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1. INTRODUCTION 
 
I asked Didier Dubois at a 1996 meeting of the European Fusion work group in 
Lecoutre, France: 
 
  How many legs does a squizzel have? 
 
He answered: 
 
     First tell me what a squizzel is. 
 
Right answer. 
 
But instead of telling him, I said: 
 
 
     Well, just use your own idea of what you think a squizzel is, and tell me  
     how many legs it has. 
 
The way he felt then is the way I feel when someone asks: 
 

                                                 
1 This paper is based on a Discussion Paper for FUSION workgroup, 1996. 
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     What is John’s fuzzy membership in the set of tall people? 
 
or 
 
     What is the degree of  possibility that the Loch  Ness monster exists? 
 
 
How is fuzzy membership or degree of possibility defined? I am not asking for a  
mathematical definition, I am asking for an operational definition, that is,  
for a rule which indicates how the mathematical notions are intended to be  
interpreted.  Leaping over more than a century of semantic analysis, a modern 
rendering of this question is the following:  
 
If Bob says: 
 
“The fuzzy membership of John in the set of tall people is 0.7057.” 
 
to what sentences in the natural language not involving the word “fuzzy” is Bob 
committed? 
 
If the set of non- trivial sentences given in answer to this question is the empty set,  
then this is operationally equivalent to the anatomy of the squizzel.  
 
In this paper I give  a crash course in the modern philosophy of science, reviewing 
operational definitions, their role in the representation of uncertainty and in 
“degenerating problem shifts”.  I then draw some lessons from the over 10,000 expert 
elicitations performed according to the probabilistic method of the TU Delft. I explain 
why, in my view, the challenge problems miss the challenges confronting the 
representation of uncertainty today. 
 
 
2. OPERATIONAL DEFINITIONS:  History 
 
It impressed me that most members of the FUSION workgroup, and many advocates 
of ‘alternative’ representations of uncertainty  seem unfamiliar with the notion of 
operational definitions. Here is a very brief historical sketch.  
 
The notion can be traced back at least to the first rational reconstructions  
of classical mechanics by Ernst Mach20 and Heinrich Hertz12. Both authors were  
troubled by conceptual problems associated with the notions of force, absolute  
time and space. Mach's approach was to 'deconstruct' the mechanics of Newton  
by semantic analysis. Defining "meaning" as correspondence with sensations,  
he tried to rebuild the theory using only primitive terms which could be  
directly associated with sensations. His efforts led him to the conclusion  
that the notions of absolute time and space had no meaning and could be  
dropped.  
 
Einstein's 1905 article on special relativity explicitly applies Mach's semantic analysis 
to deconstruct the classical notion of simultaneity and thus unified classical 
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mechanics and classical electromagnetism in special  relativity. Semantic analysis has 
been applied many times to eliminate redundant or meaningless concepts which block 
progress. After Einstein, the second most spectacular example is Niels Bohr's 
resolution of the  
wave-particle duality. 
 
Hertz took a very different approach. He axiomatized classical mechanics as a  
formal system and provided explicit rules for interpreting the primitive terms  
of this system in terms of measurements. Hertz’ mechanics, via the early work  
of Ludwig Wittgenstein, was the source of 'formal philosophy of science'.  
Within this discipline, one axiomatizes theories in order to study their  
properties and to clarify their interpretation. This has evolved into a  
picture of theories as layers of two (or more) languages. At the lowest level  
is an observation language in which the results of elementary measurements are  
described (e.g. "the needle points to 4"). A 'theoretical language' with  
axioms may contain terms which are directly interpreted in the observational  
language, but it's terms may also be interpreted in more complicated ways.  
However, to be non-trivial, a theory must entail observational statements  
which can be checked by experiment. 
 
The term 'operational definition' was actually introduced by P.W. Bridgeman  
in 1927, and similar concepts may be found in the writings of many philosophers  
of science ("coordinating definitions", "semantic rules", "correspondence  
rules", "epistemic correlations", and "rules of interpretation" (see21). Bridgeman's 
concept is somewhat naive in so far as it recognizes only the simplest way of giving 
meaning to abstract expressions. However, his term has perhaps the widest currency 
and seems suitable (to me) for discussing the meaning of probability, possibility,  
fuzziness and related concepts.  
 
