
ABSTRACT: Control software is software that receives observations from sensors such as break wires built 
into the satellite to timely activate actuators to trigger required functions like antenna deployment after launch 
and separation. Often inadvertent activation as well as a delayed response can have severe consequences. 
How the software monitors its sensors determines the performance of the control software. We discuss an 
approach that models various “design” options in detail so that the control flow can be optimised via decision 
theory. The example we present here uses decision analysis, statistical and mathematical properties described 
in Norstrøm et al (1998, 1999) to optimise the control software architecture described in Dore & Norstrøm 
(1996).  

1 INTRODUCTION 

We define "Launch" of a satellite as the process, 
carried out by e.g. the Ariane 5 rocket. The launch is 
characterised by the acts carried out by the launcher 
whose main function is to run the rocket engines to 
bring the satellite in orbit. Launch is completed 
when all rocket engines have ceased to run (booster 
burn out time). When the rocket engines stop 
running they do not start again. This is defined as 
"Launch finished". Let TL denote the time the launch 
finishes. We define "Separated" to be the state 
where the satellite is not physically attached to the 
rocket or other satellites. Let TS denote the time 
separation occurs. Let TF denote the time the 
satellite can not become operational after e.g. the 
satellite fail if no acts are taken by control software 
in the satellite before TF (see Figure 1).  
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Figure 1. The launch events schedule. 

1.1 Control Software Description 

On top of the Ariane 5 rocket in Figure 2 there is 
one cargo container with an upper and a lower 

compartment.  

 

Figure 2. Rocket main-stage and cargo container. 

The solid booster stages are not shown in Figure 2 
since they are dropped off at a lower altitude. Only 
the rocket main stage, the Vulcain engine, carries the 
cargo out of the atmosphere. In each compartment 
there are two scientific satellites. Between Satellite 1 
and 2 there are 5 break-wires. Similarly there are 5 
break wires for satellites 3 and 4. Inside each 
satellite the control-software shown in Figure 6 is 
running. This control software steers antenna 
deployment. The program takes time to wait 
approximately to the launch finishes. Then it 
continuously monitors the break wire status (for 
example the Separation Sequence software monitors 
the break-wires between Satellites 1 and 2) until 
separation is detected. Separation is assumed when 3 
of 5 break wires test broken. No time-out for the 
break wire monitoring is foreseen. So in any case the 
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software will wait, until the separation is detected 
(i.e. 3 of 5 break wires test broken). 

The use of voting logic is a popular way to take 
decisions under uncertainty. For example, the 
satellite control software acts to initiate deployment 
of the antenna boom if 3 out of 5 break wires test 
broken. Since a break wire test broken if the satellite 
is separated it gives information to whether a 
satellite is separated or not. A break wire can also 
show broken if shaking during launch ruptures it. 
Hence, when a break wire test broken we are 
uncertain whether the cause is separation or shaking 
during launch. 

This paper will show how to approach this 
problem by using decision theory. We will use 
decision theory to evaluate: 

i) Various control software design solutions to 
find the optimal break wire inspection time prior to 
activating the actuators that deploys antenna booms 
of a satellite. 

ii) Estimate the control flow charter that describes 
how the detailed code should be coded i.e. the 
architectural design of the control software. 

Hence, the voting logic heuristic that is normally 
used is not the optimal way of deciding under 
uncertainty. 

2 DECISION PROBLEM FORMULATION 

We will use the following notation: 
S: Set of all relevant satellite states. 
f(t): Activate deploy antenna boom at time t. 
F: Set of available acts F = {f(t)| t > 0}. 

U(f(t), s): Utility of act f(t) and state s  S. 
X(): Outcome of break wire test at inspection time 
  0, X()  {0, 1,..., 5}.  
Mathematically define the state space S: 

S = {(TL, TS, TF) | TL < TS, TS  TF, (TL, TS, TF) = 
(Engines stop at TL, Separation at TS, Failure at TF)}. 

The utility function defined over F  S is defined 
in Table 1. The reasoning here is based on the cost 
of one satellite which is 125106$. 

 s1 = 
 {t < TL} 

s2 = 
 {TL  t < TS} 

s3 = 
 {TS  t < TF} 

s4 = 
{TF  t} 

f(t) -500106 -250106 0 -125106 

Table 1: The utility over F  S. 

