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Uncertainty Analysis and
Dependence Modelling
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1.1 Wags and Bogsats

”...whether true or not [it] is at least probable; and he who tells nothing
exceeding the bounds of probability has a right to demand that they should
believe him who cannot contradict him”. Samuel Johnson, author of the first
English dictionary, wrote this in 1735. He is referring to the Jesuit priest
Jeronimo Lobos’ account of the unicorns he saw during his visit to Abyssinia
in the 17th century (Shepard (1930) p. 200).

Johnson could have been the apologist for much of what passed as decision
support in the period after World War II, when think tanks, forecasters and
expert judgment burst upon the scientific stage. Most salient in this genre
is the book The Year 2000 (Kahn and Wiener (1967)) in which the authors
published 25 ‘even money bets’ predicting features of the year 2000, includ-
ing interplanetary engineering and conversion of humans to fluid breathers.
Essentially, these are statements without pedigree or warrant, whose cred-
ibility rests on shifting the burden of proof. Their cavalier attitude toward
uncertainty in quantitative decision support is representative of the period.
Readers interested in how many of these even money bets the authors have
won, and in other examples from this period are referred to (Cooke (1991),
Chapter 1 ).

Quantitative models pervade all aspects of decision making, from fail-
ure probabilities of unlaunched rockets, risks of nuclear reactors, effects of

1This chapter is based on the first chapter of Kurowicka and Cooke (2006) to which the
reader may refer for definitions and details
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pollutants on health and the environment, or consequences of economic poli-
cies. Such quantitative models generally require values for parameters which
cannot be measured or assessed with certainty. Engineers and scientists some-
times cover their modesty with churlish acronyms designating the source of
ungrounded assessments. ‘Wag’s’ (wild-ass guess) and ‘bogsat’s’ (bunch of
guys sitting around a table) are two examples found in published documen-
tation.

Decision makers, especially those in the public arena, increasingly recog-
nize that input to quantitative models is uncertain, and demand that this
uncertainty be quantified and propagated through the models.

Initially it was the modelers themselves who provided assessments of un-
certainty and did the propagating. Not surprisingly, this activity was consid-
ered secondary to the main activity of computing ‘nominal values’ or ‘best
estimates’ to be used for forecasting and planning, and received cursory at-
tention.

Figure 1.1 shows the result of such in-house uncertainty analysis per-
formed by the National Radiological Protection Board (NRPB) and The
Kernforschungszentrum Karlsruhe (KFK) in the late 1980’s (Crick et al.
(1988); Fischer et al. (1990)). The models in question predict the disper-
sion in the atmosphere of radioactive material following an accident with a
nuclear reactor. The figure shows predicted lateral dispersion under stable
conditions, and also shows wider and narrower plumes which the modelers
are 90% certain will enclose an actual plume under the stated conditions.

Figure 1.1: 5%, 50% and 95% plume widths (stability D) computed by NRPB
and KFK.

It soon became evident that if things were uncertain, then experts might
disagree, and using one expert-modeler’s estimates of uncertainty might not
be sufficient. Structured expert judgment has since become an accepted method
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for quantifying models with uncertain input. ’Structured’ means that the ex-
perts are identifiable, the assessments are traceable and the computations are
transparent. To appreciate the difference between structured and unstruc-
tured expert judgment, Figure 1.2 shows the results of a structured expert
judgment quantification of the same uncertainty pictured in Figure 1.1 (Cooke
(1997)). Evidently the picture of uncertainty emerging from these two figures
are quite different.

Figure 1.2: 5%, 50% and 95% plume widths (stability D) computed by the
EU-USNRC Uncertainty Analysis of accident consequence codes.

One of the reasons for the difference between these figures is the follow-
ing: The lateral spread of a plume as a function of down wind distance x is
modelled, per stability class, as

σ(x) = AxB .

Both the constants A and B are uncertain as attested by spreads in pub-
lished values of these coefficients. However, these uncertainties can not be in-
dependent. Obviously if A takes a large value, then B will tend to take smaller
values. Recognizing the implausibility of assigning A and B as independent
uncertainty distributions, and the difficulty of assessing a joint distribution
on A and B, the modelers elected to consider B as a constant; that is, as
known with certainty 2.

