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ABSTRACT

The measure for expert dependence proposed by Jouini and Clemen (clemen) is implemented for
expert judgement data gathered at the T.U. Delft. Experts show less dependence than might have
been supposed, though more sensitive measures might reveal more. Clemen’s copula for aggrega-
tion is implemented and performance is compared with performance-based combinations for two
illustrative cases.
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INTRODUCTION

To date, there have been 15 clusters of expert judgment studies performed by the TU Delft. These
include 28 different expert panels, which gave assessments over a variety of topics. In all cases
experts assessed items for which the true values were known, in addition to variables of interest. A
brief listing of these studies given in table 1 extends the work in [Goossens, 1998]. In this paper we
study dependence in the manner suggested by Jouini and Clemen [Clemen, 1996]. For two illus-
trative cases we implement the copula method for combining expert assessments with dependence
and compare performance of the copula based combination with other combinations. The purpose
of the p-value will explained in a later section.

To illustrate the calculations in the following sections, we will use the EUNRCDIS case as an
example. This is the EU-USNRC dispersion module performed by the TU Delft and SANDIA. The
publication of this study can be found in [Harper, 1995].



Case Name #experts #vbls/#seed P-value

1a DSM-1 10 14/8 0.492
1b DSM-2 8 39/12 0.59
2a ESTEC-1 4 48/13 0.786
2b ESTEC-2 7 58/26 ≈ 0
2c ESTEC-3 6 22/12 0.454
3 AOT 9 38/38 ≈ 0
4 GROUND 7 38/10 0.132
5a TUDDISP 11 58/36 ≈ 0
5b TNODISP 7 58/36 ≈ 0
5c TUDDEPOS 4 56/24 0.034
6a ACNEXPTS 7 43/10 0.324
6b NH3EXPTS 6 31/10 0.456
6c SO3EXPTS 4 28/7 0.614
7 WATERPOL 11 21/11 0.124
8a EUNRCDIS 8 101/23 ≈ 0
8b EUNRCDD 8 70/14 0.034
8c EUNRCA S 7 8/8 0.172
8d EUNRCWD 7 50/19 ≈ 0
8e EUNRCEAR 9 15/15 0.014
8f EUNRCSOI 4 31/31 ≈ 0
9a GAS95 (env. panel) 15 48/28 n/a
9b GAS95 (corr. panel) 12 58/11 n/a
10 MVBLBARR 8 52/14 0.176
11 REALESTR 5 45/31 0.692
12 RIVRCHNL 6 14/8 0.504
13 MONT1 11 13/8 0.516
14 THRMBLD 6 48/48 ≈ 0
15 DIKRING 17 87/47 ≈ 0

TABLE 1: List of completed TUDelft expert judgment studies.

DEPENDENCE BETWEEN EXPERTS

Following [Clemen, 1996] we can consider only the expert’s median assessments and consider the
events that these medians are above or below the true values. Each expert receives a 1 if his
assessment is above the true value and a −1 otherwise. We therefore only use the assessments
for which the realizations are known (sometimes called seed variables), and compute the product
moment correlation between the 1’s and −1’s. In some cases it may happen that all the median
assessments of one expert fall on one side of the true value, in which case the expert has no variance.
The correlation matrix for the EUNRCDIS case is given in table 2. All the experts are positively
dependent with the average correlation being about 0.55. We therefore have a case with the desired
features for the Clemen model which we will apply later on.

E1 E2 E3 E4 E5 E6 E7 E8

E1 1 0.4792 0.6283 0.4792 0.5231 0.6937 0.3144 0.3874
E2 0.4792 1 0.3973 0.4773 0.5649 0.6908 0.5505 0.5800
E3 0.6283 0.3973 1 0.7628 0.6485 0.7073 0.2791 0.2333
E4 0.4792 0.4773 0.7628 1 0.7405 0.6908 0.5505 0.3973
E5 0.5231 0.5649 0.6485 0.7405 1 0.7542 0.6009 0.6485
E6 0.6937 0.6908 0.7073 0.6908 0.7542 1 0.5677 0.5089
E7 0.3144 0.5505 0.2791 0.5505 0.6009 0.5677 1 0.5004
E8 0.3874 0.5800 0.2333 0.3973 0.6485 0.5089 0.5004 1

TABLE 2: Correlation matrix for the experts of the EUNRCDIS case.



STATISTICAL SIGNIFICANCE

In table 3 are all the 1’s and −1’s for each item i and each expert j in the EUNRCDIS case.
If we consider these assessments as realizations of random variables Xj, then the probability of
expert j’s assessment being a 1 is given by P (Xj = 1). The values of these probabilities are on the
bottom line of table 3. Obviously P (Xj = −1) = 1− P (Xj = 1).

