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ABSTRACT: Probabili stic design o structuresis usually based onestimates of a design load with a high av-
erage return period. Design loads are often estimated using clasgcal statisticd methods. A shortcoming of this
approadh is that statisticd uncertainties are not taken into accourt. In this paper, a method kased onBayesian
statistics is presented. Using Bayes' theorem, the prior distribution representing information abou the uncer-
tainty of the statisticd parameters can be updated to the posterior distribution as on as data becomes avail-
able. Seven predictive probabili ty distributions are mnsidered for determining extreme quantil es of loads: the
exporential, Rayleigh, namal, lognormal, gamma, Weibull and Gumbel. The Bayesian method has been suc-
cesqully applied to estimate the design dscharge of the river Rhine whil e taking accourt of the statisticd un-
cetainties involved. As a prior the noninformative Jeffreys prior was chosen. The Bayes estimates are com-
pared to the dasgcd maximum-likelihood estimates. Furthermore, so-called Bayes factors are used to
determine weights correspondng to how well a probabili ty distribution fits the observed data; that is, the bet-

ter thefit, the higher the weighting.

1 INTRODUCTION

Probabili stic design o river dikes is usually based
on estimates of the design discharge. In The Neth-
erlands, the design dscharge is defined as an ex-
treme discharge with an average return period o
1,250 years. Extreme quantiles, such as the design
discharge ae usually determined by fitting various
probability distributions to the avallable observa
tions. [Seefor example DH & EAC-RAND (1993,
Castill 0 (1988, and Van Gelder (199)]. Probabili ty
plots and goodressof-fit tests (such as chi-square
and Kolmogorov-Smirnov) are commonly used to
seled an appropriate distribution.

A major practicd difficulty in fitting probabili ty
distributionsis that there is often alimited amourt of
data for determining extreme quantiles. The aci-
ated return period is large compared with the length
of the period d observation. In The Netherlands, ob-
served flood dscharges are available for a period d
98 years only. There is alarge statisticd uncertainty
involved in estimating extreme quantil es when using
these observations. The maximum-likelihood
method has been reaognised as one of the best pa-
rameter estimation methods (Galambos et al., 1999
and it is espedaly suitable when there is a large
number of observations. A drawbadk of the maxi-
mum-likelihood method is that statisticd uncertain-
ties canna be taken into accourt.

Another consequence of sparse data is that more
than ore probabili ty distribution seams to fit the ob-
servations and orly a few can be rgjeded. These
distributions usually lead to dfferent extrapolated
values and the goodress-of-fit tests for seleding the
appropriate distribution are often inconclusive. The
tests are more ancentrated onthe central part of the
distribution than the tail. As an alternative, the Bay-
esian method can be used to determine weights for
guantifying how well a probability distribution fits
the observed data whil e taking acoourt of the statis-
ticd uncertaintiesinvolved.

In this paper, a Bayesian method for estimating
the design dscharges is presented. Statisticd uncer-
tainties will be the subjed of Sedion 2. Sedion 3
considers Bayesian estimation d both parameters
and quantiles associated with large average return
periods. Sedion 4 and 5are devoted to determining
noninformative prior distributions and Bayes
weights, respectively. Sedion6 presents a well-
known Laplace expansion for the purpose of ap-
proximating the Bayes weights. Computational as-
peds that are important to cope with non
informative priors are treated in Sedion7. The an-
nual maximum discharges of the river Rhine will be
studied in Sedion 8. Sedion9 ends with conclu-
sions.



2 STATISTICAL UNCERTAINTIES

Acoording to (amongst others) Slijkhuis et a. (1999
and Siu & Kely (1998, uncertainties in risk analy-
sis can primarily be divided into two caegories: in-
herent uncertainties and epistemic uncertainties. In-
herent uncertainties represent randamness or
variability in nature. For example, even in the event
of sufficient data, ore canna predict the maximum
discharge that will occur next year. The two main
types of inherent uncertainty are inherent uncertainty
in time (e.g., fluctuation d the discharge in time)
and inherent uncertainty in space (e.g., fluctuation d
a dike height in space). It is not posgble to reduce
inherent uncertainty in time. Epistemic uncertainties
represent the ladk of knowledge &ou a (physical)
system. The two main types of epistemic uncertainty
are statisticd uncertainty (due to lack of sufficient
data) and model uncertainty (due to lack of under-
standing the physics). Statisticd uncertainty can be
parameter uncertainty (when the parameters of the
distribution are unknowvn) and dstribution type un-
certainty (when the type of distribution is unknown).
In principle, epistemic uncertainties can be reduced
as knowledge incresses and more data becomes
available.

