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ABSTRACT

Under certain conditions on the integrand, quasi-Monte
Carlo methods for estimating integrals (expectations)
converge faster asymptotically than Monte Carlo meth-
ods. Motivated by this result we consider the gen-
eration of quasi-random vectors with given marginals
and given correlation matrix. We extend the “Normal
To Anything” (NORTA) method, introduced by Cario
and Nelson, to this context, and term the extension the
“Quasi-Random to Anything” (QUARTA) method.

1 INTRODUCTION

We present a new approach for computing integrals (ex-
pectations) of the form Eg(X), for some function g, and
a class of random vectors X. This problem arises in a
host of applications. For example, in stochastic linear
programming, X represents certain random input data
to a linear program, and the function g gives the op-
timal objective value of the linear program (Infanger
1994). In stochastic activity networks, X represents
the random task durations on the arcs of the network,
and g reflects the length of the longest path between
two specified nodes.

In both of these applications, X takes the form of a d-
dimensional vector of real-valued random variables. If
i.i.d. replicates of X can be generated, then the Monte
Carlo method may be used to estimate Eg(X).

If the d components of X are modeled as indepen-
dent random variables, then univariate generation tech-
niques may be applied to each of the components inde-
pendently to generate X. However, the assumption of
independent components may be an unreasonable one
for many applications (Infanger 1994, Cario and Nelson
1997).

There are many models for specifying multivari-
ate random vectors with correlated components and
marginal distributions from a single parametric fam-
ily; see Devroye (1986) and Johnson (1987) for surveys.
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There are fewer methods for dealing with the case where
the marginal distributions do not come from a common
family.

Specifying the distributions of such random vectors
can be an onerous task, let alone developing variate gen-
eration algorithms. It is natural then, to simply spec-
ify the marginal distributions of the components of X,
together with their covariance matrix. This approach
does not necessarily uniquely specify the distribution of
X. However, it is far easier to specify this data than
to specify a full multivariate distribution. Furthermore,
there are methods for generating random vectors with
specified marginals and covariance matrix.

The extremal distributions method of Hill and Reilly
(1994) can be applied in this case, but practically speak-
ing, it appears to be limited in applicability to low-
dimensional (d < 4 say) random vectors.

Cario and Nelson (1997) describe the “Normal to
Anything” (NORTA) method, which easily scales to
high-dimensional random vectors. The basic idea is
to begin with a random vector Z with a multivariate
normal distribution, and transform Z to yield a ran-
dom vector X with the desired marginals and corre-
lation structure. Cario and Nelson (1997) gave struc-
tural results that establish the feasibility of a numer-
ical approach to determining the correlation structure
of Z which induces the required correlation structure
of X. They traced the origins of the NORTA method
back to Mardia (1970) who looked at transformations
of bivariate normal random variables, and Li and Ham-
mond (1975), who looked at random vectors where all
marginals have densities (with respect to Lebesgue mea-
sure). Iman et al (1981) and Iman and Conover (1982)
implemented a joint normal transform procedure, where
the variables Z and X have the same rank correlation
structure. Their approach is essentially the NORTA
method with a different method for choosing the corre-
lation matrix of Z. Clemen and Reilly (1999) use the
NORTA method, attempting to ensure a given rank
correlation in the output. They employ an explicit for-



mula for the rank correlations of multivariate normal
random variables to determine the appropriate correla-
tion structure of Z.

It might be conceived that the NORTA method could
be used to generate random vectors with arbitrary
marginals and an arbitrary feasible covariance matrix
(feasible in the sense that a random vector with the
specified marginals and covariance matrix exists). Un-
fortunately, this is not the case, as Ghosh and Hender-
son (2000) show that there are sets of marginals with
feasible covariance matrix that cannot be generated
with the NORTA procedure. This fact was noted, al-
though not rigorously established, in both Li and Ham-
mond (1975) and Clemen and Reilly (1999). However,
the method can be adjusted to generate a random vec-
tor X with the required marginals, and a covariance
matrix that is “close” to the desired covariance matrix.
Clemen and Reilly (1999) give one such adjustment, and
Ghosh and Henderson (2000) give another. We outline
how Ghosh and Henderson (2000) do this in Section 2.

In this paper, we use the NORTA procedure as a
tool to assist in computing Eg(X). A Monte Carlo
approach to computing Eg(X) generates i.i.d. replicates
X(1),...,X(n) of X, and computes

eme(n) = 3" g(X().