The qi in the right column is the weight for each ‘word’, which we define as the combination
of 1’s and −1’s for each item. For item 1 (i = 1) this word is given by the sequence w1,· =
{−1, 1,−1, 1, 1,−1, 1, 1, 1} and q1 = 1, which means that there is only one such sequence for the
items. We can normalize qi by dividing this number with the total amount of items, so that we
obtain the probability of a certain word appearing in the assessments. If we call this vector of
probabilities Q, then

Qi = P (wi,·) ≈ qi

n
,

where n is the number of items. As can be seen in table 3, if a particular word appears more than
once, only one word receives a weight whereas the other identical words receive zero weight. Since
we can estimate P (Xj = 1) and P (Xj = −1) for each expert, we can also estimate the probability
of each wi,· being assessed by the experts under the hypothesis of independence. Take W as the
vector of these probabilities and assume the expert assessments are independent, then

Wi = P (X1 = wi,1, . . . , Xm = wi,m) = P (X1 = wi,1) · · ·P (Xm = wi,m)

for m experts. W is the theoretical distribution (i.e. that the experts are independent) and Q is
the distribution of the data.

j = 1 2 3 4 5 6 7 8 qi

i = 1 -1 1 -1 1 1 -1 1 1 1
2 -1 1 -1 -1 -1 -1 -1 1 1
3 -1 1 -1 1 1 1 1 1 1
4 -1 1 -1 -1 -1 -1 -1 -1 2
5 -1 -1 -1 -1 -1 -1 -1 -1 8
6 -1 -1 -1 -1 -1 -1 -1 -1 0
7 1 1 1 1 1 1 1 1 2
8 -1 -1 -1 -1 1 -1 -1 1 1
9 1 1 1 1 1 1 -1 1 1

10 1 1 1 1 1 1 1 1 0
11 -1 1 1 1 1 1 -1 1 1
12 1 1 1 1 1 1 -1 -1 1
13 -1 1 1 1 1 1 1 -1 1
14 -1 -1 1 1 1 -1 -1 -1 1
15 -1 -1 -1 -1 -1 -1 -1 -1 0
16 -1 -1 -1 -1 -1 -1 -1 -1 0
17 -1 -1 1 1 -1 -1 -1 -1 1
18 -1 -1 -1 -1 -1 -1 -1 -1 0
19 -1 -1 -1 -1 -1 -1 -1 -1 0
20 -1 -1 -1 1 -1 -1 -1 -1 1
21 -1 -1 -1 -1 -1 -1 -1 -1 0
22 -1 -1 -1 -1 -1 -1 -1 -1 0
23 -1 1 -1 -1 -1 -1 -1 -1 0

0.174 0.478 0.348 0.478 0.435 0.304 0.217 0.348
P (Xj = 1)

TABLE 3: Assessments for item i by each expert j.

The relative information between the two probability vectors Q and W is given by

I(Q,W ) =
n∑

i=1

Qi ln
(

Qi

Wi

)
.



This measure is always non-negative and equals zero if and only if Q = W . For the EUNRCDIS
case, I(Q,W ) = 2.67.

We test the hypothesis that ‘the experts are independent’ against ‘the experts are not independent’.
We do this by simulating the distribution of I(Q,W ) under the assumption that the events Xj < 1
are independent. We reject this assumption if this actual value I(Q < W ) is in the top 5% of all
the simulated values. We have performed 500 simulations like this for the EUNRCDIS data and
all the simulated values for the relative information were smaller than the original value, therefore
P (I(Q,W ) ≤ 2.67) = 1 and thus the p-value is approximately zero. We have also done this for all
the other cases and the p-value for each case is given in table 1. The assumption of independence
is rejected at the 5% level in about one half of the cases, which may be a weaker indication of
dependence than many would have expected. Inspecting the table 1 also reveals that there seems
to be a negative correlation between the number of seed variables and the p-value. The low p-values
coincide with high numbers of seed variables.

CLEMEN’S COPULA METHOD

We implement the expert opinion aggregation model as suggested by [Clemen, 1996]. A Bayesian
decision maker who is interested in modelling dependence among the experts by combining their
assessments in a copula representing the amount of dependence (i.e. correlation). [Clemen, 1996]
recommends Frank’s copula. With this copula and the univariate distributions of the experts’ as-
sessments, the decision maker can construct a likelihood function for these opinions. If we take Hi

and hi as expert i’s cumulative distribution function and density respectively, then the likelihood
function is given by

fm = cm[1−H1(θ), . . . , 1−Hm(θ)]h1(θ) · · ·hm(θ), (1)

where m is the number of experts and

cm(u1, . . . , um) =
∂m

∂u1 · · · ∂um

Cm(u1, . . . , um). (2)

Here Cm is the copula and with Frank’s copula:

Cm(u1, . . . , um) = logα

[
1 +

(αu1 − 1) · · · (αum − 1)

(α− 1)n−1

]
, 0 < α < 1.

