
1 INTRODUCTION

Probabili stic design of river dikes is usually based
on estimates of the design discharge. In The Neth-
erlands, the design discharge is defined as an ex-
treme discharge with an average return period of
1,250 years. Extreme quantiles, such as the design
discharge are usually determined by fitting various
probabili ty distributions to the available observa-
tions. [See for example DH & EAC-RAND (1993),
Castill o (1988), and Van Gelder (1999)]. Probabili ty
plots and goodness-of-f it tests (such as chi-square
and Kolmogorov-Smirnov) are commonly used to
select an appropriate distribution.

A major practical diff iculty in fitting probabili ty
distributions is that there is often a limited amount of
data for determining extreme quantiles. The associ-
ated return period is large compared with the length
of the period of observation. In The Netherlands, ob-
served flood discharges are available for a period of
98 years only. There is a large statistical uncertainty
involved in estimating extreme quantiles when using
these observations. The maximum-likelihood
method has been recognised as one of the best pa-
rameter estimation methods (Galambos et al., 1994)
and it is especially suitable when there is a large
number of observations. A drawback of the maxi-
mum-likelihood method is that statistical uncertain-
ties cannot be taken into account.

Another consequence of sparse data is that more
than one probabili ty distribution seems to fit the ob-
servations and only a few can be rejected. These
distributions usually lead to different extrapolated
values and the goodness-of-f it tests for selecting the
appropriate distribution are often inconclusive. The
tests are more concentrated on the central part of the
distribution than the tail . As an alternative, the Bay-
esian method can be used to determine weights for
quantifying how well a probabili ty distribution fits
the observed data while taking account of the statis-
tical uncertainties involved.

In this paper, a Bayesian method for estimating
the design discharges is presented. Statistical uncer-
tainties will be the subject of Section 2. Section 3
considers Bayesian estimation of both parameters
and quantiles associated with large average return
periods. Section 4 and 5 are devoted to determining
non-informative prior distributions and Bayes
weights, respectively. Section 6 presents a well-
known Laplace expansion for the purpose of ap-
proximating the Bayes weights. Computational as-
pects that are important to cope with non-
informative priors are treated in Section 7. The an-
nual maximum discharges of the river Rhine will be
studied in Section 8. Section 9 ends with conclu-
sions.
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2 STATISTICAL UNCERTAINTIES

According to (amongst others) Slij khuis et al. (1999)
and Siu & Kelly (1998), uncertainties in risk analy-
sis can primarily be divided into two categories: in-
herent uncertainties and epistemic uncertainties. In-
herent uncertainties represent randomness or
variabili ty in nature. For example, even in the event
of suff icient data, one cannot predict the maximum
discharge that will occur next year. The two main
types of inherent uncertainty are inherent uncertainty
in time (e.g., fluctuation of the discharge in time)
and inherent uncertainty in space (e.g., fluctuation of
a dike height in space). It is not possible to reduce
inherent uncertainty in time. Epistemic uncertainties
represent the lack of knowledge about a (physical)
system. The two main types of epistemic uncertainty
are statistical uncertainty (due to lack of sufficient
data) and model uncertainty (due to lack of under-
standing the physics). Statistical uncertainty can be
parameter uncertainty (when the parameters of the
distribution are unknown) and distribution type un-
certainty (when the type of distribution is unknown).
In principle, epistemic uncertainties can be reduced
as knowledge increases and more data becomes
available.

3 BAYESIAN ESTIMATION

The only statistical theory which combines model-
ling inherent uncertainty and statistical uncertainty is
Bayesian statistics. The theorem of Bayes (1763)
provides a solution to the problem of how to learn
from data. In the framework of estimating the pa-
rameters θθ = ( ,..., )θ θ1 d  of a probabili ty distribution�
( | )x θθ , Bayes’ theorem can be written as
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with�
( | )x θθ = the likelihood function of the observations

x = ( ,..., )x xn1  when the parametric vector
θθ = ( ,..., )θ θ1 d  is given,

π ( )θθ = the prior density of θθ = ( ,..., )θ θ1 d  before
observing data x = ( ,..., )x xn1 ,

π ( | )θθ x = the posterior density of θθ = ( ,..., )θ θ1 d  af-
ter observing data x = ( ,..., )x xn1 , and

π ( )x = the marginal density of the observations
x = ( ,..., )x xn1 .

