
1 INTRODUCTION

In many areas of civil engineering, the question
arises which probability distribution should be used
to model the load and resistance. Instead of choosing
one particular probability distribution, it is also pos-
sible to consider various probability distributions
and to attach weights to these distributions according
to how good the fits are. The probability distribution
for which the standard deviation of its predictions is
large should be given less weight relative to those
distributions that exhibit less scatter. Weight factors
for probability distributions can be determined with
different methods. In Kass and Raftery (1995) a
Bayesian method is suggested to derive these weight
factors. Their method was successfully applied in an
economics case study by De Vos (1995) and a bio-
metrics case study by Volinsky et al. (1996). In Tang
(1980), a linear regression method was suggested to
derive the weight factors. His method was success-
fully applied in a sea level case study by Van Gelder
et al. (1996) and by Perricchi et al. (1983) in hydrol-
ogy. In this paper, the two proposed methods will be
reviewed briefly. Since the method of Tang is de-
fined for comparing two probability distributions
only, it appeared to have some disadvantages. In this
paper, however, his method is extended to n prob-
ability distributions (n ≥ 2). The methods are applied
to estimating extreme discharges of the Oder. Fi-
nally, they are tested in a Monte Carlo simulation.

2 REVIEW OF THE METHODS

In this section, the two methods for determining the
weight factors of probability distributions are de-
scribed.

2.1 Bayes factors

Consider a data set D and two possible probability
models (or hypotheses) H1 and H2. In the traditional
approach we would determine a test statistic T and
compute its p-value according to model H1. If the
test statistic of the data results in a smaller value
than the p-value, then we would reject H1. This tra-
ditional way of model testing has a lot of disadvan-
tages. It can only be applied when two models are
nested, one within the other. Furthermore it can only
offer evidence against hypothesis H1 under small p-
values; we cannot accept H1 under large p-values.
The p-value offers only an interpretation as a long-
term probability in a long repetition of the same ex-
periment. In the Bayesian approach these disadvan-
tages don’t exist.

In the Bayesian approach, we apply Bayes theo-
rem to the data that each of the models is supposed
to predict and compute the posterior probability that
a certain model is correct. There is no limit to the
number of models that may be simultaneously con-
sidered, nor does any model need to be nested within
any of the others.
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Given prior probabilities p(H1) and p(H2) = 1-
p(H1), the data produces posterior probabilities
p(H1|D) and p(H2|D) = 1-p(H1|D). The quantity
commonly used to summarise these results is the
Bayes factor:

B=[p(H1|D)/p(H2|D)]/[p(H1)/p(H2)],         (1)

which can be reduced by Bayes theorem to:

B=p(D|H1)/p(D|H2).         (2)

So, the Bayes factor is precisely the probability of
H1 in favour of H2 given solely by the data and its
prior beliefs.

By using non-informative improper priors,
p(D|H1) = ∫L(D|H1,λ)p(H1(λ))dλ will not exist. Sev-
eral ideas have been suggested to repair this prob-
lem:

1. Subdivide the data into two sets D=(D1, D2)
and use D1 to generate prior information for D2. This
is an idea of Berger and Pericchi (1996) who also
give suggestions how to split up D.

2. Apply the Schwarz Criterion:
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where iλ̂  is the maximum likelihood estimator under
Hi, ri is the number of parameters in model Hi, and n
is the number of observations. In this criterion, the
term (r2- r1)log(n) acts as a penalty term which cor-
rects for differences in size between the models.
Although the Schwarz criterion is independent of the
prior density, it may be viewed as a useful approxi-
mation to -2logB.