If we deploy the antenna during launch we risk 
losing 4 satellites. Therefore U(f(t), s1 = {t < TL})  = 
-4125106. Similar after the launch ends before 
separation we risk loosing 2 satellites by deploying 
the antenna boom, hence 

U(f(t), s2 = {TL  t < TS}) = -2125106. If the 
antenna is deployed at the correct time the cost is 
zero, U(f(t), s3 = {TS  t < TF}) = 0. If TF  t  we 
loose the satellite anyway so we use 
U(f(t), s4 = {TF  t}) = -125106. These values are 
used for illustrative purposes. Estimating the real 
costs would require detailed studies of the 
consequences involved.  

The value of an act f(t)  F is to be represented 
by its conditional expected utility 
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where the uncertainty is described by a probability 
density function p(). Taking the maximum of (1) 
over all accessible acts F gives the value of F as: 
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This is the value of information given the inspection 
results of the break wire test X(). Taking the 
expectation of (2) with respect to X() gives the 
expected value of F when we observe the break wire 
at time . More about decision theory can be found 
in Savage (1972) & De Groot (1970). 

3 UNCERTAINTY MODELLING 

We will assume that TL = L + L where L ~ N(0, 
L

2) and L is the pre-programmed expected time of 
launch termination. If t < TL then the launch is not 
finished. TS is the time when the separation of the 
satellite takes place. In Figure 1 we can see that the 
satellite is separated if t  TS and not separated if t < 
TS. We will assume that TS = L + S + S + L where 
S is the time we wait after the rocket engine has 
stopped to the separation occurs. We use that S has 
the distribution S ~ N(0, S

2). Note, we required TL 
< TS in S which gives S > -S. If t  TF the satellite 
is not failed. We use TF = L + S + F + S + L +F 
where F is the expected time we wait after 
separation to the satellite fail if we do not deploy the 
antenna. For simplicity we will assume that F ~ 
N(0, F

2) instead of using a survival distribution. It 
is attractive to work with a joint normal distribution 
numerically. On the other hand the results later 
shows that the joint normal distribution gives 
reasonable results. We have that F  -F since we 
required TS  TF in S. 

We have chosen the normal distribution mainly 
for illustrative purposes. The normal distribution 



however can be justified for the launch time since it 
represents launch time as the expected time of 
launch plus the uncertainty in time that the launch 
represents. The major factors that influence the 
launch time uncertainty are rocket engine 
performance, weather conditions and the launch 
window. A study of these factors can be used to give 
a distribution of the launch time. Similarly we have 
used the Normal distribution to model the separation 
time. To obtain the separation time uncertainty one 
should consider the separation process physically 
and also look at real data from previous launches. 
For the failure time TF we could have used a survival 
distribution. We tried to use the exponential 
distribution and found that it did not ensure a quick 
enough failure of a satellite with a non-deployed 
antenna to give a realistic example. Another 
distribution more likely to work is the Weibull 
distribution. It is important that the failure rate 
quickly increases since a separated satellite without 
deployed antenna quickly fails or looses its mission. 
Finding appropriate parameters for the Normal 
distribution that we have used will also ensure quick 
failure if the antenna is not deployed. 

It is important that the failure time is correlated to 
the separation time and launch time. For example a 
scenario where the launch ends too early will cause a 
failure much earlier than a launch where the engines 
run significantly longer. 

We will now obtain the joint distribution of (tL, tS, 
tF) given S  -S and F  -F. Since we can not 
explain any direct linkage between the errors we will 
assume that S, L and F are mutually independent. 
However, note although S, L and F are mutually 
independent, the times TL, TS and TF are not 
independent. If the launch duration, t < TF, lasts 
longer we would for example also expect the 
separation to occur later so the two properties are 
positively correlated. Similarly the separation time, 
TS, should be positively correlated with failure time 
TF.  

To obtain the conditional joint distribution of (tL, 
tS, tF) we shall first obtain the joint-distribution of 
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Since each of the variables are normally distributed 
the expectation is 
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Using the mutually independence of S, L and F 
gives the covariance matrix  
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Conditional on S > -S and F  -F the joint 
distribution of (tL, tS, tF) is  

f(tL, tS, tF | S > -S, F  -F) = 
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where T is given by (3) above. In our notation we 
use (x) = p(X  x) for the standard normal 
distribution. Since we always are given S > -S and 
F  -F, we will simply write f(tL, tS, tF) instead of 
f(tL, tS, tF | S > -S, F  -F). 

3.1 Parameter Specification 

We will now specify the parameters in the model. 
This is a field where for example expert judgement 
can be applied. We will however use some typical 
values for the Ariane 5 launcher fit the model. The 
expected launch time is  

L = 26.49 min 

with a variance of parameter L of  

Var(L) = 2
L = (8 min)2. 

