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Introduction
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Research objective

“To develop an easy-to-use model for making optimal inspection
and maintenance decisions for pressurized vessels in the
process industry, under the assumption that field measurement
data is imperfect.’

Workshop “LCC of Civil Infrastructures”, August 20th, 2003 — p.4/22



Applying a stochastic process to the corrosion
degradation mechanism
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Corrosion state functions

The thinning due to corrosion state function is given by
(American Petroleum Institute, 2000):
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Resistance Stress
S = Material strength [MPa = 10bar] | t =  Time [yr]
C = Corrosion rate [mm/yr] d = Diameter [mm]
P = Operating pressure [bar] th = Thickness [mm]

The limit state is given by:

P xd
2S5

gt)=0&th—C xt=

Workshop “LCC of Civil Infrastructures”, August 20th, 2003 — p.6/22



Stochastic deterioration

resistance
A
Ry ‘ — Initial thickness
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The safety margin
IS given by:

P
m = th — Xd.

ﬁne 25

Workshop “LCC of Civil Infrastructures”, August 20th, 2003 — p.7/22



Bayesian gamma stochastic process decision model
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Gamma process for corrosion

* The corrosion is modelled as a gamma process with
iIndependent increments: X (¢) ~ Ga(x|at, 5) with ¢ > 0.

* Assuming linear degradation we want
E(X(t)) = put and Var(X (t)) = o°t,

where u Is the average amount of deterioration per time unit
and o Is the standard deviation of the deterioration.

* For X (¢) it holds that E(X(¢)) = 3t and Var(X(t)) = gt

therefore the parameters of the process are given by
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Fixing the standard deviation

* The mean and variance are uncertain, but by fixing the
standard deviation relative to the mean, I.e.

o= CQOV X pu,
results in (v = COV)
X(t) ~ Ga ' ! > 0
~ 14 :
=7 Tuv? )’

* This manipulation avoids the need for an assessment of the
CQV In the absence of sufficient data.
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Inverted gamma prior

Prior densities for the average corrosion rate
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Perfect inspections (1)

* Prior density w(u) = Ig(u|a, b), where the inverted gamma
density with parameters a > 0 and b > 0 is defined as:

19 (2]a, b) = F[zc;) G)aﬂ exp {—g} 23>0,

® Posterior density with one inspection:

t 75
— +a, 5+ b) o< I(z|p)m(p),

*(ulz) = g <u

where [(x|u) is the likelihood of measurement x (x > 0) at
time ¢ and 7 (u) is the prior for the average corrosion rate.
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Perfect inspections (2)

* Multiple perfect inspections:

(T, ..., Ty) =

ot —t o o 0B — T
:|g<u‘zz1yz2 v 1_|_a727,—1 22 v 1+b)

vV

* due to our choice of v = ¢/pu, the posterior for multiple
perfect inspections only depends on the last measurement
x, attime t,,. We assume that tg = x9 = 0.
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Imperfect inspections (1)

* Current non-destructive testing (NDT) techniques, like
ultrasonic thickness measurements, are not capable of
measuring the exact material thickness.

* To extend the existing Bayesian updating model such that it
can cope with imperfect inspections, we use a stochastic
process Y (t) consisting of the actual deterioration process
X (t) plus a normally distributed measurement error:

Y(t)=X(t)+e with e~ N(0,0).
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Imperfect inspections (2)

* likelihood for 1 inspection:

i ) = / P (Y — ©f(e)de

* likelihood for K > 1 inspections:

(Y1, -5y |p) = Hly v (k=1) Uk — Uk—1|p) =

Z/OO / 11 /o (r—vr—1=01) £ (81, . .., 6)db1 - - - dby
—00 —00 "

where D, = Y(/{) — Y(k — 1) and 0, = €, — €x_1.
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Imperfect inspections (3)

* Using Monte Carlo integration, the likelihood is
approximated by

Ly1,---,YK|p) =~

—Z HGa(dk—

— ¢ 1 .
bt — T—1 )I[o,oo)(dk B 5}&3))} |

as N — oo and where d;, = vy, — y.—1 and 5,2 J) — e,(g) e,(j)l
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Expected average costs per unit time

* A useful cost based decision criterium is the expected
average costs per time unit. For each inspection interval Ak
we calculate the ratio of the expected (cumulative) cycle
costs over the expected cycle length:

21 ¢i(p, AK)pi(p, Ak)
S lipi(p, Ak)

where p defines the replacement level (i.e. the corrosion
allowance)

Clp, Ak) = 2=
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Case study: inspecting a hydrogen dryer
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Vertical drum input data

Service start: 1977

Operating pressure: 32  Dbar
Drum diameter: 1180 mm
Initial thickness: 15+12% =16.8 mm
Corrosion allowance: 45 mm

Ultrasonic thickness measurements:

1986: 15.6 mm
1990: 146 mm
1994 14.2 mm
1998: 13.8 mm
Costs:

Inspection: 10,000 $
Preventive replacement: 50,000 $
Corrective replacement: 1,000,000 $

1
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Continuous prior and posterior

Prior and posterior results (cr8 = 0.375; n = 2000)
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Continuous prior and posterior

Prior and posterior results (cr8 = 0.375; n = 2000)
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Continuous prior and posterior

Prior and posterior results (cr8 = 0.375; n = 2000)
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Expected average costs per unit time

Expected average costs per year (N = 922)
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Conclusions

* The Bayesian stochastic process with gamma distributed
Increments is a very good alternative to current
methodologies. The expected average costs per year cost
criterium is well suited for safe and economical decisions.

e Computationally this model is inefficient, but with the right
assumptions and a proper implementation this can be
greatly improved:

- For example: we can choose an isotropic time grid (i.e.

t = 1/a. = COV?), such that the amounts of deterioration
are exponentially distributed. This enables more analytic
calculations, reducing the computational load.
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