION 

The aim of the paper is determining the probability 
of dikes failing due to uplifting and piping. Uplifting 
occurs when the covering layer of a dike bursts due 
to the high water pressure, whereas piping under 
dikes occurs due to the entrainment of soil particles 
by the erosive action of seepage flow. 

This study concerns one dike section of the dike 
ring Hoeksche Waard (dike section 13.1), which is 
situated in the lower river area of The Netherlands. 
The three most important random quantities 
representing inherent uncertainties are: the North-
Sea water level, the river Rhine discharge, and the 
critical head in the event of uplifting and piping. In 
this situation, dike failure due to uplifting and piping 
is defined as the event in which the resistance (the 
critical head) drops below the stress (the outer water 
level, a combination of both sea level and river 
discharge, minus the inner water level). The 
statistical uncertainties represent the uncertainties in 
the parameters of the probability distributions of the 
sea water level and the river discharge. 

Since the critical head is correlated over the 
length of a dike section, the spatial variation and 
correlation of the critical head in the event of 
uplifting and piping is modelled using a Markovian 
dependency structure. This means that the random 
quantities representing the inherent uncertainties in 
the critical head of one dike subsection only depend 

on the values of the corresponding random quantities 
in the two adjacent dike subsections. 

The probabilities of failure due to uplifting and 
piping are calculated in three steps.  

First, a dike section is subdivided into smaller 
subsections by assuming the limit-state function of 
uplifting and piping to be a Gaussian stationary 
process and using the theory of the level-crossing 
problem.  

Second, the failure probabilities of one dike 
subsection and two adjacent dike subsections are 
calculated using directional simulation.  

Third, the failure probability of one dike section 
is determined by approximating the Gaussian 
stationary process by a Markov process with respect 
to failure of dike subsections. 

Three-dimensional directional sampling is used to 
determine the probability of failure due to uplifting 
and piping. An advantage of three-dimensional 
directional sampling is that large sample sizes are 
not required. The results of directional sampling are 
compared to the results of First Order Reliability 
Method (FORM). 

The outline of the paper is as follows. The limit-
state functions of uplifting and piping are introduced 
in Section 2. The modelling of the spatial correlation 
and variation of the critical head for uplifting and 
piping, as well as determining the failure probability 
of a dike ring (series system of dike subsections) is 
studied in Section 3. The directional sampling 
technique, which is used to obtain the probability of 
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failure due to uplifting and piping, is presented in 
Section 4. Results and conclusions can be found in 
the last section. 

2 FAILURE DUE TO UPLIFTING AND PIPING 

Uplifting occurs when the covering layer of a dike 
bursts, due to the high water pressure, whereas 
piping under dikes occurs due to the entrainment of 
soil particles by the erosive action of seepage flow. 
The limit-state function of uplifting and piping is 
given by (see also Figure 1)  

)( bzhup HMHMHZ −+−=  (1) 

and 

},max{ ppuuup HMHMH =  (2) 

with 
 

H  =  outer water level [m +NAP], 
Hb =  inner water level [m +NAP], 
Hp =  critical head in the event of piping [m], 
Hu =  critical head in the event of uplifting [m], 
Hup =  critical head for uplifting and piping [m], 
Mh =  model factor water level [-], 
Mp =  model factor piping [-], 
Mu =  model factor uplifting [-], 
Mz =  model factor water-flow model ZWENDL [m]. 

 
The two critical heads Hu and Hp are functions of the 
following random quantities: the volume weights of 
sand and water; the angular rolling friction; the 
constant of White; the sizes of sand particles; the 
permeability; the thickness of the covering layer and 
the sand layer; and the dike width. These random 
quantities are independent, lognormally distributed, 
and represent inherent uncertainties in the critical 
head and are correlated over the length of the dike on 
the basis of the quadratic exponential correlation 
function in Eq. (3). 

The probability distribution of the outer water 
level H is a mixture of both the probability 
distribution of the North-Sea water level at Hoek of 

Holland, denoted by S [m +NAP], and the probability 
distribution of the river Rhine discharge at Lobith, 
denoted by Q [m3/s]. The further down the river, the 
more the sea water level S affects the local water 
level H, and the less the river discharge Q affects the 
local water level H. Given a particular sea water 
level and a particular river discharge, the 
downstream water level can be obtained with the 
one-dimensional water-flow model ZWENDL. On the 
basis of ZWENDL calculations, the local water level H 
has been approximated by a bilinear function of the 
sea water level S and the river discharge Q. 