The expected time for separation to be finished is 
S = 33.30 min. Therefore the expected time between 
launch finished and separation is 

S = 33.30 min - 26.49 min = 6.81 min. 

The variance of parameter S must reflect that the 
separation of satellites 1 and 2 takes place at 



approximately 28.10 min and satellites 3 and 4 at 
approximately 33.30 min, which suggest that the 
variance at least is (5.20 min)2. We will use  

Var(S) = 2
S = (6 min)2. 

The expected time from separation to failure is 

F = 7.70 min. 

We have only used this number for illustrative 
purposes and we will use a larger variance 

Var(F) = 2
F = (10 min)2. 

3.2 Optimal Deployment Time 

We will now find the optimal deployment time and 
the expected value if no inspection is carried out. 
Using the values in Table 1 we obtain the expected 
utility: 
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To obtain the relevant probabilities from our 
probability density in (6) is just to integrate over the 
respective regions by using the method in Genz 
(1992). The optimal act is obtained by taking the 
best of all possible acts. This gives 
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REMARK: In the following we use time in minutes if 
nothing else is specified. 
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Figure 3. The expected value v(f(t)) as function of 
time t. 

Figure 3 indicates that the optimal deployment time 
is 48 minutes with an expected utility of -90106. 
Optimisation with 3 significant digits gives 

v(F) = v(f(t = 48.3)) = -94.8106 $. (9) 

4 THE OPTIMAL INSPECTION TIME 

The number of broken break wires is described by 
the random variable X()  {0, 1,..., 5}. At 
inspection time  it is possible to monitor the 
number of wires that test broken. Conditional on the 
time we inspect, the break-wire test result will have 
different distributions. We will now define the 
probability distribution of the break-wire test given 
the four different inspection intervals (see Figure 1). 

Given  < tL or tL   < tS we assume that X() has 
the binomial distribution 
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The binomial distribution models the break wire 
status before Separated it describes the break wires 
exposure to shocks during launch and separation. 
This model assumes that each wire breaks 
independently with probability p(). The probability 
p() is a function of the accumulated stress over time 
and is believed to increase as a function of . For 
simplicity we will use p() = 0.05. 

Given Separated the break-wire test can return the 
wrong number of broken wires due to either bit flip 
or transient failures in the electronic circuits. 
Assume that the probability of bit flip or transient 
errors is   = 0.001 and use the distribution 

p(x() | tS   < tF) = 






otherwise. 51

}4,,1,0{)(for  


 x

 

Given failure we assume that the break-wires do 
not give relevant information so we use the uniform 
distribution 

p(x() | tF < ) = 1/6, for x()  {0,1 , ..., 5}. 

Multiply the conditional distributions above with the 
distribution f(tL, tS, tF) in (6) to obtain the joint 
distribution: 



f(tL, tF, tS, x()) = f(tL, tF, tS) 
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4.1 The Optimal Inspection Time 

In general we have that v(F|X())  v(F). Now we 
will obtain the conditional expectation when the 
break wires are observed at test time . Since the 
break-wires are observed at  we have  
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So for t   we need to compute the expected value  
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The conditional probabilities are obtained from the 
distribution in (10). This is however a rather 
complex process which is summarised in the 
Appendix. Optimisation over all accessible acts 
gives 
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For each test outcome this optimisation gives 
optimal deployment times. The conditional 
expectation is given by taking the expectation over 
the test-outcomes. This gives 
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The numerically hardest problem is to find the 
optimal test time. 
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An overview is obtained by plotting the expected 
value over the interval shown in Figure 4. Figure 4 
shows that the optimal inspection time is between 37 

and 38 minutes. Optimisation with 3 significant 
digits gives 
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Figure 4. The conditional expected utility v(F | X()) 
as function of test time . 

4.2 The Optimal Control-Flow 

We shall compute the optimal control flow 
architecture that describes how to code the control 
software. It describes how to implement the break 
wire inspection. Figure 4 shows that the optimal test-
time is 37.5 minutes. For each inspection outcome 
x()  {0, 1,..., 5} we will now compute the optimal 
deployment time 
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From Figure 5 we can for example see that if we 
observe at test-time 37.5 minutes that x( = 37.5) = 0 
break wires are broken, we should deploy the 
antenna at 52 minutes. 
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Figure 5. The conditional expected utility for the 
various test-outcomes. 