The dependence is captured through α, whose value can be obtained from table I in the article.
For this we need Kendall’s τ [Kendall, 1961], which is a measure of dependence. In the case of our
binomial random variable Xj this τ is equal to the correlation between the experts’ assessments.

To implement Clemen’s model, we solve for the likelihood function (1) numerically. It is easy to
check that for m experts, (2) becomes

cm(u1, . . . , um) = ln(α)m−1
m∑

j=1

βj
αu1 · · ·αum(αu1 − 1)j−1 · · · (αum − 1)j−1

[(α− 1)m−1 + (αu1 − 1) · · · (αum − 1)]j
, (3)

where β is a vector of coëfficiënts which depends on m. This vector must be determined numerically.

From the average correlation of 0.55, we find that α = 0.0011957. The results for item 10 and
item 21 are plotted in figure 1 and they look reasonable. Especially for item 21, where the experts’
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Figure 1: Posterior density (dashed line) for item 10 (left) and 21 (right) from the EUNRCDIS
data, using Clemen’s method based on the experts’ densities (full lines).
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Figure 2: Same as figure 1 for item 13 and 19 of the EUNRCDIS data.

assessments are very close together, the posterior density follows the data very well. In figure 2
we have plotted items 13 and 19. The assessment data for these two items is almost identical. The
model also produces similar results, although the mass is slightly more concentrated for item 19.

As Frank’s copula can be highly peaked at the extremes, numerical stability is an issue, especially
when α is small. The likelihood function given by equation (1) behaves very much like the geometric
mean: very sensitive to the lower values and insensitive to the higher values. Figure 3 shows the
same results for item 10 and 13 as in figure 1 and 2, but this time on a logarithmic scale. This
shows how incredibly small the values of the result actually are. If the PDF from one expert is
zero at a certain value, then the result will be forced to zero. This problem is also addressed
in [Clemen, 1996], where the decision maker is advised to be very careful with the tails of the
assessments.
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Figure 3: Results for item 10 (left) and item 13 (right) for the EUNRCDIS data plotted on a
logarithmic scale.

PERFORMANCE OF THE COPULA METHOD

Performance is measured by calibration and information [Cooke, 1991]. The results for two il-
lustrative cases shown below were obtained using a 30% overshoot on the intrinsic range.

Table 4 shows the calibation and information scores for the global weight combination, the item
weight combination, the equal weight combination, the best expert and the Clemen copula combi-
nation. The Clemen combination shares the lowest calibration with two other experts, but has a
slightly higher information score.

Combined DM’s: Experts:
global equal item best Clemen

Calibration 0.36 0.15 0.9 0.13 0.0001
Information 1.24 0.894 1.116 1.276 2.534

Combination 0.4443 0.1341 1.005 0.1659 2.534× 10−3

TABLE 4: Expert Calibration results for the EUNRCDIS case.

As a second example we use the data from the REALESTR case [Qing, 2002]. The case involves
5 investment managers who each give assessments on the rent indices of office space for the major
cities in the Netherlands in the future. The case involves 45 items and there are 16 seed variables.
A year after this study, the new prime rent indices became available and the experts’ assessments
where checked again by adding these values to the original 16 seed variables. For this example we
will only use the 16 original seed variables.

The average correlation between the experts’ assessments is 0.32, which gives an α = 0.054042.
The results are given in table 5. The global and item weight decision makers are the same as the
best expert. The Clemen expert is the third best expert out of the six in total, which is better
than the previous case.



Combined DM’s: Experts:
global equal item best Clemen

Calibration 0.33 0.12 0.33 0.33 0.02
Information 0.8572 0.2068 0.8572 0.8572 1.384

Combination 0.2829 0.0248 0.2829 0.2829 0.0277

TABLE 5: Expert Calibration results for the REALESTR case.

CONCLUSIONS

We reject the hypothesis of dependence between the experts in about half of the cases. We also
have found that there is no significant relation between dependence and calibration. We do see an
apparent relation between dependence and the number of seed variables. This relationship should
be studied further with more sensitive dependence measures.

The copula method for aggregating expert opinions does not yield good results for the EUNR-
CDIS case. The copula method in [Clemen, 1996] also requires the experts to be pairwise equally
dependent in the sense of their correlation. In most practical cases the decision maker does not
know anything about the variable(s) being assessed and about the level of dependence between the
experts. We have taken the average correlation between the experts’ assessment as the measure
for pairwise dependence between the experts. Better performance can be expected from the multi-
variate normal copula, as suggested in [Clemen and Reilly, 1999]. In the two cases presented here
the calibration and information performance of Clemen’s model is mixed. It is worthwhile trying
other copula.
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