3 BAYESIAN ESTIMATION

The only statisticd theory which combines model-
ling inherent uncertainty and statisticd uncertainty is
Bayesian statistics. The theorem of Bayes (1763)
provides a solution to the problem of how to learn
from data. In the framework of estimating the pa
rameters 6 =(6,,...,6,) of a probability distribution
£(x|0), Bayes' theorem can be written as

X X

70]) = ((x|8)1(B)  _ £(x|8)7(B) (1)
[ ux18)m(8)do 11(X)
]

with

£(x|0) = thelikelihoodfunction d the observations
X =(X,...,X,) when the parametric vedor
8=(6,,....8,) isgiven,

(@) = the prior density of 6 =(6,,...,8,) before
observing data X = (x,,...,X,),

m(6]x) = the posterior density of 8 =(6,,...,6,) &f-
ter observing data x = (x,...,X,), and

n(x) = the margina density of the observations

X = (X000 X)) -

The likelihood function ¢(x|0) represents the inher-
ent uncertainty of a randam variable X when 0 is
given, whereas the prior density 71(6) and the poste-
rior density 71(0|x) represent the statisticd uncer-
tainty in 0. This gatisticd uncertainty in 0 is pa
rameter uncertainty. Using Bayes' theorem, we can

update the prior distribution to the posterior distri-
bution as on as new observations bemme avail-
able. The more observations that are available, the
smaller the parameter uncertainty. If a randam vari-
able X has a probability density function £(x|6) de-
pending on the parametric vector 0, then the likeli-
hood function #(x,,...,X,|0) of the independent
observations x = (x,,..., X,) isgiven by

X18) = (..., %,10) = [ ] 1(%18). 2

The margina density r(x) is obtained by integrating
the likelihood 4(x|0) over ©. Note that the maxi-
mum-likelihood estimate of the parametric vedor 6
is defined as the estimate 9, which maximises the
likelihoodfunction £(x|8) asafunction d 6.

The awmulative distribution function and the sur-
vival function d the randam variable X are denoted
by F(x|8) and F(x|6), respectively. The posterior
predictive probabili ty of exceeding X, is

Pr{X > x;|x} = [ Pr{X > x;[6}7(6|x)d6 =

3
= [ F(xl8)melx)de. o

Besides representing parameter uncertainty on the
basis of Bayesian statistics, distribution type uncer-
tainty can also be taken into acourt using so-called
Bayes fadors or Bayes weights.

4 NON-INFORMATIVE PRIORS

For the purpase of flood gevention, we would like
the observations to ‘speek for themselves, espe-
cialy in comparison to the prior information. This
means that the prior distribution shoud describe a
catan ‘ladk of knowledge' or, in aher words,
shoud be & ‘vague as possble. For this purpose,
so-cdled noninformative priors have been devel-
oped. A disadvantage of most norrinformative priors
is that these priors can be improper; that is, they of-
ten do na integrate to ore. This disadvantage can be
resolved by focussng on the posterior distributions
rather than the prior distributions. As a matter of
faa, formally carying out the cdculations of Bayes
theorem by combining an improper prior with ob-
servations often resultsin a proper posterior.