Optimisation with 3 significant digits gives 

t(x( = 37.5) = 0) = 51.9 (13) 

t(x( = 37.5) = 1) = 51.9   (14) 

t(x( = 37.5) = 2) = 51.7 (15) 

t(x( = 37.5) = 3) = 48.7 (16) 

t(x( = 37.5) = 4) = 37.5 (17) 

t(x( = 37.5) = 5) = 37.5 (18) 

In conclusion, if we have one inspection of the break 
wires the control software architecture should be 
designed so that we inspect at 37.5 minutes with the 
conditional deployment times given in (13) to (18). 
This gives the maximal value of information that can 
be obtained in (19) when the break wires are 
inspected once. 

4.3 Measuring Control Software Performance 

When we compare the expected value in Figure 4 
with the optimal value in Figure 3 (see the graph 
labelled v(F) in Figure 4) we see that the inspection 
improves the expected value. The value of 
information is  

(F)))5.37(|(F vXv   

 = 59.9106 $ - 94.8106 $ = 34.9106 $.  (19) 

This is a measure on how well control software 
inspects the break wire sensors and activates the 
antenna deployment. 

5 CONCLUSION 

In practical software engineering the use of 
voting logic is a popular way to take decisions under 
uncertainty. This paper successfully demonstrates an 
alternative way to design control software that 
decides under uncertainty. This approach utilises 
decision theory and has potential to formalise and 
improve the control software design process by 
optimising the control software architecture. If the 
control software is coded according to the optimised 
architecture described in Section 4.2 we can say that 
Bayes’ Theorem is built into the software. Further, 
the performance of the control software architecture 

is measured by the value of information as shown in 
Section 4.3. 

REFERENCES 

Norstrøm, J.G. Cooke R.M. & Bedford T. 1998. 
Statistical methods in design of safety critical 
software. In Lydersen, Hansen & Sandtorv (eds), 
Safety and Reliability: 1061-1068. Rotterdam: 
Balkema. 

Norstrøm, J.G. Cooke R.M. & Bedford T. 1999. 
Value of Information based inspection strategy of 
a fault-tree. In Kafka & Schüeller (eds), Safety 
and Reliability: 621-626. Rotterdam: Balkema. 

Dore, B. & Norstrøm J.G. 1996. Pilot Application of 
Sneak Analysis on Computer Controlled Satellite 
Equipment. In P.C Cacciabue & I. A. Papazoglou 
(eds), Probabilistic Safety Assesment and 
Management: 1590-1596. Springer. 

Genz, A. 1992. Numerical Computation of 
Multivariate Normal Probabilities, J. of 
Computational and Graphical Stat.: 1, pp. 141-
149.  

ESA Public Relations Division Offices: "Ariane 5 
Architecture", 
http://www.esrin.esa.it/esa/ariane/archi.html  

Ada Decision Systems 1992. DPL Advanced 
Version User Guide. 2710 Sand Hill Road, Menlo 
Park, CA94025, USA. 

De Groot, M. H. 1970. Optimal Statistical 
Decisions. New York: McGraw-Hill. 

Savage L. 1972. The Foundations of Statistics. New 
York: Dover. 

APPENDIX – THE PROBABILITIES 

We will obtain the probabilities in (7) and (11). The 
difficult task is to get the integration areas correct. 
This is shown below. 
Consider the probabilities for times greater than the 
inspection time, t   so the joint distribution in (10) 
is used. We will use 
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We recognise the multivariate normal distribution. 
The integration is solved numerically by using 
Genz's (1992) method. Similarly p(TL  t < TS | x()) 
is: 

p(TL  t < TS | x())    










t

t tt t

FSL

L S F

dxtttf T'))(,,,(   

 )(5)( )1(
)(

5 


xx pp

x









 

   



















 


t

t tt tL S F
F S

d
A

T
TTTT 2/)E(Σ)E( 1T

e
1

. 

To obtain p(TS  t < TF | x()) requires more 
refinement. Since the distribution in (10) is 
differently specified for different intervals we 
obtain:  
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Use (10), (6) and substitute for f(tL, tS, tF, x()) to get 
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Similarly the last probability p(TF  t | x()) is  

p(TF  t | x()) 
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Again use (10), (6) and substitute for f(tL, tS, tF, x()) 
to get 

p(TF  t | x())  )(5)( )1(
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Having worked out the probabilities for t   above 
we will now consider t < . Since we consider t <  it 
is sufficient to obtain the probabilities in (11) by 
only considering the distribution in (6). We will 
obtain p(t < TL). 
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The second probability is  
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The third probability is 
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The last probability is 
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Note that these probabilities are the same as the ones 
we need to solve (7). 
   

APPENDIX - FIGURES 

 

Figure 6. The required control flow of the separation sequence program (see Dore & Norstrøm (1996)).  