The differences between these two figures reflect a change in perception re-
garding the goal of quantitative modelling. Whereas with the first picture the

2This is certainly not the only reason for the differences between Figures 1.1 and 1.2.
There was also ambivalence with regard to what the uncertainty should capture. Should
it capture the plume uncertainty in a single accidental release, or the uncertainty in the
average plume spread in a large number of accidents? Risk analysts clearly required the
former, but meteorologists are more inclined to think in terms of the latter.
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main effort has gone into constructing a quantitative deterministic model,
to which uncertainty quantification and propagation are added on. In the
second picture, the model is essentially about capturing uncertainty. Quanti-
tative models are useful insofar as they help us resolve and reduce uncertainty.
Three major differences in the practice of quantitative decision support follow
from this shift of perception.

• First of all, the representation of uncertainty via expert judgment, or
some other method is seen as a scientific activity subject to methodolog-
ical rules every bit as rigorous as those governing the use of measurement
or experimental data.

• Second, it is recognized that an essential part of uncertainty analysis is
the analysis of dependence. Indeed, if all uncertainties are independent,
then their propagation is mathematically trivial (though perhaps com-
putationally challenging). Sampling and propagating independent un-
certainties can easily be trusted to the modelers themselves. However,
when uncertainties are dependent, things become much more subtle,
and we enter a domain for which modelers’ training has not prepared
them.

• Finally the domains of communication with the problem owner, model
evaluation etc. undergo significant transformations, once we recognize
that the main purpose of models is to capture uncertainty.

1.2 Uncertainty analysis and decision support:
a recent example

A recent example serves to illustrate many of the issues that arise in quan-
tifying uncertainty for decision support. The example concerns transport of
campylobacter infection in chicken processing lines. The intention here is not
to understand campylobacter infection, but to introduce topics covered in the
following chapters. For details on campylobacter, (see Cooke et al. (Appear-
ing); Fels-Klerx et al. (2005); Nauta et al. (2004)).

Campylobacter contamination of chicken meat may be responsible for up
to 40% of Campylobacter associated gastroenteritis and for a similar propor-
tion of deaths. A recent effort to rank various control options for Campy-
lobacter contamination has led to the development of a mathematical model
of a processing line for chicken meat (these chickens are termed ‘broilers’) .

A typical broiler processing line involves a number of phases as shown in
Figure 1.3. Each phase is characterized by transfers of campylobacter colony
forming units from the chicken surface to the environment, from the environ-
ment back to the surface, from the feces to the surface (until evisceration), and
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the destruction of the colonies. The general model, applicable with variations
in each processing phase, is shown in Figure 1.4.

Figure 1.3 Broiler chicken processing line.

Figure 1.4: Transfer coefficients in a typical phase of a broiler chicken pro-
cessing line.

Given the number of campylobacter on and in the chickens at the inception
of processing, and given the number initially in the environment, one can run
the model with values for the transfer coefficients and compute the number
of campylobacter colonies on the skin of a broiler and in the environment at
the end of each phase. Ideally, we would like to have field measurements or
experiments to determine values for the coefficients in Figure 1.4. Unfortu-
nately, these are not feasible. Failing that, we must quantify the uncertainty
in the transfer coefficients, and propagate this uncertainty through the model
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to obtain uncertainty distributions on the model output.
This model has been quantified in an expert judgment study involving 12

experts (Fels-Klerx et al. (2005)). Methods for applying expert judgments are
reviewed in Cooke (1991); Cooke and Goossens (2000). We may note here that
expert uncertainty assessments are regarded as statistical hypotheses which
may be tested against data and combined with a view to optimize performance
of the resulting ‘decision maker’.

The experts have detailed knowledge of processing lines; but, owing to the
scarcity of measurements, they have no direct knowledge of the transfer mech-
anisms defined by the model. Indeed, use of environmental transport models is
rather new in this area, and unfamiliar. Uncertainty about the transfer mech-
anisms can be large; and, as in the dispersion example discussed above, it is
unlikely that these uncertainties could be independent. Combining possible
values for transfer and removal mechanism independently would not gener-
ally yield a plausible picture. Hence, uncertainty in one transfer mechanism
cannot be addressed independently of the rest of the model.

Our quantification problem has the following features:

• There are no experiments or measurements for determining values.

• There is relevant expert knowledge, but it is not directly applicable.

• The uncertainties may be large and may not be presumed to be inde-
pendent, and hence dependence must be quantified.

These obstacles will be readily recognized by anyone engaged in mathe-
matical modelling for decision support beyond the perimeter of direct exper-
imentation and measurement. As the need for quantitative decision support
rapidly outstrips the resources of experimentation, these obstacles must be
confronted and overcome. The alternative is regression to wags and bogsats.

