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Summary

The problem of competing risk data is considered with an application to Offshore Reliability Data Base (OREDA).
Different models for preventive maintenance are discussed which make the failure rate identifiable, as there are more
general bounding methods. A statistical test is used for the concordance of the results of the data interpretation
and the theoretical models proposed. The results indicate the way to avoid an inappropriate model to fit data.
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1 INTRODUCTION

Maintenance study requires the use of many mod-
elling assumptions. We focus on issues related to reli-
ability data bases (RDB’s) interpretation, and in par-
ticular to dependent competing risk. Competing risk
models are used to interpret data and a statistical test
is used to find the appropriate competing risk model
for RDB in question.

Modern RDB’s may distinguish ten or more fail-
ure modes (ways of ending a service sojourn), often
grouped in critical failures, degraded failures and in-
cipient failures. The latter two are usually associated
with preventive maintenance, whereas critical failures
are of primary interest in risk and reliability calcula-
tions. A component exits a service sojourn due to the
occurrence of one of its possible failure modes. The
failure modes are competing each other to ‘kill‘ the
component, hence each failure mode censors the oth-
ers.

Independent competing risks models have been
studied for some time. By observing independent
copies of competing risks we can estimate the subsur-
vival functions. Assuming independence of competing
risks we can determine the underlying marginal distri-
butions. In this case we have identifiability. The as-
sumption of independence is questionable when failures
are censored by preventive maintenance. The assump-
tion of independence would imply that maintenance
engineers take no account of the state of a component
when taking the decision to preventively maintain. It
is more reasonable to make a dependence assumption
between the censoring processes.

A very good maintenance team will try to minimize

the repair (replacement) cost over a long time interval.
Since the repair (replacement) cost for a critical fail-
ure (corrective maintenance) is much higher than the
cost for a degraded failure (preventive maintenance),
the maintenance team will try to avoid a critical fail-
ure. Also, the maintenance team will try not to loose
too much from the life time of the component because
of the increase number of repairs (cost) over a long
time interval. This entails that preventive maintenance
should be highly correlated to failure. Ideally, the com-
ponent is preventively maintained at time t if and only
if it would have failed shortly after time t. This sit-
uation is captured in Random Signs Model developed
by Cooke (1996) [3]: consider a component subject to
right censoring, where X denotes the time at which a
component would expire if not censored, then the event
that the component’s life be censored is independent
of the age of X at which the component would expire,
but given that the component is censored, the time at
which it is censored may depend on X. Not every set of
censored observation is consistent with a random signs
model. Cooke (1996) proved that if the random signs
model holds than the conditional subsurvival function
for X dominates the conditional subsurvival function of
preventive maintenance and they are equal for indepen-
dent exponential model and conditionally independent
model.

Cooke and Bedford [4] presented different depen-
dent competing risk models with an application to
pressure relief valves data from one Swedish nuclear
station operating two identical reactors. Like most
modern RDB’s, this data base was designed to serve
the interest of at least three type of engineers: the
maintenance engineer interested in measuring and op-
timising maintenance performance, the design engineer
interesting in optimising component performance and
the risk analyst wishing to predict reliability of com-
plex system in which the component operate. They



showed that models for dependent competing risk en-
able the needs of these users to be better met. This
involves selecting an appropriate competing risk model
on the bases of empirical subsurvival functions. In [4]
this selction was simply made graphically. An exam-
ple is shown in Figure 1., where “alarm” and “unin-
tended discovery” are events that maintenance person-
nel would try to avoid. There are 4 such events and
248 other events. The conditional subsurvival function
of “alarm” and “unintended discovery” [CSSF1] dom-
inates the conditional subsurvival function of “other”
[CSSF2], hence a random signs model seems to describe
data, but no evidence is given that this model or an-
other fits data.

Figure 1. Graphical model interpretation of pressure
relief valves data

In this paper, we will present the one sided
Kolmogorov-Smirnov test for a two sample problem
in order to test the exponential independent model
against the alternative random signs model. Hence, we
are going to test whether the conditional subsurvival
function are coming from the same population against
the alternative that the conditional subsurvival func-
tion of the censoring variable lies entirely below the
conditional subsurvival of the censored variable. An
algorithm how to calculate the one sided KS statistic
is also given.