It has long been recognized that there is no "theory free" or  
"presupposition-less" interpretation of languages. Rather, we interpret a  
theory, expressed in a theoretical language, in terms of another language,  
perhaps even the 'ordinary language'. The point of doing this is to link up  
with wider linguistic communities - that is more or less the history of  
semantic analysis in a nutshell. 
 
 
3. OPERATIONAL DEFINITIONS:  Probability 
 
 
The above suggests that giving operational definitions is an essential part of  
the foundations for a discipline. The period from 1900 to say 1940 was marked  
by intense activity at the foundations of probability. It will be clear that  
the choice of axioms is intimately related to the choice of interpretation.  
Axoims are evaluated not only with regard to consistency, but also with  
regard to their ability to describe accurately the intended interpretation.   
Four main types of interpretations of probability have been proposed: 
 
Classical interpretation 
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This is generally attributed to S. Laplace19 who defined probability as, 'the  
number of favorable cases divided by the number of equi-possible cases'.  
Examples from coin tossing and dice-throwing were used to illustrate what is  
meant by "equi-possible". The fact that we no longer hear about this  
interpretation is related to the inability of its proponents to provide an  
operational definition of "equi-possible". Each proposed operational  
definition was met by counterexamples and paradoxes. 
 
Logical interpretation 
 
This was first proposed by J.M. Keynes15 and later taken up by Rudolph Carnap4,5. 
The idea was that conditional probability should be interpreted as partial entailment.  
The notion of partial entailment never received a satisfactory interpretation  
and this interpretation is generally regarded as dead. 
 
 
Frequentist interpretation  
 
R. von Mises29 advanced the interpretation of probability as limiting relative  
frequencies in a "collective" or "random sequence". The reference to  
collectives or random sequences is essential. For example, the relative  
frequency of "1's" in the sequence: 
 
     1,0,1,0,1,0,1,0,... 
 
would not be interpreted as a probability. The frequency interpretation in  
fact introduces "probability" as a defined notion in a new formal system with  
a new primitive term "collective". Of course he is obliged to give an  
operational definition of "collective". Although he could point to 'random  
looking' sequences , a good axiomatization with operational definitions was  
never proposed. Later Kolmogoroff, Martin-Lof, Schnorr28 and others did succeed in  
this. Very roughly, a random sequence is one which passes all "recursive  
statistical tests". 
 
Subjective interpretation 
 
The above three interpretations, or perhaps we should say "interpretation  
programs" are "objective" in the sense that the probability assigned to an  
event should hold for all individuals....it should be a matter of rational  
consensus. 
 
The subjective interpretation interprets probability in terms of degree of  
belief of a subject. Different subjects can have different degrees of belief  
for one and the same event. 
 
E. Borel2 and F. Ramsey25 are regarded as founders of this interpretation. The  
best exposition is by L.J. Savage27. Probability is interpreted as 'degree of  
belief of a rational subject'. This degree of belief is measured by observing  
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an individual's choice behavior in specific situations. I will recall a few points here. 
 
There are many ways to operationalize 'degree of belief', but I believe that  
Savage's is the best from a philosophical viewpoint. Degree of belief is  
interpreted in terms of rational preference, and preference is operationalized  
in terms of choice behavior. 
 
Consider two events: 
 
     F: France wins the next World Cup Soccer tournament  
     U: The USA wins the next World Cup Soccer tournament. 
 
 
Consider two lottery tickets: 
 
     LF: worth $10,000 if F, worth $100 otherwise 
 
     LU: worth $10,000 if U, worth $100 otherwise 
 
John is offered ONE of these, and he may choose whichever he wants. Now,  
 
     John's degree of belief in F at least as great as his degree of belief in  
     U" 
 
is operationalized as 
 
     John chooses LF in the above choice situation 
 
We will denote “John chooses LF in the above choice situation”  as LF ≥ . LU (this 
is Savage’s notation). 
 
