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Stochastic noise reaction

minx∈Rn f(x)

Gradient methods iteratively update the current solution x as:

x ←− x + µ
δx

|δx|
where:

• δx = −∇f(x)

• µ is a step width determined by line search;

• δx is a decent direction;

• ∇f(x) is a gradient vector defined by:

∇f(x) =

(
∂f(x)

∂x1
,
∂f(x)

∂x2
, · · · , ∂f(x)

∂xn

)T



• the stochastic noise reaction injects a Gaussian white noise sequence with zero

mean and unit variance ξi ∼ N(0,1) into a variable xi as:

x
j
i = xi + ξ

j
i , j = 1,2, . . . M

where ξ
j
i denotes the j-th noise in the noise sequence injected into the i-th

variable.

• each component of a derivative is approximated by:

E


∂f(xj)

∂x
j
i


 =

1

M

M∑
j=1

f(xj)ξj
i

(1)



The algorithm proposed by Koda and Okano is:

1. Initialize the current solution x = x0;

2. Initialize the best solution xbest = x;

3. For k = 1,2, ...N begin

- Initialize decent direction δx = 0;

- For j = 1,2, ...M(= 100) do begin

- Generate a noise vector ξj

- δxi = δxi − f(xi)ξ
j
i

- If f(xbest) > f(xj) then xbest = xj

end;



4. w = maxi|δxi|

5. s = argmins=1,2,...100f(x + 0.01sδx
w )

6. x = x + µ δx
|δx|

7. If f(xbest) > f(x) then xbest = x

8. If terminal condition is met then goto 10

9. end

10. Output xbest



Applications

• If we implement in Matlab the above algorithm, we obtain:

Function: Result: Simulation 1: Simulation 2: Simulation 3:

x2 − 2x + 3 1 1.000000000 1 1.000000000
−x3 + 2x2 + 9x -1 -1 -0.99691997 -1

x4

4 − x3

3 − x2 2 2.012101195 1.998607329 1.991849
cos x kπ

2 -3.27036718 3.171619298 -3.206294765
x2 + 10cos(10x) - -0.312250083 -0.311325948 -0.313530729



• the travelling salesman problem (TSP):

– V = 1,2, . . . , |V | is a set of vertices

– di,j is the distance between each pair of vertices i and j,

– problem: find an ordering π of vertices that minimizes a tour length defined

by:

h(π) =
|V |∑
i=1

dπ(i),π(i+1)

(2)

where the index of π is defined modulo |V |, so that vertex π(|V |) is adjacent

in the tour to both π(|V | − 1) and π(1) (the vertices are mapped on a plane

and the distance is Euclidian).

– the objective function of the TSP, (2), takes a discrete vector π and thus

gradient methods cannot be applied directly.



Novikov’s Theorem

Approximation (1) is based on Novikov’s theorem, which in a simple form is:

E

[
δH(ξ)

δξi

]
= E[H(ξ)ξi]

where:

• H(ξ) is an arbitrary function of Gaussian stochastic sequence ξi, i = 1,2, . . . n;

• δH(ξ)
δξi

denotes the functional derivative;

• ξi is a Gaussian noise with zero mean and unit variance, i.e. E(ξi) = 0, and

E[ξt
iξ

s
j ] = δijδts, where δij and δts denote the Kronecker symbol and ξt

i denotes

the i-th noise in the noise sequence injected into the i-th variable.



Proof:

• the n-dimensional Gaussian distribution:

p(x) =
1

(2π)n/2
√
|V |

e−
1
2

(
V −1(x−m),x−m

)

with V = (Vi,j)i,j=1,n, Vi,j = cov(Xi, Xj) = E[XiXj] − E[Xi]E[Xj]

• since ξ = (ξ1, ξ2, . . . ξn)T , ξi ∼ N(0, σ2
i ), i = 1, n:

– m = 0

– Vi,j =

{
0, if i �= j

σ2
i , if i = j

– |V | = ∏n
i=1 σ2

i

–
(
V −1ξ, ξ

)
=

∑n
i=1

1
σ2

i
ξ2i



• the Gaussian kernel is:

G(ξ) =
1

(2π)n/2
√∏n

i=1 σ2
i

e
− ∫ +∞

−∞
∑

i

ξ2
i
(t)

2σ2
i

dt

(3)

• in this case:

E

[
δH(ξ)

δξi

]
=

∫
δH(ξ)

δξi
G(ξ)δξ =

=
∫

δ

δξi
[H(ξ)G(ξ)] δξ −

∫
H(ξ)

δ

δξi
G(ξ)δξ

= −
∫

H(ξ)
δ

δξi
G(ξ)δξ

(4)



• using relation (3):

δ

δξi
G(ξ) =

1

(2π)n/2
√∏n

i=1 σ2
i

e
− ∫ +∞

−∞
∑

i

ξ2
i
(t)

2σ2
i

dt
(
− ξi

σ2
i

)

= − ξi

σ2
i

G(ξ)

(5)

• replacing in (4):

E

[
δH(ξ)

δξi

]
=

1

σ2
i

∫
H(ξ)ξiG(ξ)δξ

=
1

σ2
i

E[H(ξ)ξi]

(6)



Remarks regarding Novikov’s Theorem:

• for σi = 1, the Novikov’s theorem is:

E

[
δH(ξ)

δξi

]
= E[H(ξ)ξi]

• the Novikov’s theorem holds also for Gaussian noise with mean different of zero,

as in this case, where E[xj] = E[x + ξj] = x + E[ξj] = x.



Application in sensitivity analysis

• ∂E[Xi|Z=z0]
∂z

∣∣∣∣
z=z0

, where Z = g(X1, X2, . . . Xn).