Although experts cannot provide useful quantification for the transfer co-
efficients, they are able to quantify their uncertainty regarding the number
of campylobacter colonies on a broiler in the situation described below taken
from the elicitation protocol:

At the beginning of a new slaughtering day a thinned-flock is slaughtered in
a ‘typical large broiler chicken slaughterhouse’. ... We suppose every chicken
to be externally infected with 105 campylobacters per carcass and internally
with 108 campylobacters per gram of caecal content at the beginning of each
slaughtering stage....

Question A1: All chickens of the particular flock are passing successively
each slaughtering stage. How many campylobacters (per carcass) will be found
after each of the mentioned stages of the slaughtering process, each time on
the first chicken of the flock?

Experts respond to questions of this form, for different infection levels, by
stating the 5, 50 and 95% quantiles, or percentiles of their uncertainty dis-
tributions. If distributions on the transfer coefficients in Figure 1.4 are given,
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then distributions, per processing phase, for the number of campylobactor
per carcass (the quantity assessed by the experts) can be computed by Monte
Carlo simulation: We sample a vector of values for the transfer coefficients,
compute a vector of campylobactor per carcass, and repeat this until suit-
able distributions are constructed. We would like the distributions over the
assessed quantities computed in this way to agree with the quantiles given by
the combined expert assessments. Of course we could guess an initial distribu-
tion over the transfer coefficients, perform this Monte Carlo computation, and
see if the resulting distributions over the assessed quantities happen to agree
with the experts’ assessments. In general they will not, and this trial-and-
error method is quite unlikely to produce agreement. Instead, we start with a
diffuse distribution over the transfer coefficients, and adapt this distribution
to fit the requirements in a procedure called ‘probabilistic inversion’.

More precisely, let X and Y be n- and m-dimensional random vectors,
respectively, and let G be a function from Rn to Rm. We call x ∈ Rn an
inverse of y ∈ Rm under G if G(x) = y. Similarly we call X a probabilistic
inverse of Y under G if G(X) ∼ Y , where ∼ means ‘has the same distribution
as’. If {Y |Y ∈C} is the set of random vectors satisfying constraints C, then
we say that X is an element of the probabilistic inverse of {Y |Y ∈ C} under
G if G(X) ∈ C. Equivalently, and more conveniently, if the distribution of Y
is partially specified, then we say that X is a probabilistic inverse of Y under
G if G(X) satisfies the partial specification of Y . In the current context,
the transfer coefficients in Figure 1.4 play the role of X, and the assessed
quantities play the role of Y .

In our campylobacter example, the probabilistic inversion problem may
now be expressed as follows: find a joint distribution over the transfer co-
efficients, such that the quantiles of the assessed quantities agree with the
experts’ quantiles. If more than one such joint distribution exists, pick the
least informative of these. If no such joint distribution exists, pick a ‘best
fitting’ distribution, and assess its goodness of fit.

In fact, the best fit produced with the model in Figure 1.4 was not very
good. It was not possible to find a distribution over the transfer coefficients
which, when pushed through the model, yielded distributions matching those
of the experts. Reviewing the experts’ reasoning, it was found that the ‘best’
expert in fact recognized two types of transfer from the chicken skin to the
environment. A rapid transfer applied to campylobacter on the feathers, and
a slow transfer applied to campylobacter in the pores of the skin. When the
model was extended to accommodate this feature, a satisfactory fit was found.
The second model, developed after the first probabilistic inversion, is shown
in Figure 1.5.

Distributions resulting from probabilistic inversion typically have depen-
dencies. In fact this is one of the ways in which dependence arises in uncer-
tainty analysis. We require tools for studying such dependencies. One simple
method is simply to compute rank correlations. Rank correlation is the corre-
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Figure 1.5 Processing phase model after probabilistic inversion.

lation of the quantile transforms of the random variables, where the quantile
transform simply replaces the value of a random variable by its quantile. There
are many reasons for preferring the rank correlation to the more familiar prod-
uct moment correlation in uncertainty analysis3 For now it will suffice simply
to display in Table 1.1 the rank correlation matrix for the transfer coefficients
in Figure 1.5, for the scalding phase.