In order to test hypotheses using Bayes factors,
Kass and Raftery (1995) suggested the following
guidelines:

Table 1. Guidelines testing hypotheses using Bayes factors.______________________________________________
2logB B   Evidence against H1______________________________________________

0 to 2 1 to 3 Not worth more than a bare mention

2 to 5 3 to 12  Positive

5 to 10  12 to 150  Strong

>10 >150 Decisive
_____________________________________________

Suppose (H1,H2,...,Hn) is our collection of candidate
models, and γ is our quantity of interest. Given a set

of prior model probabilities {p(H1),p(H2),...,p(Hn)},
the posterior distribution of γ is given by

∑ = γ=γ n

i ii DHpDHpDp 1 )|(),|()|( , (4)

where p(γ|Hi, D) is the posterior for γ under the i-th
model, and p(Hi|D) is the posterior probability of
this model. Averaging over models can result in a
better fit than using any model individually. Despite
this advantage there may arise a problem in the fact
that calculation procedures can be time consuming.
This problem does not exist when the number of
models is small (say, n=2-5). Markov-Chain Monte-
Carlo methods are developed for efficient calcula-
tion (Carlin and Louis, 1996).

Any approach that selects a single model and then
makes inference conditionally on that model ignores
the uncertainty involved in the model selection,
which can be a big part in the overall uncertainty.
This difficulty can be avoided if one adopts a Baye-
sian approach and calculates the posterior probabili-
ties of all the competing models, following directly
from the Bayes factors. A composite inference can
then be made that takes account of model uncer-
tainty in a simple way.

2.2 Tang’s method

Tang (1980) proposed a linear regression model
whereby discrepancy between observed data and the
predicted probability model, as well as uncertainty
of extrapolation from observations can be incorpo-
rated into hydrologic risk assessment. The method is
based on a Bayesian linear regression analysis of the
observed data (after transformation) plotted on prob-
ability paper. Given the discrepancies between data
and model predictions in terms of expectations and
variances of a design value, Tang’s method involves
combining these expectations and variances over the
different probability models.

Suppose E(Y1) and Var(Y1) denote the mean and
variance of the design value predicted using one
model, whereas E(Y2) and Var(Y2) denote the mean
and variance of the design value predicted using an-
other independent model. According to Tang, an
overall estimate of the expectation based on the
combined information of two independent models
can be determined using Bayes theorem as
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and an overall estimate of the variance as
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Observe that the combined estimate E(X2) will
approach E(Y1) if Var(Y1) is extremely small relative
to Var(Y2). In other words, if the first model pro-
vides an excellent fit while the second model pro-
vides some scatter, then the information of the sec-
ond model could be neglected.

Using Bayes theorem, Eqs. (5-6) can be deter-
mined as follows. Let us consider a random sample
from a normal distribution with an unknown value
of the mean and a specified value of the variance.
Suppose that the prior distribution of the unknown
mean is a normal distribution, then the posterior dis-
tribution is also a normal distribution with parame-
ters similar to Eqs. (5-6). As a matter of fact, the
first and second model can be interpreted as the prior
and observed information, respectively. For exam-
ple, the posterior mean is an average of the prior
mean and the sample mean, weighted inversely by
the respective variances. For details, see Ang and
Tang (1975, Chapter 8).

Although Tang presented the formulae for com-
paring design-value estimates on the basis of two
probability models only, they can be easily general-
ised to n probability models where n ≥ 2. If Eqs. (5-
6) hold for all possible pairs of n independent prob-
ability models, then both the expectation E(Xn) and
the variance Var(Xn) can be derived using mathe-
matical induction. This new result is proved in the
appendix.

3 CASE STUDY

As a result of extreme rain during July 1997, Poland
was affected by a devastating flood, the worst expe-
rienced in the past 200 years. Areas in seven voivod-
ships in the upper and middle Oder river basin and
upper Vistula river basin were flooded over 25% of
their territory causing a flood damage of approxi-
mately 3 billion US dollars (Figure 1, Der Spiegel,
1997).