The likelihood function 
�
( | )x θθ  represents the inher-

ent uncertainty of a random variable X  when θθ  is
given, whereas the prior density π ( )θθ  and the poste-
rior density π ( | )θθ x  represent the statistical uncer-
tainty in θθ . This statistical uncertainty in θθ  is pa-
rameter uncertainty. Using Bayes’ theorem, we can

update the prior distribution to the posterior distri-
bution as soon as new observations become avail-
able. The more observations that are available, the
smaller the parameter uncertainty. If a random vari-
able X  has a probabili ty density function 

�
( | )x θθ  de-

pending on the parametric vector θθ , then the likeli-
hood function � ( ,..., | )x xn1 θθ  of the independent
observations x = ( ,..., )x xn1  is given by
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The marginal density π ( )x  is obtained by integrating
the likelihood 

�
( | )x θθ  over θθ . Note that the maxi-

mum-likelihood estimate of the parametric vector θθ
is defined as the estimate �θθ, which maximises the
likelihood function � ( | )x θθ  as a function of θθ .

The cumulative distribution function and the sur-
vival function of the random variable X  are denoted
by F x( | )θθ  and F x( | )θθ , respectively. The posterior
predictive probabili ty of exceeding x0  is
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Besides representing parameter uncertainty on the
basis of Bayesian statistics, distribution type uncer-
tainty can also be taken into account using so-called
Bayes factors or Bayes weights.

4 NON-INFORMATIVE PRIORS

For the purpose of f lood prevention, we would like
the observations to ‘speak for themselves’ , espe-
cially in comparison to the prior information. This
means that the prior distribution should describe a
certain ‘ lack of knowledge’ or, in other words,
should be as ‘vague’ as possible. For this purpose,
so-called non-informative priors have been devel-
oped. A disadvantage of most non-informative priors
is that these priors can be improper; that is, they of-
ten do not integrate to one. This disadvantage can be
resolved by focussing on the posterior distributions
rather than the prior distributions. As a matter of
fact, formally carrying out the calculations of Bayes’
theorem by combining an improper prior with ob-
servations often results in a proper posterior.

The pioneer in using non-informative priors was
Bayes (1763) who considered a uniform prior. How-
ever, the use of uniform priors is criti cised because
of a lack of invariance under one-to-one transforma-
tions. As an example, let us consider an unknown
parameter θ  and suppose the problem has been pa-
rameterised in terms of φ θ= exp{ } . This is a one-to-
one transformation, which should have no bearing
on the ultimate result. The Jacobian of this transfor-
mation is given by d d d dθ φ φ φ φ= =log 1 . Hence,



if the non-informative prior for θ  is chosen to be
uniform (constant), then the non-informative prior
for φ  should be proportional to 1 φ  to maintain con-
sistency. Unfortunately, we cannot maintain consis-
tency and choose both the non-informative priors for
θ  and φ  to be constant.

The physicist Sir Jeffreys (1961, Chapters 3-4)
was the first to produce an alternative to solely using
uniform non-informative priors. His main motiva-
tion for deriving non-informative priors (currently
known as Jeffreys priors) were invariance require-
ments for one-to-one transformations. In a multi -
parameter setting, Jeffreys prior takes account of de-
pendence between the parameters. For decades,
there has been a discussion going on whether the
multivariate Jeffreys rule is appropriate. We believe
that the following statement made by Dawid (1999)
is right: “we do not consider it as generally appro-
priate to use other improper priors than the Jeffreys
measure for purposes of ‘f ully objective’ f ormal
model comparison” . The main advantage of the Jef-
freys prior is that it is always both invariant under
transformations and dimensionless.

As an example, the multivariate Jeffreys prior for
the normal model with unknown mean µ  and un-
known standard deviation σ  is

J d d d d( , )µ σ µ σ
σ

µ σ= 2
2 .

It can be easily seen that the above prior is dimen-
sionless: i.e., dµ , dσ , and σ  have the same dimen-
sion. For other examples, see the Appendix. Because
the non-dimensionali ty argument is rather sound
(from a physics point of view), we propose to use
the multivariate Jeffreys measure for the purpose of
model comparison.