The pionea in using norrinformative priors was
Bayes (1763 who considered a uniform prior. How-
ever, the use of uniform priors is criticised because
of alad of invariance under one-to-one transforma-
tions. As an example, let us consider an unknavn
parameter 6 and suppase the problem has been pa-
rameterised in terms of @ =exp{6}. Thisis a one-to-
one transformation, which shoud have no kearing
on the ultimate result. The Jacobian o this transfor-
mationis given by d6/de=dlogg/dep=1/¢. Hence,



if the noninformative prior for 6 is chosen to be
uniform (constant), then the non-informative prior
for ¢ shoud be propartional to 1/¢ to maintain con-
sistency. Unfortunately, we canna maintain consis-
tency and choase both the nonrinformative priors for
6 and @ to be @mnstant.

The physicist Sir Jeffreys (1961, Chapters 3-4)
was thefirst to produce an alternative to solely using
uniform noninformative priors. His main motiva
tion for deriving non-informative priors (currently
known as Jeffreys priors) were invariance require-
ments for one-to-one transformations. In a multi-
parameter setting, Jeffreys prior takes acoourt of de-
pendence between the parameters. For decades,
there has been a discusson going on whether the
multi variate Jeffreys rule is appropriate. We believe
that the foll owing statement made by Dawid (1999
Is right: “we do nd consider it as generally appro-
priate to use other improper priors than the Jeffreys
measure for purposes of ‘fully objedive’ formal
model comparison’. The main advantage of the Jef-
freys prior is that it is always both invariant under
transformations and dmensionless

As an example, the multivariate Jeffreys prior for
the norma model with unknavn mean u and wn-
known standard deviation o is

J(u,0)dudo = gduda.

It can be eaily seen that the @owve prior is dimen-
sionless i.e,, du, do, and o have the same dimen-
sion. For other examples, seethe Appendix. Because
the nondimensionality argument is rather sound
(from a physics point of view), we propcse to use
the multivariate Jeffreys measure for the purpose of
model comparison.

In explaining the derivation d norrinformative
Jeffreys priors, we refer to Box & Tiao (1973, Sec-
tion1.3. Let x =(X,...,X,) be arandan sample
from a multi-parameter probabili ty distribution with
likelihood function £(x|6). When the probability
distribution oleys certain regularity condtions, then
for sufficiently large n, the posterior density func-
tion d parametric vedor 0 is approximately normal,
and remains approximately normal under mild ore-
to-one transformations of 6. As a @mnsequence, the
prior distribution for 6 is approximately non
informative if it is taken propational to the square
root of Fisher’sinformation for one observation. The
elements of Fisher’sinformation matrix are

_ o _0%log(X|6) ) . . _
Iij(e)—E[ —69@9] , Lj=1...,d,

and the correspondng norrinformative Jeffreys prior
is defined by

3(8) = 1(®)] = /det1,(8), i,j=1...d.

5 BAYES FACTORS AND BAY ESWEIGHTS

The Bayesian approach to hypathesis testing origi-
nates from the work of Jeffreys (1961). He devel-
oped a methoddogy for quantifying the evidence in
favour of a scientific theory using the so-called
Bayes fador. This fador is the posterior odds of the
null hypothesis when the prior probability on the
null is one-half. A recent overview on Bayes factors
can befoundin Kass& Raftery (1995.

Asaume the data x =(x,,...,X,) to have aisen
uncer one of m models H,, k=1,...,m. These hy-
potheses represent m marginal probability densities
m(x|H,), k=1,...,m. Given the prior probabiliti es
p(H,), k=1,...,m, the data produce the posterior
probabiliti es p(H,|X), k=1...m,  where
Y4 P(H;)=1and Y., p(H,|x) =1. These posterior
probabiliti es can be obtained using Bayes theorem
asfollows:

(x| H) p(H,)

H,[X) = . k=1..m, (4
PP =S g ryperyye <™ @
where

_mx[Hy)
Bjk_n(x|Hk)’ j,k=1...,m,

is denoted by the Bayes factor. The margina densi-
ties of the data under H,, 7(x|H, ), can be obtained
by integrating with resped to the probability distri-
bution d the uncetain parametric vedor
0, = (8y,...,64) with number of parameters d:

(x| H,) = [ £(X]8,, H)7i(®,|H,) dO, (5)

where (8, |H, ) is the prior density of 8, under H,
and ¢(x|0,,H,) isthelikelihoodfunction d the data
X given 8,.