The following can be proved:  
 
i) If John's preferences satisfy the 'principle of definition' (my term for  
one of Savage's axioms) then the degree of belief does not depend on the  
values  used in the lottery (we can use $30.000 instead of $10.000; in fact we don’t 
need money at all, we can use any pair of consequences, as long as one is ‘better than’ 
the other). 
 
ii) If John's preferences satisfy the dominance axiom then his degree of  
belief in any event is less than or equal to his degree of belief in the trivial event, and 
is greater than or equal to his degree of belief in the empty event. 
 
iii) If John's preferences satisfy the sure thing principle, then his degree  
of belief is additive in the following sense: if F ∩ B = U ∩B = ∅, then 
 

Deg.Bel(F) ≥ Deg.Bel(U) if and only if 
Deg.Bel(F∪B) ≥ Deg.Bel(U∪B). 
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iv) If John's preferences are transitive and satisfy a technical axiom, then there  
exists one and only one finitely additive probability measure P which represents  
John’s degree of belief in this sense: For all events A, B: 
 

Deg.Bel(A) ≥ Deg.Bel(B) if and only if P(A) ≥ P(B) 
 
 
The reader should test these axioms against his/her own preference structure. Take for 
this purpose: 
 
 B: Belgium wins the next World Cup Soccer tournament 
 
In particular the reader should verify whether for him/her: 
 

LF ≥ . LU and  LU≥ .LB imply LF ≥ . LB 
 
 LF ≥ . LU implies L(F∪B) ≥ . L(U∪B). 
 
If so, then modulo a technical axiom, the reader’s uncertainty is represented by a 
unique (subjective) probability measure. 
 
The axioms mentioned above characterize what Savage means by rational  
preference. Every axiom has been discussed, tightened, relaxed, etc, and  
numerous variations of this theory have been explored. Interesting as these  
are, they remain variations on a theme, and the theme is the representation of  
degree of belief as a finitely additive probability. 
 
This does not mean that there are no problems with this theory. No formal theory will 
be wholly adequate to an informal concept, [6] elaborates some aspects of partial 
belief which are not captured by subjective probability. 
 
 
4. OPERATIONAL DEFINITIONS: Possibility and Fuzziness 
 
 
Given the enormous intellectual effort put into operationalizing the notion of  
probability, someone from my background is unable to understand why the  
proponents of alternative representations of uncertainty show so little interest in 
operational definitions. What does it mean to say: 
 
I )   The possibility  that France wins the next World Cup Soccer tournament is 
greater than the  possibility that Belgium wins the next World Cup Soccer tournament 
 
or 
 
II )  France belongs to the set of winners of the next World Cup Soccer tournament 
with fuzzy membership 0.7, and Belgium belongs to the set of winners of the next 
World Cup Soccer tournament with fuzzy membership 0.6 
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Why is it not a simple matter to say what these mean? At least, it would be  
nice to have answers to the following questions: 
 
1) Are possibility and fuzzy membership objective or subjective? 
 
2) Is there any implication between statements (I) or (II) (perhaps relative  
to a given individual) and (the individual's) choice behavior, e.g. with the  
lotteries LB and LC? 
 
3) Is there any implication between (I) or (II) and any other statements in a  
language not containing the words "possibility" and "degree of membership" or  
their synonyms? 
 
In the absence of operational definitions we can only evaluate the suitability of such 
putative representations of uncertainty on the basis of formal properties. Many such 
representations, including fuzziness and possibility, have a feature called ‘truth 
functionality’ which render them highly unsuitable as generally applicable 
representations of uncertainty. Truth functionality says that the uncertainty in 
proposition ‘A AND B’ is some function of (only) the uncertainty of A and the 
uncertainty of B, and similarly for ‘A OR B’.  Thus for example2 Ayyub1,  proposes a 
fuzzy representation of the ‘degree of belief” or “membership uncertainty” that 
element x belongs to set A;  the membership uncertainty that x belongs to A AND B 
is the minimum of the membership uncertainties that x belongs to A and that x 
belongs to B.    
 