The performance of the probabilistic model we pro-
pose, is illustrated on the Gas Genenrator data used by
Langseth [9]. This is a subset of Phase IV of the Gas
Turbine dataset from the Offshore Reliability Database
(OREDA [10]). We have 22 failures in this dataset, out
of which 8 are classified as critical and 14 as degraded.
The main results coming out from this dataset is that
even for a small sample population we can say that
the conditionally subsurvival functions are not from
the same population and a random signs model is ap-
propriate to interpret this data.

2 COMPETING RISK

In the competing risk approach we model the data
as a renewal process, that is as a sequence of i.i.d. vari-
ables Z1, Z2,. . . . Each observable Z is the minimum

of two variables. The lifetime of the component is X:
this is the lifetime that the component would reach if
it were not preventively maintained. The preventive
maintenance (PM) time of the component is Y : this
is the time at which the component would be preven-
tively maintained if it didn’t fail first. Clearly,

Z ≡ [min(X, Y ), I(X < Y )].

(In fact, usually X will be the minimum of several vari-
ables giving the time to failure by a particular failure
mode: we shall just consider the case of one failure
mode.)

Figure 2. Graphical representation of competing risk
data in calendar time

The observable data will allow us to estimate the
sub-survival functions,

S∗X(t) ≡ Pr{X > t, X < Y }

and
S∗Y (t) ≡ Pr{Y > t, Y < X},

but not the true survivor functions of X and Y .
The conditional subsurvival function is the subsurvival
function conditioned on the event that the failure mode
in question is manifested. With continuity of S∗X(t)
and S∗Y (t) at zero,

Pr{X > t, X < Y |X < Y } = S∗X(t)/S∗X(0),

P r{Y > t, Y < X|Y < X} = S∗Y (t)/S∗Y (0).

Closely related to the notion of the subsurvival func-
tion is the probability of censoring beyond time t:

Φ(t) = Pr{Y < X|X ∧ Y > t} =

=
S∗Y (t)

S∗Y (t) + S∗X(t)
.

From data we can only estimate the subsurvival func-
tions. However, we want to have an estimate for the
marginal survival function SX(t). Without additional
assumptions on the joint distribution of X and Y , as-
sumptions about the interrelation of corrective and
preventive maintenance, it is impossible to estimate
the marginal. By making extra assumptions, it is pos-
sible to restrict oneself to a subclass of models in which
this marginal is identifiable [1].



2.1 Independent Exponential Compet-
ing Risk

By observing independent copies of Z ≡
[min(X, Y ), I(X < Y )] we can estimate the subsur-
vival functions. Assuming independence of X and Y
we can determine uniquely the survival functions of X
and Y ; in this case the survival functions of X and Y
are said to be identifiable from censored data. A con-
tinuous subsurvival pair is always consistent with an
independent model, but is not always consistent with
an independent exponential model. We can derive a
very sharp criterion for independence and exponential-
ity in terms of the subsurvival functions:

Theorem 1 Let X and Y be independent life vari-
ables, then any two of the following imply the others:

• SX(t) = exp(−λt)

• SY (t) = exp(−γt)

• S∗X(t) = λ
λ+γ exp(−(λ + γ)t)

• S∗Y (t) = γ
λ+γ exp(−(λ + γ)t)

Remark: If X and Y are independent exponential
life variables with failure rates λ and γ, then the condi-
tional subsurvival functions of X and Y are equal and
exponential distributed with failure rate λ + γ and the
probability of censoring beyond time t is constant:

S∗X(t)/S∗X(0) = S∗Y (t)/S∗Y (0) =
= exp(−(λ + γ)t)

Φ(t) =
γ

λ + γ
.

2.2 Random Signs Censoring

Perhaps the simplest dependent competing risk
model which leads to identifiable marginal distribu-
tions without restricting their form is random sign cen-
soring. Consider a component subject to right censor-
ing, where X denotes the time at which a component
would expire if not censored. Suppose that the event
that the life of the component be censored is indepen-
dent of the age X at which the component would ex-
pire, but given that the component is censored, the
time at which it is censored may depend on X. This
might arise, if a component emits warning before expir-
ing; if the warning is seen then the component is taken
out, thus censoring its life, otherwise it fails. The ran-
dom signs model assumes that the probability of see-
ing the warning is independent of the component’s age.
This situation is captured in the following definition:

Definition 1 Let X and Y be life variables with Y =
X−Wδ, where 0 < W < X is a random variable and δ
is a random variable taking values {1,−1}, with X and
δ independent. The variable Z ≡ [min(X, Y ), I(X <
Y )] is called a random sign censoring of X by Y .