A difficulty in using noninformative improper
priors for calculating Bayes fadors is that the prior
odds, and thus the Bayes factor, may be undefined.
The reason for thisis that strictly speaking, the prior
probability p(H,) isdefined as

p(H,) =w(H,)[ J(O,]H,) de,,

where the integral over the norrinformative Jeffreys
prior J(©,|H,) is often infinite and w(H,) is the
prior weight. However, acording to Dawid (1999,
this problem can be resolved by redefining the pos-
terior odds as

p(H;Ix) _ mixIH;)  w(H))
P(HX)  m(x|H)  w(H,)’

This posterior odds is well-defined so long as
both integrals in it converge, which will typicdly be

the cae so long as the sample size n is large
enough. For the seven probability distributions con-

ik=1..m. (6




sidered in this paper (see the Appendix), the mar-
ginal densities of the data do indeed converge. Using
Egs. (4) and (6), the posterior probability of model
H, being corred can now rewritten as

o(H, [x) = r1T(><IHK)W(HK) ,
> = T H )w(H;)

It remains to choose the prior weights w(H, ). For
formal model comparison, we propcse to use equal
prior weights: i.e., w(H,) =1/m, k=1,...,m.

The posterior predictive probabiliti es of exceal-
ing X, are calculated using the nonrinformative Jef-
freys prior. Using the Bayes weights p(H,|x),
k=1,...,m, the weighted predictive probability of
excedaling x, isthen defined by

k=1..,m. (7

P{X >0 = S PHIOPIX> ol Hod,  (8)

where Pr{ X > X,|H,,x} is the predictive probabili ty
of excealing x, under likelihood modd H,,
k=1...,m.

Both the marginal densities and the predictive ex-
cealance probabiliti es have been oltained by nu-
mericd integration.

6 APPROXIMATE BAY ESWEIGHTS

If the prior distribution is the noninformative, im-
proper, Jeffreys prior then the margina density of
the data x = (x,,...,X,) given in Eq. (5) can be diffi-
cult to compute. A possble solution is to approxi-
mate the logarithm of the marginal density using the
Laplace e@pansion (De Bruijn, 1981, Chapter 4).
The logarithm of the marginal density of the data
can then be goproximated by

log(r(x|H)) =

d d A 9
> log(2m) - 5 log(n) +log(#(x|6,H))

for n — oo, where 6 is the maximum likelihood es-
timator for the probability model H, d is the num-
ber of parameters of the probability model H, and n
is the number of observations [see Tierney & Ka
dane (1986, Draper (1995, and Dawid (1999]. Ac-
cordingly, the marginal density can be gproximated
by

d
m(x|H) = (1) ? 1(x|8, H) (10)
2
for n - . The second and third terms on the right-
hand side of Eq. (9) form the Bayesian information
criterion for model seledion (Schwarz, 1978. The
first term on the right-hand side, (d/2)log(2m), has
been mostly omitted. However, we onfirm the
statement of Draper (199%) that its inclusion im-

proves the accuracy of approximations to the mar-
ginal density. For an example, seeSection 8.

An advantage of the &ove Laplace &pansion is
the posshility to use output of classcd statistics
software (maximum-likelihood estimators). Another
advantage of the Laplace gproximation is the inde-
pendence of the prior distribution (which, of course,
can aso be seen as a disadvantage). Despite the fact
that the relative error in the Bayes factor using the
Laplace gpansion hes, in general, an accuracy of
0O(1), the gproximation appeas to work rather well
in pradice

7 COMPUTATION OF BAYESWEIGHTS

The method d Bayes weights to seled a probability
model has been tested with Monte Carlo simula-
tions. Samples were drawn from a known probabil-
ity distribution and the correspondng Bayes weights
were determined using numericd integration.