In explaining the derivation of non-informative
Jeffreys priors, we refer to Box & Tiao (1973, Sec-
tion 1.3). Let x = ( ,..., )x xn1  be a random sample
from a multi -parameter probabili ty distribution with
likelihood function 
 ( | )x θθ . When the probabili ty
distribution obeys certain regularity conditions, then
for suff iciently large n, the posterior density func-
tion of parametric vector θθ  is approximately normal,
and remains approximately normal under mild one-
to-one transformations of θθ . As a consequence, the
prior distribution for θθ  is approximately non-
informative if it is taken proportional to the square
root of Fisher’s information for one observation. The
elements of Fisher’s information matrix are
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and the corresponding non-informative Jeffreys prior
is defined by

J I I i j dij( ) | ( )| det ( ), , ,...,θθ θθ θθ= = = 1 .

5 BAYES FACTORS AND BAYES WEIGHTS

The Bayesian approach to hypothesis testing origi-
nates from the work of Jeff reys (1961). He devel-
oped a methodology for quantifying the evidence in
favour of a scientific theory using the so-called
Bayes factor. This factor is the posterior odds of the
null hypothesis when the prior probabili ty on the
null i s one-half. A recent overview on Bayes factors
can be found in Kass & Raftery (1995).

Assume the data x = ( ,..., )x xn1  to have arisen
under one of m models Hk , k m= 1,..., . These hy-
potheses represent m marginal probabili ty densities
π ( | )x Hk , k m= 1,..., . Given the prior probabiliti es
p Hk( ), k m= 1,..., , the data produce the posterior
probabiliti es p Hk( | )x , k m= 1,..., , where

p H jj
m ( )=∑ =1 1 and p H jj

m ( | )x=∑ =1 1. These posterior
probabiliti es can be obtained using Bayes’ theorem
as follows:
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is denoted by the Bayes factor. The marginal densi-
ties of the data under Hk , π ( | )x Hk , can be obtained
by integrating with respect to the probabili ty distri-
bution of the uncertain parametric vector
θθk k dk= ( ,..., )θ θ1  with number of parameters d :

π π( | ) ( | , ) ( | )x xH H H dk k k k k k= � �
θθ θθ θθ , (5)

where π ( | )θθk kH  is the prior density of θθk under Hk

and 
�
( | , )x θθk kH  is the likelihood function of the data

x  given θθk.
A diff iculty in using non-informative improper

priors for calculating Bayes factors is that the prior
odds, and thus the Bayes factor, may be undefined.
The reason for this is that strictly speaking, the prior
probabili ty p Hk( ) is defined as

p H w H J H dk k k k k( ) ( ) ( | )= � θθ θθ ,

where the integral over the non-informative Jeffreys
prior J Hk k( | )θθ  is often infinite and w Hk( )  is the
prior weight. However, according to Dawid (1999),
this problem can be resolved by redefining the pos-
terior odds as
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This posterior odds is well -defined so long as
both integrals in it converge, which will typically be
the case so long as the sample size n is large
enough. For the seven probabili ty distributions con-



sidered in this paper (see the Appendix), the mar-
ginal densities of the data do indeed converge. Using
Eqs. (4) and (6), the posterior probabili ty of model
Hk  being correct can now rewritten as
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It remains to choose the prior weights w Hk( ) . For
formal model comparison, we propose to use equal
prior weights: i.e., w H m k mk( ) , ,...,= =1 1 .

The posterior predictive probabiliti es of exceed-
ing x0  are calculated using the non-informative Jef-
freys prior. Using the Bayes weights p Hk( | )x ,
k m= 1,..., , the weighted predictive probabili ty of
exceeding x0  is then defined by

Pr{ | } ( | )Pr{ | , }X x p H X x Hk k
k
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where Pr{ | , }X x Hk> 0 x  is the predictive probabili ty
of exceeding x0  under li kelihood model Hk ,
k m= 1,..., .

Both the marginal densities and the predictive ex-
ceedance probabiliti es have been obtained by nu-
merical integration.