To appreciate what this means, consider the following example. I get an email from 
an unknown “Quincy” . My  degree of belief or ‘membership uncertainty’ that Quincy 
belongs to the set “MEN” is ½ , and  my degree of belief that Quincy is a WOMEN is 
also ½ .  Therefore, my degree of belief that Quincy is a MAN AND WOMAN is the 
minimum of ½ and ½, or ½.  
 
Let me emphasize that I do not claim that operational definitions of degree of 
possibility or fuzzy membership are impossible. Dubois10 makes a very significant 
attempt to provide a Savage-style foundation for possibility theory. Quoting from this 
reference: “By providing an act-driven axiomatization of possibility and necessity 
measures, possibility theory…becomes an observable assumption that can be checked 
for the actual behavior of a decision-maker choosing among acts, just like subjective 
probability after Savage axiomatics. This is why the result of this paper is significant 
from the view of Artificial Intelligence as laying some foundations for qualitative 
decision theory” (p 477).  
 
The value of Dubois’ operational definition is that it allows us to see what a 
representation of uncertainty as degree of possibility or fuzzy membership3 means in 
terms of preference. Roughly, it means that the preference between actions is 

                                                 
2 The following is taken from a review of Ayyub (2001) appearing in Fuzzy Sets and Systems. 
3 Dubois considers a possibility measure as equivalent to a fuzzy membership function. 
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determined by their best (or worst) consequence. Thus the main axiom behind the 
possibility representation of uncertainty entails the following 
 
 
If you prefer $100 to a fair coin bet: B =  [+$1,000,000 if heads, -$1,000,000 if tails], 
and 
 if you prefer $100 to $99,  
then you should prefer $100 to [+$1,000,000 if heads, $99 if tails]. 
 
It is not impossible that such preference behavior is empirically or normatively valid 
in some contexts4, and in such contexts a possibilistic or fuzzy representation of 
uncertainty might be appropriate. 
  
 
5. PROGRESSIVE vs DEGENERATING PROBLEM SHIFTS 
 
According to the Methodology of Scientific Research Programs of I. Lakatos17,  
scientific theories do not simply get verified or falsified by experiment.  
Rather, research programs compete with each other in more complex ways. A  
program experiences a progressive problem shift when it generates new  
concepts, predicts new phenomena, unifies diverse fields, etc. It goes into a 
degenerating problem shift when it is forced increasingly to react to new 
developments from other programs, and is increasingly occupied with translating 
developments from other programs  into its own terms.  
 
This is perhaps the most realistic approach to the “growth of knowledge”.  I mention 
it briefly here because much of the literature surrounding alternative representations 
of uncertainty consists exactly in translating results and techniques from the 
probabilistic approach into some alternative framework.  This in itself  constitutes a 
degenerating problem shift, if not combined with the development of new ideas, 
methods and predictions. Up to now the ideas have been flowing from probability to 
alternative representations. If these are to experience a progressive problem shift, then 
the flow of ideas must reverse. Without operational definitions for their primitive 
terms, however, that will remain impossible. 
 
 
6. UNCERTAINTY ANALYSIS 
 
The goal of an uncertainty analysis is a quantitative representation of uncertainty. 
According to the subjective interpretation, uncertainty is represented by subjective 
probability. Other representations may be possible, but these should be supplied with 
a suitable foundation, including plausible axioms and operational definitions. 
Although many alternative representations have been proposed, none to date have 
been given a foundation in this sense. For practical work there is at present no viable 
alternative to the representation of uncertainty as subjective probability. 
 

                                                 
4 The axioms of Savage’s  rational preference and of subjective probability are claimed to be 
normatively valid b ut not empirically valid; the describe  how a rational agent should act and reason 
under un certainty, not how they actually do. In this sense they are comparable to deductive logic. 
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A key question is what role experts play in providing a quantitative representation of 
uncertainty. The method employed at the TU Delft (Cooke7 ) proceeds from the 
assumption that individual experts quantify their uncertainty on input variables, and 
these uncertainty distributions are combined using the “classical model”. Expert 
performance is scored on “seed” or “calibration” variables in terms of calibration and 
information, and performance based weights are used to form a weighted combination 
of experts’ distributions.  The weights satisfy a proper scoring rule constraint. The 
analyst does not play an active role, (s)he does not alter experts’ numbers and does 
not choose weights. Rather, (s)he merely scores the experts’ assessments and 
combines their distributions according to pre-defined objectively traceable rules. 
 