River floods seem to happen more often lately. A
frequency analysis can be performed to determine
the occurrence frequencies or return periods of ex-
treme river floods. Estimates of the return periods of
river floods are necessary in a reliability-based de-
sign of flood protection structures. Uncertainties are
important in a flood frequency analysis and reliabil-
ity-based design. Statistical uncertainties due to lim-
ited amounts of flood data and model uncertainties
due to limited descriptive capabilities of the physical
flooding process are two major uncertainties which
have to be dealt with.

Figure 1. Topographical map of the Oder basin

In this case study, the approach is followed to de-
termine the weight factors of four commonly applied
probability distributions in hydrology with the two
methods reviewed. The results are given in Tables 2
and 3.

Table 2.  Bayes factors______________________________________________
Yi n Weight Factors______________________________________________

Rayleigh 1 7%

Exponential 1 17%

Gumbel 2 66%

Lognormal 2 10%_____________________________________________

Table 3.  Tang’s method (quantile 10-3)______________________________________________
Yi n E(Yi) Var(Yi)   Weight Factors______________________________________________

Rayleigh 2 2599 11098 21%

Exponential 2 3673  9326 25%

Gumbel 2 3194  5111 46%

Lognormal 2 3482 32175 7%_____________________________________________

Notice that with both methods the Gumbel distribu-
tion receives the highest weight factor.

In Figure 2, the four frequency curves (according
to Tang’s method) are shown together with the 51
annual maxima of the Oder river at the city of Eis-
senhηttenstadt (obtained from the Bundesanstalt für
Gewässerkunde). From a visual inspection of the
models, it is very difficult to conclude which model
might be considered the best. The weight factors can
therefore be very useful.



Figure 2. Frequency curves

The discharge of 1997 (2530 m3/s) has a return pe-
riod of 167 years according to the Bayes factors and
138 years according to Tang’s method.

For calculation of the Bayes factors, the choice of
the domain of numerical integration has been inves-
tigated. It appears not to be very sensitive. In Table
2 the results are shown for the situation in which the
integration domain stretches from one third of the
mean value of the parameter to three times the mean
value of the parameter. However, if the integration
domain is enlarged with a factor 5 around the mean
value, then the following Bayes factors are obtained:
12%, 24%, 54% and 9%. And with a factor 10: 18%,
36%, 39% and 6%.

Tang’s method is concerned with the weight fac-
tors with respect to a certain quantile. If instead of
the 10-3 quantile the 10-2 quantile is studied, then the
following differences can be noted:

Table 4.  Tang’s method (quantile 10-2)______________________________________________
Yi n E(Yi) Var(Yi)   Weight Factors______________________________________________

Rayleigh 2 2118 9904 18%

Exponential 2 2621 6752 26%

Gumbel 2 2383 4058 44%

Lognormal 2 2478 15131 12%

_____________________________________________

Since Tang’s method is based on a linear regression
analysis, it can only be applied to probability distri-
butions with two parameters. For the Rayleigh, ex-
ponential and Gumbel distribution, both the location
and scale parameter are fitted; for the lognormal
distribution the mu and the sigma. When one- or
three-parameter distributions are studied, Tang’s
method must be adapted.

Notice that the number of parameters of the prob-
ability distribution has a large influence on the vari-
ance of the p-quantile and therefore also on the
weight factor. Some kind of correction factor could
be introduced to take account of this influence. Such
a penalty term was also incorporated in Kass and
Raftery’s Bayes factors. However, it will not be a
subject of attention in this paper.

In the above case study, differences have been
found between both methods. In order to test the
performance of both methods, Monte Carlo simula-
tions have been performed. The results are presented
in the next section.