If E[g(X)]? < oo, then a, satisfies the central limit
theorem

\/E(an - Eg(X)) = UN(O7 1)

as n — oo, where = denotes weak convergence,
N(0,1) denotes a standard normal random variable,
and 02 = var(g(X)). Hence a, converges at rate n~'/2
to Eg(X), independent of the dimension d of X.

Alternatively, numerical integration techniques may
be employed to estimate Eg(X). We may write

Eg(X) = /S o) (dz),

where 7 is the distribution of X, and S C R? is the
support of 7. This integral can be transformed into
one on the unit hypercube in d dimensions with re-
spect to Lebesgue measure. Numerical integration tech-
niques can then be applied to estimate Eg(X). In par-
ticular, the (deterministic) points u(1),u(2),...,u(n)
within the unit hypercube might be chosen, and an ap-
proximation of Eg(X) computed via

LS h(u(), (1)
n <

where the function h depends on the transformation of
the integral over S to one over the unit hypercube.

It is known (Niederreiter 1992, p. 32) that under cer-
tain conditions on g, sequences u = u(1),u(2),... exist
for which the error in (1) decreases at most at rate
n~!(logn)?. This rate is (asymptotically) faster than
the rate n=1/2 exhibited by the Monte Carlo method.

Such sequences are termed quasi-random number
(QRN) sequences, and because they are designed to
“uniformly” fill the unit hypercube, we will say that
they are quasi-random numbers with a uniform dis-
tribution on the unit hypercube. However, it should
be noted that QRN sequences are specifically designed
to be deterministic, and not share certain properties
with an i.i.d. sequence (unlike pseudo-random num-
bers). Consequently some care must be exercised when
speaking about the distribution of such a sequence of
points.

It is then reasonable to ask whether it is possible to
generate QRN sequences with a nonuniform distribu-
tion. Gentle (1998, Chapter 2) surveyed a number of
methods used to transform uniformly distributed uni-
variate (quasi-)random number sequences to nonuni-
form distributions. Further, the issue of directly sam-
pling (quasi-)random numbers from specific distribu-
tions including univariate and multivariate distribu-
tions, as well as over geometric objects, has also been
explored (Gentle, 1998, Chapter 3). Chiera and Cooke
(2000) have recently extended this problem by looking
at the generation of QRN sequences for Markov trees
with diagonal band copulae. A joint distribution is de-
termined by one-dimensional marginals and rank corre-
lations on a tree whose nodes are the one dimensional
marginals, together with a maximum entropy condition.
This latter condition is always consistent and ensures
that realizations are Markov; that is, they possess a
conditional independence structure given by the tree,
considered as an (undirected) belief net (Meeuwissen,
1993, Meeuwissen and Bedford 1997, Cooke 1997).

But why are nonuniform QRN sequences of interest?
The answer is that it is possible to estimate Eg(X)
using an estimator of the form

aqme(n) = = 3 gz (i),

where the quasi-random sequence {z(7)} is chosen “to
have distribution 7” (we will formalize the notion of
the distribution of a deterministic sequence of points in
Section 3). There is certainly potential value in such an
approach.

To see why, suppose that g(z) = ¢, a constant. Then
clearly, Eg(X) = c. Using the estimator agmc yields
the exact solution with a single point z(1). If the



change of variables technique mentioned earlier were to
be used, then in general, the integrand over [0,1)? will
not be constant, and a single integrand evaluation will
not yield the exact value of the expectation. While this
example is highly artificial, it nevertheless motivates
the use of quasi-random numbers with distribution 7.

Given that we have an acceptable definition of quasi-
random numbers with a given distribution 7 say, we
then need a method for generating them. To do so
directly appears to be a rather formidable task, as the
support of the distribution 7 and so forth must be taken
into account. However, there are a host of methods
for generating quasi-random numbers in the unit hy-
percube (see Gentle, 1998, for a survey of these meth-
ods). So instead we transform quasi-random numbers
with a uniform distribution in the unit hypercube to
quasi-random numbers with the desired distribution 7.
Basically, some form of inversion method needs to be
applied, and the NORTA method is one such method.
Therefore, we propose to take quasi-random numbers,
and transform them into the desired distribution using
the NORTA method. We will refer to this process as
the “quasi-random to anything”, or QUARTA method.
(It should be noted that NORTA can only generate a
restricted class of distributions, and is not a completely
general method.)