The probability distribution of the annual 
maximum sea water level is a generalized Pareto 
distribution, whereas the probability distribution of 
the annual maximum river discharge is a piecewise 
exponential distribution. Besides the inherent 
uncertainties, the uncertainties in the statistical 
parameters of these two probability distributions are 
taken into acount. 

The subject of study is the probability of dike 
failure due to uplifting and piping per two days. 
Therefore, the probability distributions of annual 
maximal sea level and discharge must be 
transformed to probability distributions of maxima 
over two days. These transformed random quantities 
are denoted by S2days and Q2days, respectively, and 
they are independent. 

The other random quantities are distributed as 
follows. The inner water level Hb and the model 
factor of the water-flow model Mz have a normal 
distribution; the model factor for uplifting Mu and 
the model factor for piping Mp have a lognormal 
distribution; and the model factor of the water level 
Mh has a beta distribution. The two critical heads for 
uplifting and piping, the outer and inner water level, 
and the four model factors are mutually independent.  

For further details about the probability 
distribution representing inherent and statistical 
uncertainties, we refer to Cooke & Van Noortwijk 
(1998). 

3 SPATIAL CORRELATION AND VARIATION 

In order to model the spatial variation and 
correlation of the random quantities representing the 
inherent uncertainties in the critical head, 
Vrouwenvelder (1993, Chapter 2) used the quadratic 
exponential correlation function 
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where ρ(x) is the product moment correlation, x is 
the distance between the two points at which the 
stochastic process is studied [m], and dx is the 
fluctuation scale [m]. The fluctuation scale 
represents the spatial variation: the larger the 

Clay

Sand

Clay

Dike width Thickness sand layer

Thickness covering layer

Hb

H
Hup

 
Figure 1. Cross-section of a dike. 



fluctuation scale, the less spatial variation, and the 
larger the correlation coefficient. The parameters 
used to model the spatial variation can be found in 
Cooke & Van Noortwijk (1998). 

The failure probability of a dike section can be 
approximated by regarding a dike section as a 
(series) system of smaller dike subsections. 
Dependencies between failure events of the dike 
subsections can then be modelled on the basis of a 
Markovian dependency structure. For modelling the 
spatial variation, this means that the random 
quantities in one dike subsection only depend on the 
values of the corresponding random quantities in the 
two adjacent dike subsections. The question arises 
how a dike section can best be subdivided into 
smaller subsections of length x∗ and which value of 
the fluctuation scale dx should be chosen. In this 
subsection, we present a methodology to obtain both 
the dike subsection length and the fluctuation scale. 

On the one hand, we assume the limit-state 
function of uplifting and piping to be a Gaussian 
stationary process and we use the theory of the so-
called level-crossing problem [see, e.g., 
Vrouwenvelder (1993), Papoulis (1965, Chapter 14), 
and Karlin & Taylor (1975, Chapter 9)]. On the 
other hand, we approximate this Gaussian stationary 
process by a Markov process. 

The level-crossing problem reads as follows. Let 
a Gaussian stationary process Z(x) be given with 
mean 0, standard deviation 1, and correlation 
function ρ(x), where x is the distance between the 
two points at which the stochastic process is studied 
[m]. The correlation function must satisfy ρ′′(0) < ∞. 
An upper bound for the probability of exceeding the 
level β  in a dike subsection of x metres can be 
written as 
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The smaller x, the better this upper bound can be 
used as an approximation. For the quadratic 
exponential correlation function, Eq. (3) transforms 
into 
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According to Vrouwenvelder (1993), we can choose 
the length of the dike subsection, denoted by x∗, as 
such that the corresponding probability of 
exceedence p(x∗) equals Φ(−β): 
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or, similarly, 

β
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The approximation for Φ(−β) in Eq. (6) can only be 
applied when β > 2. For example, by using 
directional simulation, the β  for one subsection of 
dike section 13.1 has the value (see Section 4) 

65.4)1065.1( 61 =Φ−= −−β . (8) 

On the basis of the quadratic exponential 
correlation functions of the random quantities 
representing the inherent uncertainties in the critical 
head, the fluctuation scale dx of the limit-state 
function or process Z(x) remains to be determined. 

A dike subsection is assumed to have a length of 
x∗ metres. Standard Monte Carlo simulation can then 
be used to calculate the correlation coefficient of 
Z(x∗) and Z(2x∗), denoted by ρ(x∗). According to the 
quadratic exponential correlation function, the 
correlation coefficient ρ(x∗) equals 
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Using β = 4.65, substitution of (7) into (9) results in 

86.0exp)( 2 =







−=∗

β
πρ x . (11)  

The subsection length x∗ satisfying Eq. (11) can be 
determined with the aid of the following Picard 
iteration process: 
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where ∗
1x  is the initial estimate. 