Two computational methods were @nsidered. In
both methods the numericd integration is performed
with resped to suitably chosen lower and upper
bound of the posterior density 7(8|x). The first
method ses the normalised Jeffreys prior; that is,
given the lower and uper bound of the statistica
parameters, the Jeffreys prior is normalised to a
proper probability density. The second method cal-
culates these weights withou normalising the Jef-
freys prior; that is, the marginal density of the data
in Eq. (5) is obtained by integrating with resped to
the non-normali sed Jeffr eys prior.

For a likelihood function with ore parameter 6,
the difference between these two methods becomes
clea when comparing the normalised marginal den-
Sity

> =£(x16;)J(6))

X) = S £(x|8,)p(6) = 11
m(x) J-Zl (x16,)p(6,) 51.36) (11
with the non-normali sed marginal density

m(x) = 3 £(x|6,)3(6,) 28, (12)

where r isthe number of subdvisions and A8 isthe
correspondng step size. The logarithm of the ratio
of the normalised and na-normalised margina den-
Sity gives us

log(7(x)) = log(7i(x)) + 0 ia(ej)ae).

For convenience, the gproximation method les
been explained for alikelihoodfunction having only
one unknowvn parameter 8. For multi-parameter dis-
tributions, the &owve formulas can be easily ex-
tended.



Table 1. Bayes weights for samples from exponential distribu-
tion with mean 100 (left: normali sed Jeffreys; right: non-
normalised Jeffreys).

Table 6. Bayes weights for samples from Weibull distribution
with mean 100and standard deviation 20 (left: normalised Jef-
freys; right: non-normali sed Jeffreys).

n=10 n=20 n=50 n=100 n=10 n=20 n=50 n=100
Exponential | 0.38 0.19 | 0.46 0.29 | 0.55 0.45 | 0.58 0.55 Exponential | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
Rayleigh 0.11 0.04 | 0.03 0.01 | 0.00 0.00 | 0.00 0.00 Rayleigh 0.01 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
Normal 0.03 0.04 | 0.01 0.01 | 0.00 0.00 | 0.00 0.00 Normal 0.34 0.22 | 0.37 0.25| 0.40 0.28 | 0.35 0.26
Lognormal 0.19 0.19 | 0.16 0.15 | 0.07 0.06 | 0.02 0.01 Lognormal 0.24 0.16 | 0.18 0.12 | 0.08 0.06 | 0.01 0.01
Gamma 0.13 0.23 | 0.17 0.25 | 0.20 0.24 | 0.21 0.22 Gamma 0.04 0.18 | 0.03 0.16 | 0.02 0.10 | 0.01 0.04
Weibull 0.11 0.23 | 0.15 0.25 | 0.18 0.25 | 0.19 0.22 Weibull 0.23 0.30 | 0.33 0.39 | 0.48 0.55 | 0.62 0.69
Gumbel 0.05 0.07 | 0.03 0.03 | 0.00 0.00 | 0.00 0.00 Gumbel 0.15 0.13 | 0.09 0.07 | 0.02 0.01 | 0.00 0.00

Table 2. Bayes weights for samples from Rayleigh distribution
with mean 100 (left: normalised Jeffreys; right: non-normalised
Jeffreys).

Table 7. Bayes weights for samples from Gumbel distribution
with mean 100and standard deviation 20 (left: normalised Jef-
freys; right: non-normali sed Jeffreys).

n=10 n=20 n=50 n=100 n=10 n=20 n=50 n=100
Exponential | 0.04 0.02 | 0.01 0.01 | 0.00 0.00 | 0.00 0.00 Exponential | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
Rayleigh 0.39 0.15 | 0.47 0.24 | 0.58 0.42 | 0.65 0.56 Rayleigh 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
Normal 0.15 0.15| 0.11 0.11 | 0.05 0.05 | 0.02 0.01 Normal 0.24 0.16 | 0.17 0.12 | 0.07 0.05 | 0.01 0.01
Lognormal 0.15 0.15| 0.12 0.11 | 0.05 0.04 | 0.01 0.01 Lognormal 0.32 0.22 | 0.32 0.24 | 0.30 0.24 | 0.25 0.21
Gamma 0.06 0.17 | 0.06 0.17 | 0.06 0.14 | 0.05 0.10 Gamma 0.03 0.20 | 0.04 0.19 | 0.03 0.15 | 0.02 0.09
Weibull 0.10 0.21 | 0.11 0.22 | 0.15 0.24 | 0.18 0.24 Weibull 0.10 0.14 | 0.06 0.07 | 0.01 0.01 | 0.00 0.00
Gumbel 0.12 0.16 | 0.12 0.14 | 0.11 0.11 | 0.09 0.07 Gumbsel 0.31 0.29 | 0.41 0.37 | 059 0.55| 0.72 0.70