Note that

S∗X(t) = Pr{X > t, δ = −1} =
= Pr{X > t}Pr{δ = −1} =
= SX(t)Pr{Y > X} =
= SX(t)S∗X(0).

Note also that Pr{Y > X} and S∗X(t) can be es-
timated from observing independent copies of Z and
that under random signs censoring SX(t) is equal to
the conditional subsurvival function of X.

Cooke [3] proved that the random signs model is
consistent given subsurvival functions if and only if the
conditional subsurvival function of X is greater than
the conditional subsurvival function of Y for all t > 0.
In this case the probability of censoring beyond time t
is maximum at the origin. This results suggests that
if the random signs model holds then the independent
exponential model is difficult to characterize data.

3 Gas Turbine Data - OREDA

A number of offshore platforms had been in operat-
ing in Europe for a significant length of time, and the
Offshore Reliability Data (OREDA) handbook project
was established to compile a comprehensive basis of
reliability information from failure and repair records
already existing in company files and records.

For the purpose of our study, we consider a sub-
set of Phase IV of the Gas Turbine dataset from the
Offshore Reliability Database (OREDA [10]), as used
by Langseth [9]. These data involve 22 failures, out of
which 8 are classified as critical and 14 as degraded.
Degraded failures can be associated to a preventive
maintenance action and critical failure to a corrective
maintenance action.

The empirical subsurvival functions and condi-
tional subsurvival functions are defined as [5]:

Ŝ∗X(t) =
number of X events after time t

total number of events

Ŝ∗Y (t) =
number of Y events after time t

total number of events

ĈS
∗
X(t) =

number of X events after time t

total number of X events

ĈS
∗
Y (t) =

number of Y events after time t

total number of Y events

which are estimators for subsurvival functions and
conditional subsurvival functions.



Figure 3. Empirical subsurvival functions

Figure 4. Conditional subsurvival functions and Φ(t)
function

Figure 4 shows that the function Φ(t) [ 2
1+2 ] is min-

imum at the origin and the conditional subsurvival
function of critical failure dominates the conditional
subsurvival function of degraded failure, as predicted
by random signs model. Hence, an independent expo-
nential model is not appropriate for this data. Further
we will present a statistical test for testing if the inde-
pendent exponential model fits this data.

4 Two-sample Kolmogorov-Smirnov
Test

If an independent exponential model holds then
the conditional subsurvival functions are equal and
the probability of censoring beyond time t is constant.
Hence, we want to test if the empirical estimation of
the conditional subsurvival functions are from the same
population.

Our data consists of two independent random sam-
ples drawn independently from each of two popula-
tion. Let U and V be random variables with survival
functions SU (t) and SV (t) equal to the condtional sub-
survial functions of X respectively Y . From Gas Tur-
bine Data we have two samples U1, U2, ..., U8 of size
m = 8, drawn from the U population and V1, V2, ..., V14

of size n = 14, drawn from the V population.
The hypothesis of interest in the two-sample prob-

lem is that the two-samples are drawn from identical
populations [8],

H0 : SU (t) = SV (t) for all t.

The one-sided Kolmogorov-Smirnov two sample test
criteria, denoted by D+

m,n is the maximum difference
between the empirical functions of SU (t) and SV (t):

D+
m,n = max[Sm

U (t)− Sn
V (t)].

Since here the directional differences are considered,
D+

m,n is appropriate for a general one-sided alternative:

H1 : SU (t) ≥ SV (t) for all t.

The null hypothesis H0 is rejected at the significance
level α if

D+
m,n > dα,

where
Pr{D+

m,n > dα} = α.

The asymptotic distribution of
√

mn
m+nD+

m,n is [7]:

lim
m,n→∞

Pr{D+
m,n ≤ dα} = 1− e−2d2

α .