4 PERFORMANCE OF THE METHODS

Monte Carlo simulations have been performed to
determine the posterior model probabilities as a
function of the number of samples, and the distribu-
tion type from which the simulations were generated
(Rayleigh, exponential, Gumbel and lognormal). In
all cases, diffuse prior model probabilities have been
used, θ1=θ2=θ3=θ4=1/4, and uniform parameter pri-
ors have been used. The following integrals were
calculated numerically:

K1=∫Lexp(λ|D)p(λ)dλ,

K2=∫∫Lgumb(δ,λ|D)p(δ,λ)dδdλ,

K3=∫Lray(δ|D)p(δ)dδ,

K4=∫∫Llognorm(δ,λ|D)p(δ,λ)dδdλ,

with Lexp , Lgumb , Lray , Llognorm the exponential,
Gumbel, Rayleigh and lognormal likelihoods, re-
spectively. According to Kass and Raftery (1995),
the weight factors are defined by:

θi=Ki /(K1+K2+K3+K4),          i=1,...,4.

The weight factors according to Tang’s method
have also been determined. In order to exclude sta-
tistical variability, the determination of the weight
factors has been performed 1000 times and the mean
values are presented in Tables 5a-d. In each cell the
value on the l.h.s. gives the weight factor according
to the Bayes factors; the value on the r.h.s. according
to Tang’s method.
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Tables 5a-d. Simulation results (l.h.s. Bayes; r.h.s. Tang)

Simulation from exponential distr. (c.o.v. 100%; fixed value)
n=10 n=20 n=50

Rayleigh 0         0.35 0             0.30 0             0.22
Exponential 0.99    0.23 0.99        0.32 0.99        0.44
Gumbel 0.01    0.24 0.01        0.26 0.01        0.25
Lognormal 0         0.17 0             0.13 0             0.07

Simulation from Rayleigh distribution (c.o.v. 48%; fixed value)
n=10 n=20 n=50

Rayleigh 0.43    0.50 0.72        0.53 0.88        0.56
Exponential 0.48    0.18 0.23        0.14 0             0.10
Gumbel 0.09    0.29 0.05        0.32 0.12        0.33
Lognormal 0         0.02 0             0.01 0             0.01

Simulation from Gumbel distribution (c.o.v. 20%)
n=10 n=20 n=50

Rayleigh 0         0.40 0            0.38 0            0.36
Exponential 0.95    0.17 0.83       0.17 0            0.15
Gumbel 0.04    0.25 0.15       0.29 0.93       0.34
Lognormal 0.01    0.17 0.02       0.15 0.07       0.15

Simulation from lognormal distr. (c.o.v.20%)
n=10 n=20 n=50

Rayleigh 0         0.44 0             0.44 0            0.09
Exponential 0.57    0.12 0.80        0.12 0            0.43
Gumbel 0.34    0.26 0.18        0.29 0.77       0.31
Lognormal 0.07    0.17 0.02        0.16 0.23       0.16

The weight factors according to both methods can
distinguish competing models, even when the length
of record is quite short. However, the Bayes factors
perform better than Tang’s method. As the sample
size increases upto n=50, the true model comes out
with a model probability close to 100% in the case
of Bayes factors, whereas Tang’s method has prob-
abilities around 50%. For the lognormal distribution
both methods perform quite bad. One has to have
sample sizes of the order 100-200 before the log-
normal distribution is “recognised”.

Also notice that for Gumbel generated data, the
incorrect exponential model had higher posterior
probabilities for low sample sizes. This is a bit sur-
prising, since the Gumbel distribution even has one
parameter more than the exponential distribution. In
Figure 3, this behaviour has been analysed in more
detail with Bayes factors for small sample sizes.
Note the high standard deviation of the weight fac-
tors.

Figure 3. The Exponential and Gumbel models.

5 CONCLUSIONS

Probability exceedance curves are used frequently in
many areas of safety and reliability. In this paper,
the question how to select a certain probability dis-
tribution has been tackled by using Bayes factors
and Tang’s method. Both methods are reviewed,
extended, investigated with Monte Carlo experi-
ments and applied to a case study. Bayes factors ap-
pear to perform better than Tang’s method and are
therefore suggested to be used in distribution selec-
tion.
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APPENDIX

THEOREM:
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PROOF:

The proof follows by mathematical induction. As the
basis of induction,
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Using the induction hypothesis, it follows that
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