Table 3. Bayes weights for samples from normal distribution
with mean 100and standard deviation 20 (left: normalised Jef-
freys, right: non-normali sed Jeffreys).

n=10 n=20 n=50 n=100
Exponential | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
Rayleigh 0.01 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
Nor mal 031 0.21| 0.34 0.23 | 044 0.31 | 0.57 042
Lognormal 0.27 018 | 0.24 0.17 | 0.20 0.14 | 0.15 0.09
Gamma 0.04 0.19| 0.04 0.20| 0.05 0.21 | 0.05 0.21
Weibull 0.18 0.24 | 0.22 0.27 | 0.25 0.29 | 0.22 0.27
Gumbel 0.18 0.17| 0.15 0.13 | 0.06 0.05| 0.01 0.01

Table 4. Bayes weights for samples from lognormal distribu-
tion with mean 100and standard deviation 20 (left: normalised
Jeffreys, right: non-normalised Jeffreys).

n=10 n=20 n=50 n=100
Exponential | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
Rayleigh 0.01 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
Normal 0.27 0.18| 0.25 0.17 | 0.21 0.14 | 0.14 0.09
Lognormal | 0.30 0.20 | 0.32 0.23 | 0.40 0.29 | 0.52 0.37
Gamma 0.04 0.20 | 0.04 0.22 | 0.05 0.26 | 0.07 0.30
Weibull 0.13 0.18| 0.11 0.14 | 0.04 0.05 | 0.01 0.01
Gumbel 0.25 0.24 | 0.28 0.25| 0.29 0.25 | 0.26 0.22

Table 5. Bayes weights for samples from gamma distribution
with mean 100and standard deviation 20 (left: normalised Jef-
freys; right: non-normali sed Jeffreys).

n=10 n=20 n=50 n=100
Exponential | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
Rayleigh 0.01 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
Normal 0.29 0.19 | 0.28 0.20 | 0.30 0.20 | 0.29 0.20
Lognormal 0.29 0.20 | 0.30 0.21 | 0.36 0.26 | 0.46 0.30
Gamma 0.04 0.20 | 0.04 0.22 | 0.06 0.27 | 0.08 0.35
Weibull 0.15 0.20 | 0.14 0.17 | 0.09 0.10 | 0.04 0.05
Gumbel 0.22 0.21 | 0.23 0.20| 0.19 0.16 | 0.13 0.10

In order to exclude statisticd variability, the de-
termination d the Bayes weights has been per-
formed 1,000times and the mean values are pre-
sented in Tables 1-7. In each cdl the value on the
left-hand side represents the Bayes weight acarding
to the normalised Jeffreys prior; the vaue on the
right-hand side according to the non-normali sed Jef-
freys prior. The formulas of the crrespondng nor-
mali sed and norrnormali sed marginal density can be
foundin Egs. (11) and (12), respedively. For seven
probability distributions, Bayes weights have been
computed for four sample sizes (i.e., n= 10, 20, 50,
100). For sample sizes of one hunded, the largest
Bayes weights are shown in bdd format.

From the Monte Carlo smulations, two conclu-
sions can be drawn. Firstly, the results of the two
computation methods differ significantly. Secondy,
the method kased on noAnormali sed Jeffreys priors
performs better. For the gamma distribution, the
normali sed Jeffreys prior even wrongly paints to the
lognormal distribution. In Sedion 8, however, there
appeas to be a excdlent agreement between the
Bayes weights on the basis of the non-normalised
Jeffreys prior and the gproximate Bayes weights
based onthe Laplace &pansionin Eqg. (9).