If the size of the samples are bigger than 50 then the
asymptotic formula can be used to determine the sig-
nificance level at which the null hypothesis is rejected,
otherwise tables should be use. Further we will present
an algorithm how to calculate the tail probability for
small samples, necessary for programing implementa-
tion [6].

Let U(1), U(2), ..., U(m) and V(1), V(2), ..., V(n) be the
order statics of the two samples of size m = 8 and n =
14 from continuous populations SU (t) and SV (t). To
compute Pr{D+

m,n ≤ dα}, where D+
m,n = max[Sm

U (t)−
Sn

V (t)], we first arrange the combined sample of m + n
observation in increasing order of magnitude (Table 1).

Sample v v v v u
v v v u u u
v v v v u v
u u v v u

Table 1. Failure times of Gas Turbine data set

The arrangement can be plotted on a Cartesian co-
ordinate system by a path which stars at the origin
and moves one step up for a u observation and one
step to the right for a v observation, ending at (n, m).
The observed values of mSU (t)m and nSV (t)n are the
coordinates of all points (i, j) on the path, where i and
j are integers. The number dα is the largest of the
difference

i

m
− j

n
=

ni−mj

mn
.

The vertical distance from any point (i, j) on the
path to the line nu −mv = 0 and situated below it is
max[j− ni

m ]. Hence, ndα for the observed sample is the
distance from the diagonal to that point on the path
which is farthest from the diagonal line and is situated
below it.



Figure 5. Cartesian representation of the combine
sample

For our case the farthest point is Q and dα = 0.554.
The total number of arrangements of mU and nV r.v.
is Cm

m+n, and under H0 each of the corresponding paths
is equally likely. The probability of an observable value
of Dm,n not less than dα then is the number of paths
which have points at a below distance from the diago-
nal not less than ndα, divided by Cm

m+n. We mark off a
line at vertical distance ndα from the diagonal, below
it, as in Figure 5. Denote by A(m,n) the number of
paths from (0, 0) to (m,n) which lie entirely above this
line. Then

Pr{D+
m,n ≤ dα} =

A(m,n)
Cm

m+n

.

A(i, j) at any intersection (i, j) satisfies the recursion
relation:

A(i, j) = A(i− 1, j) + A(i, j − 1),

with boundary conditions A(0, j) = A(i, 0) = 1. Thus
A(i, j) is the sum of the numbers at the intersec-
tion where the previous point on the path could have
been while it still was within the boundaries. Since
A(8, 14) = 310, 751, we have:

Pr{D+
8,14 ≤ dα} = 0.0282

Hence we reject the null hypothesis that the condi-
tional subsurvival functions are coming from the same
population at the significant level α = 0.0282.

5 Conclusions

Figure 4 shows that the conditional subsurvival func-
tion for critical failures dominates the conditional sub-
survival function for degraded failures, as predicted by
random signs model.

The statistical test rejected the null hypothesis that
the exponential independent model is appropriate for
this data at the significance level α = 0.0282, indicat-
ing that the random signs model might be indicated
to interpret data. The algorithm of calculating the tail
probability for small samples can be implemented also
to other sets of data with a small number of events.
We mention also the example of the pressure relief

valves data from a Swedish nuclear station [4]. The
Kolmogorov-Smirnov-test can be applied to test if the
exponential independent model describes data. The
null hypothesis (exponential independent model) is re-
jected at the significance level α = 0.0209. It is worth
mentioning that this test can yield important conclu-
sions even if one or both of the competing risks are
scarce. The test is powerful in spite of having only 4
“alarm” and “unintended discovery” events, because
there are then a large number of events of competing
risk. Thus, although the estimate of the conditinal
subsurvival function of “alarm“ and “unintended dis-
covery” is very noisy, the estimate of the competing
conditional subsurvival function is not.

Given the Glivenko-Cantelli theorem that the esti-
mated distribution function converges with probability
one to the real distribution function when the num-
ber of observation increase, this mean that the quality
of estimating the parameters of the distribution is in-
creasing but the population from which the sample is
drawn remains the same. Hence, we can conclude that
the conditional subsurvival functions are not coming
from the same population and even for a small number
of samples, the exponential independent model is not
appropriate for this data.
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