Table 1.1 shows a pronounced negative correlation between the rapid
transfer from the skin (aextA) and evacuation from the chicken (ca), but other
correlations are rather small. Correlations do not tell the whole story; they
are averages after all. To obtain a detailed picture of interactions, other tools
must be applied. One such tool is the cobweb plot. In a cobweb plot, vari-
ables are represented as vertical lines. Each sample realizes one value of each
variable. Connecting these values by line segments, one sample is represented
as a jagged line intersecting all the vertical lines. Figure 1.6 shows 2,000 such
jagged lines and gives a picture of the joint distribution. In this case we have
plotted the quantiles, or percentiles, or ranks of the variables rather than
the values themselves. The negative rank correlation between aextA and ca is
readily visible if the picture is viewed in color: The lines hitting low values of
aextA are red, and the lines hitting values of ca are also red.

We see that the rank dependence structure is quite complex. Thus, we
see that low values of the variable ce (cenv, the names have been shortened

3Among them the rank correlation always exists, is independent of the marginal distribu-
tions, and is invariant under monotonic increasing transformations of the original variables
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Variable aextA aextB ca b ce aint

aextA 1.00 0.17 -0.60 -0.04 0.03 0.00
aextB 0.17 1.00 -0.19 -0.10 -0.06 0.00

ca -0.60 -0.19 1.00 0.01 0.02 0.00
b -0.04 -0.10 0.01 1.00 0.02 0.00
ce 0.03 -0.06 0.02 0.02 1.00 0.00

aint 0.00 0.00 0.00 0.00 0.00 0.00

Table 1.1 Rank correlation matrix of transfer coefficients, scalding phase.

for this graph) are strongly associated with high values of b, but high values
of ce may occur equally with high and low values of b. Correlation (rank
or otherwise) is an average association over all sample values and may not
reveal complex interactions which are critical for decision making. One simple
illustration highlights their use in this example.

Suppose we have a choice of accelerating the removal from the environ-
ment ce or from the chicken ca; which would be more effective in reducing
campylobacter transmission? To answer this, we add two output variables: a1
(corresponding to the elicitation question given above) is the amount on the
first chicken of the flock as it leaves the processing phase, and a2 is the amount
on the last chicken of the flock as it leaves the processing phase. In Figure
1.7 we have conditionalized the joint distribution by selecting the upper 5%
of the distribution for ca; in Figure 1.8 we do the same for ce.

If we assume that the intervention simply conditionalizes our uncertainty,
without changing other causal relations in the processing line (otherwise we
should have to re-build our model). On this assumption it is readily apparent
that ce is more effective than that on ca, especially for the last chicken.

This example illustrates a feature that pervades quantitative decision sup-
port, namely that input parameters of the mathematical models cannot be
known with certainty. In such situations, mathematical models should be used
to capture and propagate uncertainty. They should not be used to help a
bunch of guys sitting around a table make statements that should be believed
if they can’t be contradicted. In particular it shows that

• Expert knowledge can be brought to bear in situations where direct
experiment or measurement are not possible, namely, by quantifying
expert uncertainty on variables which the models should predict.

• Utilizing techniques like probabilistic inversion in such situations, mod-
els become vehicles for capturing and propagating uncertainty.
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Figure 1.6 Cobweb plot for the transfer coefficients in the extended model.

• Configured in this way, expert input can play an effective role in evalu-
ating and improving models.

• Models quantified with uncertainty, rather than wags and bogsats, can
provide meaningful decision support.

1.3 Uncertainty Analysis - the state of the art

The following remarks focus on techniques for uncertainty analysis which
are generally applicable. This means, uncertainty distributions may not be
assumed to conform to any parametric form and techniques for specifying,
sampling and analyzing high dimensional distributions should therefore be
non-parametric.

Some techniques, in particular those associated with bivariate dependence
modelling, are becoming familiar to a wide range of users. Copulae, or mul-
tivariate distributions with uniform margins are used to capture rank cor-
relation structure which is independent of marginal distributions. Two di-
mensional copulae are becoming familiar, multidimensional copula remain
extremely limited in their ability to represent dependence. Good books are
available for bivariate dependence: Dall’Aglio et al. (1991); Doruet Mari and
Kotz (2001); Joe (1997); Nelsen (1999). High dimensional dependence mod-
els, sampling methods, post-processing analysis and probabilistic inversion
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Figure 1.7 Cobweb plot conditional on high ca.