6 APPROXIMATE BAYES WEIGHTS

If the prior distribution is the non-informative, im-
proper, Jeff reys prior then the marginal density of
the data x = ( ,..., )x xn1  given in Eq. (5) can be diff i-
cult to compute. A possible solution is to approxi-
mate the logarithm of the marginal density using the
Laplace expansion (De Bruijn, 1981, Chapter 4).
The logarithm of the marginal density of the data
can then be approximated by
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for n → ∞ , where �θθ  is the maximum likelihood es-
timator for the probabilit y model H , d  is the num-
ber of parameters of the probabili ty model H , and n
is the number of observations [see Tierney & Ka-
dane (1986), Draper (1995), and Dawid (1999)]. Ac-
cordingly, the marginal density can be approximated
by

π
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for n → ∞ . The second and third terms on the right-
hand side of Eq. (9) form the Bayesian information
criterion for model selection (Schwarz, 1978). The
first term on the right-hand side, ( ) log( )d 2 2π , has
been mostly omitted. However, we confirm the
statement of Draper (1995) that its inclusion im-

proves the accuracy of approximations to the mar-
ginal density. For an example, see Section 8.

An advantage of the above Laplace expansion is
the possibili ty to use output of classical statistics
software (maximum-likelihood estimators). Another
advantage of the Laplace approximation is the inde-
pendence of the prior distribution (which, of course,
can also be seen as a disadvantage). Despite the fact
that the relative error in the Bayes factor using the
Laplace expansion has, in general, an accuracy of
O( )1 , the approximation appears to work rather well
in practice.

7 COMPUTATION OF BAYES WEIGHTS

The method of Bayes weights to select a probabilit y
model has been tested with Monte Carlo simula-
tions. Samples were drawn from a known probabil-
ity distribution and the corresponding Bayes weights
were determined using numerical integration.

Two computational methods were considered. In
both methods the numerical integration is performed
with respect to suitably chosen lower and upper
bounds of the posterior density π ( | )θθ x . The first
method uses the normalised Jeffreys prior; that is,
given the lower and upper bounds of the statistical
parameters, the Jeffreys prior is normalised to a
proper probabili ty density. The second method cal-
culates these weights without normalising the Jef-
freys prior; that is, the marginal density of the data
in Eq. (5) is obtained by integrating with respect to
the non-normalised Jeffreys prior.

For a likelihood function with one parameter θ ,
the difference between these two methods becomes
clear when comparing the normalised marginal den-
sity
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with the non-normalised marginal density
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where r  is the number of subdivisions and ∆θ  is the
corresponding step size. The logarithm of the ratio
of the normalised and non-normalised marginal den-
sity gives us

log( ( )) log(~( )) log ( )π π θ θx x≈ + ∑��� �� �
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j

r
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For convenience, the approximation method has
been explained for a li kelihood function having only
one unknown parameter θ . For multi -parameter dis-
tributions, the above formulas can be easily ex-
tended.



Table 1. Bayes weights for samples from exponential distribu-
tion with mean 100 (left: normalised Jeffreys; right: non-
normalised Jeff reys).

n=10 n=20 n=50 n=100
Exponential 0.38 0.19 0.46 0.29 0.55 0.45 0.58 0.55
Rayleigh 0.11 0.04 0.03 0.01 0.00 0.00 0.00 0.00
Normal 0.03 0.04 0.01 0.01 0.00 0.00 0.00 0.00
Lognormal 0.19 0.19 0.16 0.15 0.07 0.06 0.02 0.01
Gamma 0.13 0.23 0.17 0.25 0.20 0.24 0.21 0.22
Weibull 0.11 0.23 0.15 0.25 0.18 0.25 0.19 0.22
Gumbel 0.05 0.07 0.03 0.03 0.00 0.00 0.00 0.00

Table 2. Bayes weights for samples from Rayleigh distribution
with mean 100 (left: normalised Jeff reys; right: non-normalised
Jeffreys).

n=10 n=20 n=50 n=100
Exponential 0.04 0.02 0.01 0.01 0.00 0.00 0.00 0.00
Rayleigh 0.39 0.15 0.47 0.24 0.58 0.42 0.65 0.56
Normal 0.15 0.15 0.11 0.11 0.05 0.05 0.02 0.01
Lognormal 0.15 0.15 0.12 0.11 0.05 0.04 0.01 0.01
Gamma 0.06 0.17 0.06 0.17 0.06 0.14 0.05 0.10
Weibull 0.10 0.21 0.11 0.22 0.15 0.24 0.18 0.24
Gumbel 0.12 0.16 0.12 0.14 0.11 0.11 0.09 0.07

Table 3. Bayes weights for samples from normal distribution
with mean 100 and standard deviation 20 (left: normalised Jef-
freys; right: non-normalised Jeffreys).