Summarising, we recoommend to use the non-
normali sed Jeffreys prior for formal model seledion.




8 DESIGN DISCHARGE OF THE RIVER RHINE

A statisticd analysis based ona modified maximum-
likelihood method applied to annual maximum dis-
charges of the river Rhine & Lobith resulted in three
distributions which coud na be rgeded. These
three distributions are the lognormal, gamma and
Gumbel. Because none of these distributions could
be dearly identified as being the best, DH & EAC-
RAND (1993 gave these three distributions equal
weight. The design dscharge is then defined as the
average of the three orrespondng design ds
charges. This method has been used to determine the
current Dutch design discharges.

Recently, Van Gelder (199) proposed to fit vari-
ous probabili ty distributions to the data and to attach
different weights to these distributions acwrding to
how good the fits are. This can be done ather by
using Bayes weights (Van Gelder, 199) or linear
regresson weights (Tang, 1970. Van Gelder et al.
(1999 showed that Bayes weights perform better
than linea regresson weights.

Bayesian analysis has been applied to the aanual
maximum discharges of the river Rhine & Lobith
during the period 19011998.The Bayes weights (7)
have been determined for seven probabili ty distribu-
tions: the exporential, Rayleigh, namal, lognormal,
gamma, Weibull and Gumbel. The Bayes weights
largely depend on the locaion parameters of the
probabili ty distributions. For proper model selection,
we therefore propose to use the same locaion pa-
rameter for al seven dstributions. On the basis of a
statisticd analysis, the location parameter can best
be chosen to be 2,125m%s. This locaion parameter
follows by maximising the weighted marginal den-
sity of the observations, where Bayes weights have
been attached to the seven individual margina den-
sities. The method d determining the locaion pa
rameter, as well as a sensitivity analysis, will be pre-
sented in afuture paper.

For locaion perameter 2,125 m’/s, the Bayes
weights of the seven probabili ty distributions can be
found in Table 8. The Bayes weights have been
computed onthe basis of normali sed Jeffreys priors,
nonnormalised Jeffreys priors, and the Laplace go-
proximation. Because of the agreament between the
Bayes weights based on nam-normalised Jeffreys
priors and the gproximate Bayes weights, we rec-
ommend to use the non-normali sed Jeffreys prior for
model seledion. Normalisation d the Jeffreys prior
doesn’t affed the predictive exceedance probability
of a distribution; it only affects the Bayes weights.
Recdl that the Laplace gproximation can be a-
plied when the number of observationsislarge.
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Figure 1. Predictive excealance probability of annual maxi-
mum river Rhine discharge.

For a non-normali sed Jeffreys prior, the Rayleigh
and Weibull distribution appea to fit best with
Bayes weights of 57% and 324, respedively. The
Bayes estimate of the design dscharge with an aver-
age return period o 1,250yeas is 15,845m°/s. Fig-
ure 1 shows both the empirical exceedance prob-
ability and the predictive exceedance probabiliti es.
Using the maximum-likelihood method combined
with the Bayes weights, the estimate of the design
discharge deaeases to 15,534m%/s. As expeded,
taking acocount of parameter uncertainty results in
larger design dscharges. The Bayesian approac
seams to be promising for determining future design
discharges.

Table 8. Prior and pasterior Bayes weights for the annual
maximum river Rhine discharge.

Bayes Prior Posterior

weights Normal- | Non-nor- | Laplace
ised malised approxi-
Jeffreys Jeffreys mation
prior prior