• Example: Z=Z(X,Y)=2X+Y, with X, Y ∼ U(0,1), independent variables;

Z z0
∂E(X/z0)

∂z0
simulation 1 simulation 2 simulation 3

2X+Y 0.25 0.25 0.0585 0.036 0.0537
0.5 0.25 0.0675 0.0343 0.0171
1.5 0.5 0.0838 0.1602 0.1652
2.5 0.25 0.0150 0.0250 -0.0259



• The above simulations don’t give the correct results

• We have to verify the relation (1) for some simple examples.

• Consider a function of only one variable and add to this variable a noise

ξ ∼ N(0,1)

• relation (1) becomes:

∂f(x)

∂x
≈ E

[
∂f(x̃)

∂x̃

]
= f(x̃)ξ

or, more correct:

∂f(x)

∂x
≈ E

[
∂f(x̃)

∂x̃

]
= E[f(x̃)ξ] (7)

where x̃ = x + ξ.



Example 1:

f(x) = x2 =⇒ ∂f

∂x
= 2x

E [f(x̃)ξ] = E[(x + ξ)2ξ] =

= E[x2ξ + 2xξ2 + ξ3]

= x2E[ξ] + 2xE[ξ2] + E[ξ3]

(8)

Since ξ ∼ N(0,1), we have: E[ξn] =

{
0, if n = 2r + 1
(2r)!
2rr! , if n = 2r

So:

E[f(x̃)ξ] = 2x



Example 2:

f(x) = x3 =⇒ ∂f

∂x
= 3x2

E[f(x̃)ξ] = E[(x + ξ)3ξ] = E[x3ξ + 3x2ξ2 + 3xξ3 + ξ4] =

= x3E[ξ] + 2x2E[ξ2] + 3xE[ξ3] + E[ξ4] =

= 3x2 +
4!

222!
= 3x2 + 3

(9)



Example 3:

f(x) = ex =⇒ ∂f

∂x
= ex

E[f(x̃)ξ] = E[ex+ξξ] = exE[ξeξ] =

= exE


ξ

∞∑
n=0

ξn

n!


 =

= ex
∞∑

n=0

1

n!
E[ξn+1] =

= ex
∞∑

r=0

1

(2r + 1)!

(2r + 1)!

2rr!
=

= ex
∞∑

r=0

(
1
2

)r

r!
= exe1/2 = ex+1/2

(10)



We obtain the same conclusion using UNICORN.

The result for the third example is:

f(x) =
1

17ex

17∑
i=1

ξie
x+ξi

For x = 1, the result is:

Nr. Variable Mean Variance

1 sum 1.56E+000 1.22E+000



The series of approximations used in article:

∂f(x)

∂xi
≈ E

[
∂f(xj)

∂ξi

]
= E[f(xjξi)] ≈

1

M

M∑
j=1

f(xj)ξj
i

where we use :

∂f(xj)

∂x
j
i

=

∂f(xj)
∂ξi

∂x
j
i

∂ξi

=
∂f(xj)

∂ξi



• to obtain E

[
∂f(xj)

∂ξi

]
= E[f(xj)ξi], we can apply the Novikov’s theorem for ξ with

mean x, because: E[xj] = E[x + ξj] = x + E[ξj] = x.

• the proof of this for only one noise:

E

[
∂f(x(ξ))

∂ξ

]
=

∫
∂f

∂ξ
(x + ξ)p(ξ)dξ =

=
∫

∂

∂ξ
[f(x + ξ)p(ξ)]dξ −

∫
f(x + ξ)

∂p

∂ξ
dξ =

=
∫

f(x + ξ)ξp(ξ)dξ = E[f(x + ξ)ξ]

(11)

• this is true for a function f with polynomial growth at infinity.



• the first approximation:

∂f

∂xi
≈ E


∂f(xj)

∂x
j
i




• to simplify the notation, we take f with only one variable and we inject only one

noise ξ ∼ N(0,1).

• if g is a nonlinear function (f
′′
(x) �= 0) and ξ ∼ N(0,1), then:

E[g(x + ξ)] = E[g(x) +
∂g

∂x
ξ +

1

2

∂2g

∂x2
ξ2 + . . .] =

= g(x)
∂g

∂x
E[ξ] +

1

2

∂2g

∂x2
E[ξ2] +

1

3!

∂3g

∂x3
E[ξ3] + . . .

=
∞∑

r=0

∂rg

∂xr
E[ξ2r] =

=
∞∑

r=0

(2r)!

2rr!

∂rg

∂xr

(12)



• for g(x) = ∂f(x)
∂x , we obtain:

E

[
∂f(x + ξ)

∂(x + ξ)

]
=

∂f(x)

∂x
+

1

2

∂3f(x)

∂x3
E[ξ3] +

1

4!

∂5f

∂x5
E[ξ4] + . . .

=
∂f(x)

∂x
+

1

2

∂3f(x)

∂x3
+

1

4!

∂5f

∂x5

4!

222!
+ . . .

(13)

• the error is:

error = E

[
∂f(x + ξ)

∂(x + ξ)

]
− ∂f(x)

∂x

=
∞∑

n=1

1

(2n)!

∂2n+1f(x)

∂x2n+1
E[ξ2n]

=
∞∑

n=1

∂2n+1f(x)

∂x2n+1

1

2nn!

(14)



Conclusions:

• The approximation (1) is not good for any function f;

• The results for optimization problems presented in the first table are good, even

the approximation is not good. But in algorithm, the error is reduced. This can

be seen in the following graph, which presents every xbest from simulation.

• Unfortunately, the approximation of the derivative proposed by Okano and Koda

can not be used in sensitivity analysis to calculate: ∂E[Xi|Z=z0]
∂z

∣∣∣∣
z=z0

, where

Z = g(X1, X2, . . . Xn).