n=10 n=20 n=50 n=100
Exponential 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rayleigh 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Normal 0.31 0.21 0.34 0.23 0.44 0.31 0.57 0.42
Lognormal 0.27 0.18 0.24 0.17 0.20 0.14 0.15 0.09
Gamma 0.04 0.19 0.04 0.20 0.05 0.21 0.05 0.21
Weibull 0.18 0.24 0.22 0.27 0.25 0.29 0.22 0.27
Gumbel 0.18 0.17 0.15 0.13 0.06 0.05 0.01 0.01

Table 4. Bayes weights for samples from lognormal distribu-
tion with mean 100 and standard deviation 20 (left: normalised
Jeff reys; right: non-normalised Jeff reys).

n=10 n=20 n=50 n=100
Exponential 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rayleigh 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Normal 0.27 0.18 0.25 0.17 0.21 0.14 0.14 0.09
Lognormal 0.30 0.20 0.32 0.23 0.40 0.29 0.52 0.37
Gamma 0.04 0.20 0.04 0.22 0.05 0.26 0.07 0.30
Weibull 0.13 0.18 0.11 0.14 0.04 0.05 0.01 0.01
Gumbel 0.25 0.24 0.28 0.25 0.29 0.25 0.26 0.22

Table 5. Bayes weights for samples from gamma distribution
with mean 100 and standard deviation 20 (left: normalised Jef-
freys; right: non-normalised Jeffreys).

n=10 n=20 n=50 n=100
Exponential 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rayleigh 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Normal 0.29 0.19 0.28 0.20 0.30 0.20 0.29 0.20
Lognormal 0.29 0.20 0.30 0.21 0.36 0.26 0.46 0.30
Gamma 0.04 0.20 0.04 0.22 0.06 0.27 0.08 0.35
Weibull 0.15 0.20 0.14 0.17 0.09 0.10 0.04 0.05
Gumbel 0.22 0.21 0.23 0.20 0.19 0.16 0.13 0.10

Table 6. Bayes weights for samples from Weibull distribution
with mean 100 and standard deviation 20 (left: normalised Jef-
freys; right: non-normalised Jeffreys).

n=10 n=20 n=50 n=100
Exponential 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rayleigh 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Normal 0.34 0.22 0.37 0.25 0.40 0.28 0.35 0.26
Lognormal 0.24 0.16 0.18 0.12 0.08 0.06 0.01 0.01
Gamma 0.04 0.18 0.03 0.16 0.02 0.10 0.01 0.04
Weibull 0.23 0.30 0.33 0.39 0.48 0.55 0.62 0.69
Gumbel 0.15 0.13 0.09 0.07 0.02 0.01 0.00 0.00

Table 7. Bayes weights for samples from Gumbel distribution
with mean 100 and standard deviation 20 (left: normalised Jef-
freys; right: non-normalised Jeffreys).

n=10 n=20 n=50 n=100
Exponential 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rayleigh 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Normal 0.24 0.16 0.17 0.12 0.07 0.05 0.01 0.01
Lognormal 0.32 0.22 0.32 0.24 0.30 0.24 0.25 0.21
Gamma 0.03 0.20 0.04 0.19 0.03 0.15 0.02 0.09
Weibull 0.10 0.14 0.06 0.07 0.01 0.01 0.00 0.00
Gumbel 0.31 0.29 0.41 0.37 0.59 0.55 0.72 0.70

In order to exclude statistical variabili ty, the de-
termination of the Bayes weights has been per-
formed 1,000 times and the mean values are pre-
sented in Tables 1-7. In each cell the value on the
left-hand side represents the Bayes weight according
to the normalised Jeffreys prior; the value on the
right-hand side according to the non-normalised Jef-
freys prior. The formulas of the corresponding nor-
malised and non-normalised marginal density can be
found in Eqs. (11) and (12), respectively. For seven
probabili ty distributions, Bayes weights have been
computed for four sample sizes (i.e., n = 10, 20, 50,
100). For sample sizes of one hundred, the largest
Bayes weights are shown in bold format.

From the Monte Carlo simulations, two conclu-
sions can be drawn. Firstly, the results of the two
computation methods differ significantly. Secondly,
the method based on non-normalised Jeffreys priors
performs better. For the gamma distribution, the
normalised Jeffreys prior even wrongly points to the
lognormal distribution. In Section 8, however, there
appears to be an excellent agreement between the
Bayes weights on the basis of the non-normalised
Jeffreys prior and the approximate Bayes weights
based on the Laplace expansion in Eq. (9).