The subsection length x∗ can now be determined 
in the following seven steps: 

First, we calculate the probability of failure due to 
uplifting and piping of the first dike subsection using 
directional simulation (see Section 4) and substitute 
the resulting β  into Eq. (12). 

Second, we sample from the probability 
distributions of the outer water level (a bilinear 
function of the sea water level and the river 
discharge), the inner water level, and the four model 
factors using standard Monte Carlo sampling. These 
random quantities do not depend on the dike 
subsection studied.      

Third, we make an initial estimate of the 
subsection length x∗. 



Fourth, we sample from the (lognormal) 
distributions representing the inherent uncertainties 
in the critical head of the first dike subsection and 
we calculate the corresponding samples of the 
critical head for uplifting and piping denoted by 
Hup1. 

Fifth, we sample from the conditional 
(lognormal) distributions representing the inherent 
uncertainties in the critical head of the second dike 
subsection given the corresponding samples of the 
first dike subsection and we calculate the 
corresponding values of the critical head for 
uplifting and piping denoted by Hup2. Recall that for 
all inherent uncertainties in the critical head, the 
correlation between the first and second dike 
subsection is defined by a quadratic exponential 
correlation function at the value x∗. 

Sixth, we estimate the sample correlation 
coefficient ρ(x∗) on the basis of the Monte Carlo 
samples of Z(x∗) and Z(2x∗), and substitute it into 
Eq. (12). 

Seventh, we determine a new estimate of the 
subsection length x∗ using Eq. (12). 

As long as the (n+1)-th estimate of x∗ differs from 
the n-th estimate, we repeat steps 5-7. For dike 
section 13.1, the Picard iteration process results in 
subsection length x∗ = 50 metres. For convenience, 
the subsection length is rounded off to units of 5 
metres. 

Probability plots of the Monte Carlo samples of 
Hup1 and Hup2 give evidence of lognormally 
distributed critical heads. Therefore, lognormal 
distributions can be fitted to the critical heads for the 
first and second dike subsection. Also the critical 
head for the combination of the first and second dike 
subsection, denoted by 

},min{ 2112 upupup HHH = , (13) 

appears to be lognormally distributed. For further 
details about the parameters of these lognormal 
distributions, we refer to Cooke & Van Noortwijk 
(1998). 

Given the subsection length, the probabilities of 
failure due to uplifting and piping must be calculated 
both for one dike subsection separately and for two 
adjacent dike subsections combined. On the basis of 
these two probabilities, the probability of failure for 
a (series) system of dike subsections can be 
approximated by regarding the failure of dike 
subsections as a Markov process. In mathematical 
terms, the probability of failure of a dike section of 
length l, denoted by p(l), can now be written as a 
function of the failure probability of one subsection 
p(x∗) and the failure probability of two adjacent 
subsections p(2x∗) in the following manner: 
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where Pr{failure #i} denotes the probability of 
failure in the i-th dike subsection. By applying 
Eq. (14), the probability of failure of a dike section 
can be easily computed.  

4 DIRECTIONAL SIMULATION 

The aim of this section is to calculate the 
probabilities of dike failure due to uplifting and 
piping both for one subsection separately and for two 
adjacent subsections combined. In calculating these 
failure probabilities using standard Monte Carlo 
simulation, the problem arises that there are not 
enough samples in the failure region to obtain 
reliable results. To speed up Monte Carlo 
simulation, we use directional sampling. 

Roughly speaking, directional simulation means 
the following. Rather than sampling straight from 
the probability distributions of the sea water level S, 
the river discharge Q, and the critical head Hup, we 
sample the directional angle and the directional 
radius in the (s, q, hup)-plain. This pays off when we 
have the fortune of being able to calculate the 
conditional probability that the length of the radius 
belongs to the failure region in explicit form. For 
example, when n random quantities have a 
multivariate normal distribution it is well-known 
that the conditional distribution of the squared 
radius, when the value of the directional vector is 
given, is a chi-square distribution with n degrees of 
freedom (see Ditlevsen & Madsen, 1996, Chapter 9). 

The number of random quantities employed in the 
directional sampling program have been reduced to 
three on the basis of graphical steering. Cooke & 
Van Noortwijk (1999) visualised the effects of the 
residual random quantities using scatter plots. Using 
these plots they argued that the most important 
random quantities are the river discharge, the sea 
water level, and the critical head. 