Exponential | 0.1429 0.0000 0.0000 0.0000

Rayleigh 0.1429 0.6607 0.5718 0.5719

Normal 0.1429 0.0556 0.0481 0.0480

Lognormal 0.1429 0.0000 0.0000 0.0000

Gamma 0.1429 0.0033 0.0072 0.0072

Weibull 0.1429 0.2204 0.3173 0.3156

Gumbel 0.1429 0.0600 0.0555 0.0573




9 CONCLUSIONS

In this paper, the discharge of the Rhine & Lobith
with an average return period of 1,250 years has
been determined taking accourt of the statisticd un-
cetainties involved. Statisticd uncertainty occurs
due to aladk of data. It can be subdvided into pe-
rameter uncertainty (when the parameters of a distri-
bution are unknowvn) and dstribution type uncer-
tainty (when the type of distribution is unknown).
Bayes estimates and Bayes weights can be used to
acournt for parameter uncertainty and dstribution
type uncertainty respedively. Using Bayes weights,
it is posgble to discriminate between dfferent prob-
ability models and to quantify how well a distribu-
tion fits the data. For formal model comparison, the
use of the (non-normalised) Jeffreys prior is recom-
mended. The design discharge increases when taking
the statisticd uncertainties properly into accourt.
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APFENDIX: PROBABILITY DISTRIBUTIONS
AND THEIR JEFFREY S FRIORS

This Appendix contains the probabili ty distributions
which are wnsidered in the statisticd analysis of the
annuel maximum discharges, as well as their non-
informative Jeffreys priors. Special care has been
given to deriving posshle constants in the Jeffreys
prior. The reason for this is that we agree with
Dawid (1999, who stated that, “for the purposes of
‘objedive’ model comparison, there is nothing to be
gained by rescding (...), and that the adual Jeffreys
measure shoud be used”.

Exporential distribution

A randam variable X has an exporentia distribution
with scde parameter 8 >0 if the probabili ty density
function d X isgiven by

1 [ x
Ex(x|e>-5exp{ 6,}I(O,m)(x),

where 1,(x) =21 if xOJA and I,(x) =0 if xOA for
every set A. The Jeffreys prior is

J(G):%.

Rayleigh dstribution

A randam variable X has a Rayleigh dstribution
with quesi-scde parameter 6 >0 if the probability
density function d X isgiven by

2

2X X
Ra(x|6) = ?eXp{_g}l(o,m)(X)-
The Jeffreys prior for the Rayleigh distributionis
1

J(B)==.

6 =7
Normal distribution
A randam variable X has anormal distribution with

mean m and predsion r >0 if the probability den-
sity function d X isgiven by



r

N(x|m,r) = (E‘[); exp{—%(x— m)z}.

The joint Jeffreys prior of the mean m and predsion
r of anormal distributionis

1

Jore

Lognamal distribution

A randam variable X has a lognormal distribution

with parameters m and r >0 if the probability den-
sity function d X isgiven by

J(m,r) =

1
LN(x|m,r) = (L)Z 1
2
Hence if log(X) has a normal distribution, then X
has alognamal distribution. The joint Jeffreys prior

of the parameters 1 and r of alognormal distribu-
tionis

1
N

Gammma dstribution

A randam variable X has a gamma distribution with
shape parameter a>0 and scale parameter b >0 if
the probabili ty density function d X isgiven by

J(m,r) =

a

Ga(x|a,b) = 2

@ X exp{=bx} g (X),

where
M(a)= jt O t* et

Is the gamma function for a> 0. The Jeffreys prior
for the gamma distributionis

J(ab) = —V"’“‘U't()a)_l_

The function ¢'(a) is the first derivative of the
digammafunction:

_0y(a) _9*logr (a)
0 0a’

y'(a)

for a>0. It is cdled the trigamma function. The
digamma function and the trigamma function can be
acarately computed using algorithms developed by
Bernardo (1976) and Schneider (1978), respectively.

Weibull distribution

A randam variable X has a Weibull distribution
with shape parameter a>0 and scade parameter
b>0 if the probability density function d X is
given by

r 2
;exp{—;(log(x)—m) }I(o,m)(x).

wetia ) =2 %] exp{—[ﬂa}uo,w)(x).

The Jeffreys prior for the Weibull distributionis
im

b6

Gumbel distribution

A randam variable X has a Gumbe distribution

with location parameter a and scde parameter b >0
if the probabili ty density function d X isgiven by

Gu(x|a,b) = % exp{—x%ba} exp{— exp{—x%ba}} .

The Jeffreys prior for the Gumbel distributionis

J(a,b) =

J(a,b):b—lz%.