Summarising, we recommend to use the non-
normalised Jeffreys prior for formal model selection.



8 DESIGN DISCHARGE OF THE RIVER RHINE

A statistical analysis based on a modified maximum-
likelihood method applied to annual maximum dis-
charges of the river Rhine at Lobith resulted in three
distributions which could not be rejected. These
three distributions are the lognormal, gamma and
Gumbel. Because none of these distributions could
be clearly identified as being the best, DH & EAC-
RAND (1993) gave these three distributions equal
weight. The design discharge is then defined as the
average of the three corresponding design dis-
charges. This method has been used to determine the
current Dutch design discharges.

Recently, Van Gelder (1999) proposed to fit vari-
ous probabili ty distributions to the data and to attach
different weights to these distributions according to
how good the fits are. This can be done either by
using Bayes weights (Van Gelder, 1999) or linear
regression weights (Tang, 1970). Van Gelder et al.
(1999) showed that Bayes weights perform better
than linear regression weights.

Bayesian analysis has been applied to the annual
maximum discharges of the river Rhine at Lobith
during the period 1901-1998. The Bayes weights (7)
have been determined for seven probabili ty distribu-
tions: the exponential, Rayleigh, normal, lognormal,
gamma, Weibull and Gumbel. The Bayes weights
largely depend on the location parameters of the
probabili ty distributions. For proper model selection,
we therefore propose to use the same location pa-
rameter for all seven distributions. On the basis of a
statistical analysis, the location parameter can best
be chosen to be 2,125 m3/s. This location parameter
follows by maximising the weighted marginal den-
sity of the observations, where Bayes weights have
been attached to the seven individual marginal den-
sities. The method of determining the location pa-
rameter, as well as a sensitivity analysis, will be pre-
sented in a future paper.

For location parameter 2,125 m3/s, the Bayes
weights of the seven probabili ty distributions can be
found in Table 8. The Bayes weights have been
computed on the basis of normalised Jeff reys priors,
non-normalised Jeffreys priors, and the Laplace ap-
proximation. Because of the agreement between the
Bayes weights based on non-normalised Jeff reys
priors and the approximate Bayes weights, we rec-
ommend to use the non-normalised Jeff reys prior for
model selection. Normalisation of the Jeff reys prior
doesn’ t affect the predictive exceedance probabilit y
of a distribution; it only affects the Bayes weights.
Recall that the Laplace approximation can be ap-
plied when the number of observations is large.
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Figure 1. Predictive exceedance probabilit y of annual maxi-
mum river Rhine discharge.

For a non-normalised Jeff reys prior, the Rayleigh
and Weibull distribution appear to fit best with
Bayes weights of 57% and 32%, respectively. The
Bayes estimate of the design discharge with an aver-
age return period of 1,250 years is 15,845 m3/s. Fig-
ure 1 shows both the empirical exceedance prob-
abili ty and the predictive exceedance probabiliti es.
Using the maximum-likelihood method combined
with the Bayes weights, the estimate of the design
discharge decreases to 15,534 m3/s. As expected,
taking account of parameter uncertainty results in
larger design discharges. The Bayesian approach
seems to be promising for determining future design
discharges.

Table 8. Prior and posterior Bayes weights for the annual
maximum river Rhine discharge.

PosteriorBayes
weights

Prior
Normal-
ised
Jeff reys
prior

Non-nor-
malised
Jeffreys
prior

Laplace
approxi-
mation

Exponential 0.1429 0.0000 0.0000 0.0000
Rayleigh 0.1429 0.6607 0.5718 0.5719
Normal 0.1429 0.0556 0.0481 0.0480
Lognormal 0.1429 0.0000 0.0000 0.0000
Gamma 0.1429 0.0033 0.0072 0.0072
Weibull 0.1429 0.2204 0.3173 0.3156
Gumbel 0.1429 0.0600 0.0555 0.0573



