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Abstract

Modern reliability data bases are going to be discuss, taking into account competing risk
models. A new competing risk model is presented.

1 Introduction

Modern RDB’s consist of data fields relating to failure modes, failure causes, maintenance/repair
actions, severity of failures, component characteristics, operating characteristics. For every specific field
we can distinguish ten or more competing items, which can compete to terminate the service sojourn
of the component. For example, a maintenance engineer is interested in “degraded” and “incipient”
failures, as they are associated with preventive maintenance. He is trying also to take the least expensive
maintenance action: “repair action” or “adjustment action” are favored above “replace action”. “Critical”
failures are of primary interest in risk and reliability calculations and a component designer is interested
in the particular component function that is lost, in the failure mechanism and he wishes to prevent the
failure of the most expensive components of the system.

The general theory of competing risk is advanced here as a proper mathematical language for modeling
reliability data. To check the performance of different probabilistic models, we discuss data set coming
from two identical Compressor Units from one Norsk Hydro ammonia plant, for the period of observation
2-10-68 up to 25-6-89.

The competing risk models available in the literature are developed especially for nuclear sector where
strict regulations are imposed, are not appropriate for all the fields of Compressor Unit Data. Due to
the fact that the compressor unit consists of more heterogeneous sub-components another competing risk
model was developed to interpret the competing risk between different failure modes.

2 Competing Risk

In the competing risk approach we model the data as a renewal process, that is as a sequence of i.i.d.
copies of a r.v. Z. Each observable Z is the minimum of two or more variables. In many cases we can
reduce the problem to the analysis of two competing risks classes, described by two random variables X
and Y. Hence we observed the least of X and Y, Z = [min(X,Y"), (X < Y)] and observe which it is.
For simplicity we assume that P(X =Y) = 0.

From data we can estimate only the subsurvival functions, S% (t) = P(X > ¢,X <Y) and S5 (¢t) =
P(Y >t,Y < X), but not the true survival functions of X and Y. Note that S% (¢) depends on Y, though
this fact is suppressed in the notation. Note also that S%(0) = P(X < Y) and S5 (0) = P(Y < X),
hence S%(0) + S5-(0) = 1.

The conditional subsurvival function is the subsurvival function, conditioned on the event that the
failure mode in question has occurred. With continuity of S% (t) and S5 (t) at zero,

CSx(t) = P(X > t,X < Y|X <Y) = §%(1)/S%(0),CSy(t) = P(Y > ,Y < X|Y < X) = S&(t)/S%(0).

Closely related to the notion of subsurvival functions is the probability of censoring beyond time ¢,

@(t):P(Y<X|Y/\X>t):5*§((g+t}g;(t)'



This function seems to have some diagnostic value, enabling us to choose the competing risk model which
fit the data. Note that ®(t) = P(Y < X) = 53(0).
Peterson derived bounds on the survival function Sx (¢) by noting that

P(X<t,X<Y)<P(X<t)<P(XAY <1),

which entails S% (t) + S5 (0) > Sx(t) > S%(t) + S5 (t). Note that the quantities on the left and right
hand sides are observable from data.
Using the relation between failure rate and survival function, the Peterson bounds become:

1
lin () = —In(S% (t) + S7(0))/t < (1/15)/0 rx(u)du < —In(S%(t) + S5 () = lmasz(t).

A similar relation holds for Sy ().

2.1 Independent Exponential Competing Risk

By observing independent copies of Z = [min(X,Y),I(X < Y)] we can estimate the subsurvival
functions. Assuming independence of X and Y we can determine uniquely the survival functions of X
and Y; in this case the survival functions of X and Y are said to be identifiable from censored data. A
continuous subsurvival pair is always consistent with an independent model, but is not always consistent
with an independent exponential model. Bedford and Cooke (2001) showed that for X and Y independent
exponential life variables with failure rates A and ~y, the conditional subsurvival functions of X and Y are
equal and exponential distributed with failure rate A 4+ v and the probability of censoring beyond time ¢

is constant.

2.2 Random Signs Censoring

Perhaps the simplest dependent competing risk model which leads to identifiable marginal distributions
without restricting their form is random sign censoring. Cooke (1996) proved that the random signs model
is consistent given subsurvival functions if and only if the conditional subsurvival function of X is greater
than the conditional subsurvival function of Y for all ¢ > 0. In this case the probability of censoring
beyond time ¢ is maximum at the origin. This results suggests that if the random signs model holds then
the independent exponential model is difficult to characterize data.

2.3 Conditional independence model

Another model from which we have identifiability is conditional independent model. This model con-
siders the competing risk variables, X and Y, as sharing a common quantity V', and as being independent
given V: X =V +W, Y =V 4+ U, where V,U, W are mutually independent. Hokstadt (1997) derived
explicit expressions for the case that V,U, W are exponential distributed and obtained the same result
as in the case of Independent Exponential Competing Risks: equal conditional subsurvival functions and
constant probability of censoring beyond time ¢.