To demonstrate the potential of QUARTA, we will
provide two elementary examples that show that im-
proved accuracy over pure Monte Carlo is possible with
(approximately) the same amount of computation.

The remainder of this paper is structured as follows.
In Section 2, we review the NORTA method. We dis-
cuss some of the properties of the method, and men-
tion some pertinent results from Ghosh and Henderson
(2000). In Section 3 we define what we mean by quasi-
random numbers with a given distribution. Then, in
Section 4, we outline the QUARTA method, which is
basically a variant of the NORTA method. Finally, in
Section 5, we provide two examples of the application
of the QUARTA method for estimating expectations
(integrals).

2 THE NORTA METHOD

Suppose that we wish to generate i.i.d. replicates of
an R%valued random vector X = (Xi,...,X ), with
marginal distribution functions

Fi()=P(X;<),i=1,...,d,
and correlation matrix
Yx = (Ex(4,4) : 1 <45 < d),

with £x (i, j) = cor(X;, X;). We require that E(X?) <
oo for ¢ = 1,...,d, so that the correlation matrix ¥ x

is defined, but otherwise impose no conditions on the
marginal distribution functions F;, ¢ = 1,...,d. We
assume that X x is feasible for the given marginals, in
that a random vector exists with the specified marginals
and correlation structure.

Cario and Nelson (1997) described the NORTA pro-
cedure for solving this problem, which works as follows.

1. Generate an R? valued normal random vector
Z = (Z1,...,2Z4) with mean vector 0 and covari-
ance matrix Xz = (X2(i,7) : 1 < 4,j < d), where
¥z(,4) = 1for i = 1,...,d. Then each Z; is
a standard normal random variate (mean 0 and
variance 1). We will further specify ¥ shortly.

2. Compute the vector X = (Xq,...,X ) via
Xi = F7H(®(Z), (2)

for i = 1,...,d, where ® is the distribution func-
tion of a standard normal random variable, and
F; Y (u) = inf{z : Fy(z) > u}. (3)

At the conclusion of this procedure, X will have the
prescribed marginal distributions, because ®(Z;) is uni-
formly distributed on (0,1), and so F; }(®(Z;)) will
have the required marginal distribution. Note that this
algorithm requires the calculation of ®(z) for many z.
While this is not possible in closed form, fast numerical
algorithms are available to perform the calculation to
high accuracy (Abramowitz and Stegun, 1964, Chapter
26).

It is easy to generate multivariate normal random
vectors. See p. 480 of Law and Kelton (2000), for ex-
ample.

In a preprocessing step, the correlation matrix ¥ 7 is
chosen in an attempt to ensure that X will have the pre-
scribed correlation matrix ¥ x. Determining the matrix
Yz is the principal difficulty in applying the NORTA
method, and we now explain how this may be done.

As in Cario and Nelson (1997), define the function
¢ij(z) = cor(X;, X;), where X; and X; are defined
via (2) and cor(Z;, Z;) = z. We would like to choose
Y2(i,7) so that ¢;;(Xz(¢,7)) matches the desired cor-
relation X x (4, 4). Cario and Nelson (1997) established
the following structural result for the function c;;.

Theorem 1 The quantity c¢;;[£2(i,7)] is nondecreas-
ing in Xz(i,j), and the minimum (resp. mazimum,)
possible correlation between X; and X; (for the given
marginal distribution functions F; and Fj) is achieved
by taking Xz (i,j) = —1 (resp. +1). Furthermore, if
there exists some € > 0 such that

E|X;X;)' < o0



for all values —1 < X7(i,5) <1, then ¢;; is a continu-
ous function of ¥z(i,j) € [-1,1].

Theorem 1 allows one to perform an efficient numer-
ical search for values Az(i, ) that yield

ch(AZ(ZaJ)):EX(Zaj) fOI‘7,<J (4)

We take Az(i,i) = 1 for ¢ = 1,...,d. The values
Az(i,j) for i > j can then be chosen to ensure that
the matrix Az is symmetric. Unless otherwise stated,
we henceforth assume that a solution to (4) exists.

Let the matrix Ay satisfy (4). If Az is not positive
semidefinite, then it is not a valid correlation matrix,
and there is no normal random vector Z with corre-
lation matrix Az. In particular, Az cannot be used
within a NORTA procedure to generate X.