are “breaking news” to non-specialists, both mathematicians and modelers.
With regard to dependence in higher dimensions, much is not known. For

example, we do not know whether an arbitrary correlation matrix is also
a rank correlation matrix.4 We do know that characterizing dependence in
higher dimensions via product moment correlation matrices is not the way
to go. Product moment correlations impose unwelcome constraints on the
one-dimensional distributions. Further, correlation matrices must be positive
definite, and must be completely specified. In practice data errors, rounding
errors, or simply vacant cells lead to intractable problems with regard to
positive definiteness. We must design other, friendlier ways to let the world
tell us, and to let us tell computers which high dimensional distribution to
calculate. We take the position that graphical models are the weapon of choice.
These may be markov trees, vines, independence graphs or Bayesian belief
nets. For constructing sampling routines capable of realizing richly complex
dependence structures, we advocate regular vines. They also allow us to move
beyond discrete Bayesian belief nets without defaulting to the joint normal
distribution. Much of this material is new and only very recently available in
the literature Bedford and Cooke (2001, 2002); Cowell et al. (1999); Kurowicka
and Cooke (2006); Pearl (1988); Whittaker (1990).

Problems in measuring, inferring and modelling high dimensional depen-
dencies are mirrored at the end of the analysis by problems in communicating
this information to problem owners and decision makers. This is sometimes

4We have recently received a manuscript from H. Joe which purports to answer this
question in the negative for dimension greater than four.
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Figure 1.8 Cobweb plot conditional on high ce.

called sensitivity analysis (Saltelli et al. (2000)).
Whereas communicating uncertainty has received some attention, much

less attention has gone into utilizing uncertainty. It is safe to say that our
ab ility to quantify and propagate uncertainty far outstrips our ability to use
this quantification to our advantage in structured decision problems.



Bibliography

Bedford T and Cooke R 2001 Probabilistic Risk Analysis; Foundations and Methods.
Cambridge.

Bedford T and Cooke R 2002 Vines - a new graphical model for dependent random
variables. Ann. of Stat. 30(4), 1031–1068.

Cooke R 1991 Experts in Uncertainty. Oxford University Press, New York.

Cooke R 1997 Uncertainty modeling: examples and issues. Safety Science 26(1/2),
49–60.

Cooke R and Goossens L 2000 Procedures guide for structured expert judgement.
Technical Report EUR 18820 EN, European Commission, Directorate-General
for Research, Nuclear Science and Technology, Brussels.

Cooke R, Nauta M, Havelaar A and van der Fels I Appearing Probabilistic invesion
for chicken processing lines. Reliability Engineering and System Safety.

Cowell R, Dawid A, Lauritzen S and Spiegelhalter D 1999 Probabilistic Networks
and Expert Systems Statistics for Engineering and Information Sciences. Springer-
Verlag, New York.

Crick J, Hofer E, Johnes J and Haywood S 1988 Uncertainty analysis of the food-
chain and atmospheric dispersion modules of marc. Technical Report 184, Na-
tional Radiological Protection Board.

Dall’Aglio G, Kotz S and Salinetti G 1991 Probability Distributions with Given
Marginals; Beyond the Copulas. Kulwer Academic Publishers.

Doruet Mari D and Kotz S 2001 Correlation and Dependence. Imperial College
Press, London.

Fels-Klerx Hvd, Cooke R, Nauta M, Goossens L and Havelaar A 2005 A structured
expert judgment study for a model of campylobacter contamination during broiler
chicken processing Appearing in Risk Analysis.

Fischer F, Ehrhardt J and Hasemann I 1990 Uncertainty and sensitivity analyses of
the complete program system ufomod and selected submodels. Technical Report
4627, Kernforschungzentrum Karlsruhe.

Joe H 1997 Multivariate Models and Dependence Concepts. Chapman & Hall, Lon-
don.

Kahn H and Wiener A 1967 The Year 2000, A Framework for Speculation. Macmil-
lan, New York.

Kurowicka D and Cooke R 2006 Uncertainty Analysis with High Dimensional De-
pendence Modeling. Wiley, New York.



BIBLIOGRAPHY 14

Nauta M, Fels-Klerx Hvd and Havelaar A 2004 A poultry processing model for
quantitative microbiological risk assessment appearing in em Risk Analysis.

Nelsen R 1999 An Introduction to Copulas. Springer, New York.

Pearl J 1988 Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufman Publishers, San Mateo.

Saltelli A, Chan K and Schott E 2000 Sensitivity Analysis. Wiley, New York.

Shepard O 1930 The Lore of the Unicorn. Avenel Books, New York.

Whittaker J 1990 Graphical Models in applied multivariate statistics. John Wiley
and Sons, Chichester.