Other approaches are also applied. Thus in NUREG/CR-637222 it is argued that the 
combined expert distributions should represent the dispersion of expert views, and 
that the analyst should play an active role  in subjectively weighting the experts to 
achieve this goal. 
 
Thus the question is who signs off on the uncertainty assessments, is it the experts or 
the analyst? Whoever signs off, using subjective assessments of uncertainty without 
verifying performance is, in my opinion, foolhardy. 
 
7. CHALLENGE PROBLEMS 
 
To date there have been over 10,000 expert elicitations performed at or in 
collaboration with the TU Delft. These involve 29 different expert panels covering a 
wide variety of subjects including: 
 

• Crane risk 
• Propulsion  of rockets 
• Space debris 
• Composite materials 
• Groundwater transport 
• Atmospheric dispersion and deposition 
• Toxic materials 
• Underground pipelines 
• Transport of radiation in the soil/plants/animals 
• Health/economic effects of  radiation 
• Failure of moveable water barriers 
• Dike ring reliability 
• Safety factors for airline pilots 
• Montserrat eruption prediction 
• Serviceability limit states 
• NOx emissions. 

 
 (For details and references see14,11,7 ). All of these studies used seed variables: expert 
performance was measured in terms of calibration and information, and the 
performance of various combination schemes was examined5.   
 
                                                 
5 This has not yet been done for the NOx study (Cooke and Kraan9 ). 
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In none of these elicitations were we confronted with the bizarre situations described 
in the “challenge problems” proposed for this workshop23 . On the other hand, the 
problems met with in practice are not recognizable in these challenge problems.  As 
agreed with the organizers, I will therefore extract a few lessons learned from my 
experience with expert judgment which might be of interest for this workshop, and 
sketch what I see as important problems. 
 
8. TU DELFT EXPERIENCE 
 

1. Experts don’t mind performance measurement6.  It has happened repeatedly 
that experts defended the measurement of performance when the problem 
owners became nervous about publishing results.  

2. Experts are leery of ‘non-objective’ or psychologically based methods, and are 
suspicious of the ‘academic sandbox’. 

3. Experts have no problem understanding (subjective) probability and  no 
problem quantifying degree of belief  in terms of quantiles of a subjective 
probability distribution. For experts without formal education (e.g. crane 
operators) this may require intuitive explanation. 

4. Experts are not uniformly overconfident, though overconfidence certainly 
does arise. As a general rule, the more a field is based on physical 
measurements, the better the experts’ performance and the more the experts 
agree. 

5. It is always possible to find suitable calibration variables. If there are no 
measurements relevant to a given field, then this falls outside empirical 
science and outside expert judgment. The existence of god is not an issue to be 
adjudicated by expert judgment. 

6. In general, though not always, the performance based combination of expert 
judgments performs better, in terms of calibration and information, than an 
equal weight combination and also better than the best expert (see11). 

 
Finally, I would add that experts are generally cooperative and will try to conform to 
the elicitation format suggested by the analyst. I suggest that  reports of experts’ 
‘inability to give distributions’ reflects the attitude of the analyst, not the experts.  
 
9. CONCLUSIONS: OPEN ISSUES 
 
I conclude by identifying several important open issues involving expert judgment. 
  
Dependence between elicition variables.  
We have developed techniques for eliciting dependences based on rank correlation 
coefficients, and applied these with some success in the USNRC-EU joint uncertainty 
analysis of accident consequence codes for nuclear power plants (Brown et al3, Cooke 
and Goossens 8). This is certainly not the last word on this subject. 
 