In order to calculate the probability of failure due 
to uplifting and piping, we now apply directional 
simulation to three standard exponentially 
distributed random quantities that are statistically 
independent. The reason for this is that we can easily 
transform the river discharge Q2days, the sea water 
level S2days, and the critical head in the event of 
uplifting and piping Hup to three standard 
exponentially distributed random quantities. This 
can be achieved by applying the transformation 
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or, equivalently, 
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where r is the directional radius, and θ and ψ  are the 
directional angles. Since the random quantities 
Q2days, S2days, and Hup are independent, the standard 
exponentially distributed random quantities X, Y, and 
W are also independent. Hence, since the Jacobian of 
transformation (16) equals r2sin(ψ), the joint 
probability density function of the directional 
coordinates (R,Θ,Ψ) can be written as 
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with 

)cos()sin()cos()sin()sin(),( ψψθψθψθ ++=g , (18) 

where IA(x) = 1 if x ∈ A and IA(x) = 0 if x ∉ A for 
every set A. Accordingly, the joint probability 
density function of Θ and Ψ becomes 
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From the probability density function of the 
random vector (R,Θ,Ψ), and the probability density 
function of the random vector (Θ,Ψ), the conditional 
probability density function of R for fixed values of 
Θ and Ψ writes as 
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with cumulative distribution function 
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The conditional distribution of R when (Θ,Ψ) = 
(θ,ψ) is given, can be recognised as a gamma 
distribution with shape parameter 3 and scale 
parameter g(θ,ψ). Given the value of (Θ,Ψ), the 
probability of failure can now be written as 
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where r∗(θ,ψ) is the zero of the limit-state function 
z(q,s,h) described in Section 2: 
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Unfortunately, the zero r∗(θ,ψ) cannot be obtained in 
explicit form and has to be determined numerically. 

In order to sample values of (Θ,Ψ), both the 
marginal probability density function of Θ and the 
conditional probability density function of Ψ, when 
the value Θ = θ is given, remain to be determined. 
After some algebra, the marginal probability density 
function of Θ can be written as 
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where 
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with cumulative distribution function 

)tan(1

1
1)(

θ
θ

+
−=ΘF . (26) 

Accordingy, the conditional probability density 
function of Ψ when the value Θ = θ is given follows 
from Eqs. (19) and (24): 
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Let P1 and P2 be independent and standard 
uniformly distributed random quantities, then values 
of the random vector (Θ,Ψ) can be generated as 
follows: 
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Note that for two-dimensional directional 
sampling, the probability density function of the 
directional angle Θ is also Eq. (24). The conditional 
distribution of the directional radius R, when the 
directional angle θ is given, is a gamma distribution 
with shape parameter 2 and scale parameter v(θ). 

5 RESULTS AND CONCLUSIONS 

In this section, the results are presented for dike 
section 13.1 of the Dutch dike ring the Hoeksche 
Waard. The probability of dike failure due to 
uplifting and piping per two days can be calculated 
using directional sampling on the basis of the sea 
water level, the river discharge, and the critical head 
in the event of uplifting and piping. 

Furthermore, the spatial variation and correlation 
of the critical head in the event of uplifting and 
piping can be modelled using a Markovian 
dependency structure. This means that the random 
quantities, representing the inherent uncertainties in 
the critical head, of one dike subsection only depend 
on the values of the corresponding random quantities 
in the two adjacent dike subsections. 

The results of the three-dimensional directional 
simulation (on the basis of 20,000 samples) and the 
subsequent dike ring reliability calculations are as 
follows: 

 

• the expected probability of failure due to uplifting 
and piping of one subsection of length x∗ = 50 
metres is p(x∗) = 1.65 10-6; 

• the expected probability of failure due to uplifting 
and piping of two adjacent subsections is 
p(2x∗) = 2.76 10-6; 

• since the length of dike section 13.1 is l = 100 
metres, the expected probability of failure due to 
uplifting and piping of the dike section 13.1 
p(l) = 2.76 10-6  (note that if dike section 13.1 
would be 1,000 metres of length, Eq. (14) would 
lead to a failure probability of 2.27 10-5). 

 
The iteration process which resulted in this failure 
probability is shown in Figure 2. It clearly illustrates 
how fast the three-dimensional directional 
simulation converges! The advantage of three-
dimensional directional sampling is that large 
sample sizes are not required (sample sizes of about 
20,000 samples already supply satisfactory results). 
The directional simulation results above have been 
compared to results obtained using First Order 
Reliability Method. According to Vrouwenvelder 
(1998), FORM results in a probability of failure due 
to uplifting and piping of 2.1 10-6. Hence, both 
results are quite close to each other.  
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Figure 2. The probabilit y of failure of one subsection (‘P01’) 
and two subsections (‘P12’) of dike section 13.1 determined on 
the basis of 20,000 samples using three-dimensional directional 
sampling. 