3 Analyze of Competing Data Sets

The data set proposed for discussion of different competing risk models comes from one Norsk Hydro
ammonia plant operating two identical compressor units, for the period of observation 2-10-68 up to 25-6-
89. This yields 21 years of observation and more than 350 events. As every modern reliability data base,
this data base has a detailed compressor unit history: time of component failure; failure mode: leakage,
no start, unwanted start, vibration, warming, overhaul, little gas stream, great gas stream, others; degree
of failure: critical, non-critical; down time of the component; failure at the compressor unit: 1 - first unit
failed, 2 - second unit failed, 3 - both units failed; failure of System and Sub-System of Compressor unit;
action taken: immediate reparation, immediate replacement, adjustment, planned overhaul, modification,
others.

For the analysis of this data base a software tool was developed in the higher order programming
languages Visual Basic and Excel. The operator can choose two classes of competing risk for the five
fields of interest: failure mode, degree of failure, action taken, system/subsystem. The analyze can be



performed over the whole time of observation or for a certain time window by specifying the limiting
dates of interest.

The upper graphs show the empirical subsurvival functions, conditional subsurvival functions and the
probability of censoring above time t. The bottom graphs show the time-wise average failure rate bounds
for both classes of risk. Selecting an appropriate competing risk model on the bases of empirical subsur-
vival functions, was simply made graphically (Cooke 1996). In (Bunea 2002) we proposed a statistical
test to check if an independent exponential model is appropriate to interpret data against the alternative
of random signs model. However we will discuss further the data analysis only in terms of graphically
visualization.
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Figure 1. Analysis of “failure effect” field
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Figure 3. Analysis of “action taken” field Figure 4. Analysis of “sub-system” field

In “failure effect” field analysis the class “leakage, no start, unwanted start and vibration” seems to
have a negative influence on systems, hence the maintenance engineer is trying to avoid it. Figure 1.
shows a slightly increasing probability of censoring after time ¢ and non-constant time average failure
rate, which is not consistent with any model available in the literature. A new model will be present in
next section for this case.

The condition subsurvival function for critical and noncritical failures seem to be equal and the
exponential independent model appropriate to fit data. But, the right bottom graph in Figure 2. indicates
that the time average failure rate for the critical failure can not be constant and in this case the conditional
independent model may be preferred.

Discussions with maintenance personnel revealed that the most expensive action that they will try to
avoid is immediate replacement. The conditional subsurvival function of the two competing risk classes
are crossing each other in one point. The literature provides no model for this case. The solution proposed
is to modify the time window period of analysis.



In Figure 4. the most expensive components (as piston and pump) are grouped in one competing risk
class. The conditional independent model is again favored against exponential independent model.

4 A new competing risk model

Let the survival function of the life time - Sx(¢) be a mixture of two exponential with parameters
A1, A2 and the mixing coefficient p, and the censoring survival function - Sy (¢) be an exponential with
parameter \,: Sx(t) = pexp{—XAit} + (I — p) exp{—Xot} and Sy () = exp{—A,t}.

If X and Z are independent, one can verify:

o Si(t) = px At exp{—(h + A} + (1 - p) 25 exp{—(, + o)1}

o Sy(t) = pxsr expf{—(Ay + M)t} + (1 — p) 3855 exp{—(Ay + A2)t}
sy {0y FA)+5E 32 S exp{— (A, +A2)t}
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Sx) < o) ®(t) is minimum at the origin, and is continuously increasing
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Note that S%(0) = pﬁ +(1 —p)ﬁ, and S5 (0) = p)\z)r)\l +(1-p) )\z’\;)\z.

Recalling that Z is the minimum of two variables and the indicator of which variable was smaller, the
survival function of Z becomes: P(Z > t) = pexp{—(A1 + Ay)t} + (1 — p) exp{—(A2 + Ay)t}.

The expectation and variance of Z are: E(Z) = pﬁ +(1- p)ﬁ and VAR(Z) = m +

W5 o — o) P o — i)’
)\y+)\1 )\y+>\1 )\y+)\1 >\y+A1 )\y+>\1 :

Using the above equations and S5 (0) we can obtain an estimation for the unknown parameters. For
example A, = S5.(0)/E(Z) and the values of p, A\; and A2 can be obtained numerically. Note that the

same solution for A, is obtained using the maximum likelihood method.
5 Conclusions

A new simply and elegant model has been developed for the case when the conditional subsurvival
functions of the censoring variable dominates the conditional subsurvival functions of the other risk. The
model agrees also with empirical time average failure rate bounds in terms of time average failure rate
shape: in “failure effect” field we can have decreasing time average failure rate for X and constant for Y.
In the same case of “failure effect”, we obtain a quick estimation of parameters: A\, = 0.0159, p = 0.8543,
A1 = 0.2617 and A = 0.852. These values can be used as input parameters for the MLE method. As
further work, it remains to find out a model which is appropriate for the “action taken” analysis case,
when the conditional subsurvival function are crossing each others.
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