The importance of this issue can be illustrated with the recent NOx study (Cooke and 
Kraan 9 ) Figure 1 below shows the uncertainty in emissions [kg/yr]  
 
 
                                                 
6 In our total experience, there have been maybe 3 experts who objected to performance measurement. 
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Benzene EURO 2 

Benzene EURO 1 

Benzene no regulated catalysor  

Figure 1: Probability density function for one random auto of NOx[kg/yr]for milieu 
classes: no regulated catalysor, EURO1 and EURO2  

 
 
Suppose Xi  is the emission the i-th auto, where Xi is normally distributed with mean 
37 and standard deviation 50 (these values are representative for Benzene Without 
Regulated Catalysor, though the distribution in Figure 1 is not normal). If the 
uncertainty for the autos were “aleatory” then each auto’s emissions would be drawn 
independently from this distribution. The uncertainty in the total emissions of 
2,040,000 benzene autos in the Netherlands without catalysor would be the 
2,040,000-fold convolution of the distribution in Figure 1; it would be normal with 
mean 75 million and standard deviation 71,414. Hence the 5% 95% uncertainty band 
for the total emission would be very narrow indeed: 74.9 million and 75.1 million. 
The explanation is simple, the mean of the sum Σi=1..N Xi   increases with N, whereas 
the standard deviation of Σi=1..N Xi increases with √N.  If the uncertainty were 
“epistemic”, then  the uncertainties would be completely correlated. The mean for 
2,040,000 autos would still be 75 million, but the 90% confidence band would be 11.4 
– 137.1 million. 
 
Clearly neither of these alternatives is realistic. The approach in (Cooke and Kraan 
2002) cannot be explained here. Suffice to say it involved ‘majorizing’ the correlation 
between individual auto’s, and resulted in a 90% confidence band shown in Figure 2. 
The rank correlation between the emissions of 2 randomly sampled benzene auto’s 
without catalysor was 0.04; for the emissions from 2 groups of 100 such auto’s it was 
0.57, and for two groups of 10,000 such autos it was 0.99. This sort of behaviour 
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holds quite generally. In fact one can show that if the uncertainty in variable Xi is the 
sum of aleatory and epistemic random variables, then the variance of Σi=1..N Xi is 
dominated by the variance of the epistemic component and the covariance between 
the aleatory and epistemic components as N gets large. In general, aleatory and 
epistemic components will be correlated (for details see9 ). The point is that the issue 
of ‘aleatory versus epistemic’ is really an issue of dependence. Simple solutions will 
only work for simple problems.   
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Figure 2: Epistemic versus aleatory uncertainty 
 
 
Does combination commute with model computations?  
In other words, should we combine experts and then propagate this combined 
distribution through a model, or should we first propagate each expert’s distributions 
through the model, and then combine. It can make a significant difference.  
 
Figure 3 shows the results of propagating the (three) experts’ distributions separately 
through the emissions model, and also the results of first combining the experts (DM 
before) before propagating, and combining the experts distributions after propagating 
them through the model (DM after). The combination is with equal weights. The 
differences between the two DM’s are significant, though within the spread among 
the experts themselves. 
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Figure 3: Experts’ propagated distributions, combining before and after propagation, 
using equal weights. The numbers shown are the 5%, 50% and 95% quantiles. 

 
Dependence between experts.   
Some recent work in this area is found in (Jouini and Clemen13). Research is needed 
both in ways of measuring dependence, and ways of using this information in 
combining experts’ assessments. To date there is no satisfactory proposal. 
 
Expert judgment for models.  
The question is, how can expert judgment be used to build models. In the particular 
case of graphical models such as Bayesian Belief  Nets, how do we effectively elicit 
conditional independence relations from experts?  Given the importance of Bayesian 
Belief Nets in artificial intelligence and engineering applications, it is imperative to 
find ways to find ways of controlling their staggering complexity and quantifying 
them with expert judgment in a traceable way.  
 
REFERENCES 
 
The dates are not the original dates of publication, but of the editions used. 
 