9 CONCLUSIONS

In this paper, the discharge of the Rhine at Lobith
with an average return period of 1,250 years has
been determined taking account of the statistical un-
certainties involved. Statistical uncertainty occurs
due to a lack of data. It can be subdivided into pa-
rameter uncertainty (when the parameters of a distri-
bution are unknown) and distribution type uncer-
tainty (when the type of distribution is unknown).
Bayes estimates and Bayes weights can be used to
account for parameter uncertainty and distribution
type uncertainty respectively. Using Bayes weights,
it is possible to discriminate between different prob-
abili ty models and to quantify how well a distribu-
tion fits the data. For formal model comparison, the
use of the (non-normalised) Jeff reys prior is recom-
mended. The design discharge increases when taking
the statistical uncertainties properly into account.
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APPENDIX: PROBABILITY DISTRIBUTIONS
AND THEIR JEFFREYS PRIORS

This Appendix contains the probabili ty distributions
which are considered in the statistical analysis of the
annual maximum discharges, as well as their non-
informative Jeffreys priors. Special care has been
given to deriving possible constants in the Jeffreys
prior. The reason for this is that we agree with
Dawid (1999), who stated that, “ for the purposes of
‘objective’ model comparison, there is nothing to be
gained by rescaling (...), and that the actual Jeffreys
measure should be used”.

Exponential distribution
A random variable X  has an exponential distribution
with scale parameter θ > 0 if the probabili ty density
function of X  is given by

Ex( | ) exp ( )( , )x
x

I xθ
θ θ

= −
�� � �  ! ∞

1
0 ,

where I xA( ) = 1 if x A∈  and I xA( ) = 0 if x A∉  for
every set A. The Jeffreys prior is

J( )θ
θ

= 1
.

Rayleigh distribution
A random variable X  has a Rayleigh distribution
with quasi-scale parameter θ > 0 if the probabili ty
density function of X  is given by

Ra( | ) exp ( )( , )x
x x

I xθ
θ θ

= −
"# $ % &! ∞

2 2

0 .

The Jeffreys prior for the Rayleigh distribution is

J( )θ
θ

= 1
.

Normal distribution
A random variable X  has a normal distribution with
mean m and precision r > 0 if the probabili ty den-
sity function of X  is given by



N( | , ) exp ( )x m r
r r

x m= '( )* − −
+, - . /0

2 2

1

2 2

π
.

The joint Jeffreys prior of the mean m and precision
r  of a normal distribution is

J m r
r

( , ) = 1

2
.

Lognormal distribution
A random variable X  has a lognormal distribution
with parameters m and r > 0 if the probabili ty den-
sity function of X  is given by

LN( | , ) exp (log( ) )x m r
r

x

r
x m= '( )* − −

+, - . /0
2

1

2

1

2 2

π
I x( , )( )0 ∞ .

Hence, if log( )X  has a normal distribution, then X
has a lognormal distribution. The joint Jeffreys prior
of the parameters µ  and r  of a lognormal distribu-
tion is

J m r
r

( , ) = 1

2
.

Gamma distribution
A random variable X  has a gamma distribution with
shape parameter a > 0 and scale parameter b > 0 if
the probabili ty density function of X  is given by

Ga( | , )
( )

exp ( )( , )x a b
b

a
x bx I x

a
a= −−

∞Γ
1

0

1 2
,

where

Γ( )a t e dta t

t
= − −

=

∞3
1

0

is the gamma function for a > 0. The Jeffreys prior
for the gamma distribution is

J a b
a a

b
( , )

( )
=

′ −ψ 1
.

The function ′ψ ( )a  is the first derivative of the
digamma function:

′ = ∂
∂

= ∂
∂

ψ ψ
( )

( ) log ( )
a

a

a

a

a

2

2

Γ

for a > 0. It is called the trigamma function. The
digamma function and the trigamma function can be
accurately computed using algorithms developed by
Bernardo (1976) and Schneider (1978), respectively.

Weibull distribution
A random variable X  has a Weibull distribution
with shape parameter a > 0 and scale parameter
b > 0 if the probabili ty density function of X  is
given by

We( | , ) exp ( )( , )x a b
a

b

x

b

x

b
I x

a a

= 456 78 9 − :;< => 9?@ A B CD−

∞

1

0 .

The Jeffreys prior for the Weibull distribution is

J a b
b

( , ) = 1

6

π
.

Gumbel distribution
A random variable X  has a Gumbel distribution
with location parameter a and scale parameter b > 0
if the probabili ty density function of X  is given by

Gu( | , ) exp exp expx a b
b

x a

b

x a

b
= − −

?@ A B CD − − −
?@ A B CD?@ A B CD1

.

The Jeffreys prior for the Gumbel distribution is

J a b
b

( , ) = 1

62

π
.