1. Ayyub, B.M. (2001) Elicitation of Expert Opinions for Uncertainty and Risks 
CRC, Boca Raton. 
 
2. Borel, E. Elements de la Theorie des Probabilities, Miche., 1950 
 
3. J. Brown,  L.H.J. Goossens, F.T. Harper, E.H. Haskin, B.C.P. Kraan, M.L. Abbott, 
R.M. Cooke, M.L. Young, J.A. Jones, S.C. Hora and A. Rood,  Probabilistic accident 
consequence uncertainty analysis: Food chain uncertainty assessment, Prepared for 
U.S. Nuclear Regulatory Commission and Commission of European Communities, 

 13



Appearing in Reliability Engineering and System Safety 85, 2004, 313-319 

NUREG/CR-6523, EUR 16771, Washington/USA, and Brussels-Luxembourg,  
(Volumes 1 and 2), 1997. 

 
4. Carnap, R. Der Logische Aufbau der Welt Berlin, 1922 
 
5. Carnap, R. Abriss der Logistik,  Wien, 1929.  
 
6. Cooke, R.M. (1986) “Conceptual fallacies in subjective probability” Topoi, vol. 5 
pp 21-27. 
 
7. Cooke, R.M. (1991) Experts in Uncertainty: opinion and subjective probability in 
science Oxford University Press. 
 
8. Cooke, R.M. and Goossens, L.J.H. (2000) Procedures guide for structured expert 
judgment European Commission, EUR 18820 EN. 
 
9. Cooke, R.M. and Kraan B. (2002) Uncertainty Analysis for Automobile Emissions 
NOx: Overview of Methods and Results  TU Delft. 
 
10. Dubois, D., Prade, H. and Sabbadin, R. (2001) “Decision-theoretic foundations of 
qualitative possibility theory” Eur. J. of Oper. Res. 128, 459-478. 
 
11. Goossens, L.H.J.and Cooke, R.M. (1998) Evaluation of weighting schemes for 
expert judgment studies in Mosleh A. and B ari, R. (eds) Probabilistic Safety 
Assessment and Management, Vol. 3, 2113-2118, Srpinger, New York 1998. 
 
12. Hertz, H. The Principles of Mechanics Presented in a New Form, New York 
1956. 
 
13. Jouini, M.N. and Clemen R.T. (1996) Copula models for aggregating expert 
opinions J. of Operations research, vol. 44 no.3 444-457) 
 
14. Kallen M.J. and Cooke, R.M. (2002) Aggregating expert opinion, TU Delft. 
 
15. Keynes, J. Treatise on Prob ability London 1973. 
 
16. Kuhn, T. The Structure of Scientific Revolutions 1970. 
 
17. Lakatos, I. “History of science and its rational reconstruction” Boston Studies in 
the Philosophy of Science VIII, Buck, and Cohen (eds), Dordrecht, 1979, 137-145. 
 
18. Lakatos I. The Methodology of scientific Research Programs,  Cambridge, 1978. 
 
19. Laplace, S. A Philosophical Essay on Probabilities, New York, 1951. 
 
20. Mach, E. The Science of Mechanics, La Salle, 1960. 
 
21. Nagel, E. The Structure of Science, London. 1961 
 

 14



Appearing in Reliability Engineering and System Safety 85, 2004, 313-319 

 15

22. US Nuclear Regulatory Commission, Guidance on Uncertainty and Use of 
Experts. NUREG/CR-6372, 1997. 
 
23. Oberkampf WL, Helton JC, Joslyn CA, Wojtkiewicz SF, and Ferson S. 
Challenge  problems: uncertainty in system response given uncertain parameters. 
Reliability Engineering and System Safety (this issue).  
 
24. Popper, K. The Logic of Scientific Discovery, London. 1974. 
 
25. Ramsey, F. “Truth and Probability” in Foundations of Mathematics and Other 
Logical Essays, London 1931. 
 
26. Reichenbach, H. Wahrscheinlichkeitslere Leiden 1935. 
 
27. Savage, L. Foundations of Statistics New York, 1956. 
 
28. Schnorr, C. Zufalligheit und Wahrscheinlichkeit Berlin 1970. 
 
29.Von Mises,  R. Wahrscheinlichkeit, Statistik und Wahrheit Wien, 1936. 
 
 
 
�  