However, it may still be possible to generate X via a
NORTA transformation. If (4) does not have a unique
solution, then a second matrix A}, may exist that sat-
isfies (4) and that is positive semidefinite.

Theorem 2 below basically shows that a solution to
(4) is unique when all the marginals have densities
(with respect to Lebesgue measure) that are positive
everywhere. We conjecture that the solution is, in fact,
unique for arbitrary marginals. For a proof of this re-
sult, see the appendix.

Theorem 2 Suppose that for i = 1,...,d, F; has a
density f; that is positive everywhere, i.e., fi(x) > 0
for all z € R. If Az solves (4), then Az is unique.

We immediately obtain the following corollary.

Corollary 3 Suppose that it is possible to generate a
random vector X with prescribed marginals and corre-
lation matriz using a NORTA transformation. If the
conditions of Theorem 2 hold, then the matriz Az found
using a perfectly accurate numerical search procedure
will be symmetric and positive semidefinite.

Proof: The assumption that a NORTA transforma-
tion exists that yields the required correlations ensures
that there is a positive semidefinite correlation matrix
A that solves (4). Under the conditions stated, the so-
lution to (4) is unique, and so Az = A and is positive
semidefinite. O

The significance of this corollary is basically that if
NORTA can work, then it will work for the distributions
characterized in Theorem 2.

So then, can NORTA work, i.e. does a NORTA trans-
formation exist for any set of marginals and feasible cor-
relation matrix? Li and Hammond (1975) suggested the
following counterexample to this important question.

Let X1, X5 and X3 be 3 uniformly distributed ran-
dom variables on (0, 1) with correlation matrix

1 —-04 0.2
¥x=1[ -04 1 0.8
0.2 0.8 1

Li and Hammond quote the formula
Az (i, ) = 2sin(G Ex (i, ) (5)

for the (unique) matrix Az that solves (4) (see Kruskal
1958 for a proof). The (unique) matrix Az resulting
from these computations is not positive semidefinite.

Of course, this is only a counterexample if the ran-
dom vector X = (Xi, X2, X3) exists. Li and Ham-
mond (1975) did not show this, but Ghosh and Hen-
derson (2000) have since shown, using linear program-
ming techniques, that indeed such a random vector can
be constructed. Therefore, there are sets of marginal
distributions with a feasible covariance matrix that
NORTA cannot reproduce.

Suppose we take the position that we wish to use
NORTA to generate a random vector with the pre-
scribed marginals, and a covariance matrix that is, at
least approximately, the required covariance matrix.
Ghosh and Henderson (2000) describe a semidefinite
programming approach that can assist in this regard.
The method may be summarized as follows.

1. Use a numerical search procedure as described in
Cario and Nelson (1997) to determine a symmetric
matrix Az such that (4) is satisfied.

2. If Az is positive semidefinite, then one can proceed
directly with the NORTA procedure.

3. If not, then we wish to find another matrix Xz
that is “close” in some sense to Az. So minimize
d(¥z,Az) subject to the constraint that ¥z is pos-
itive semidefinite, where d is some measure of dis-
tance.

4. Use the matrix ¥z as the correlation matrix of Z
within the NORTA procedure.

With a suitable choice of distance function d, the
optimization in Step 3 above can be formulated as
a semidefinite programming problem; see Ghosh and
Henderson (2000) for one choice of d, or Alfakih and
Wolkowicz (2000) for another. Efficient algorithms are
available for solving such problems; see Wolkowicz, Sai-
gal, and Vandenberghe (2000). The random vectors
generated with the NORTA procedure using Xz will
have the correct marginal distributions, but will most



likely have a different covariance matrix from that de-
sired. However, the continuity established in Theo-
rem 1 suggests that the covariance matrix will differ
only slightly from that desired if ¥z is “close” to Agz.
The numerical examples given in Ghosh and Henderson
(2000) suggest that this is usually the case.

3 QUASI-RANDOM VECTORS

We need to be somewhat careful in defining what
is meant by “dependent” QRN sequences, as unlike
pseudo-random number sequences, QRN sequences are
specifically designed not to mimic the properties of i.i.d.
sequences. Thus it does not, apriori, make sense to refer
to the “distribution” of a QRN sequence.

QRN sequences are explicitly designed not to exhibit
the clustering and gaps that are representative of an
i.i.d. sequence. It is exactly this property that leads
to faster convergence than the Monte Carlo method in
estimating integrals (expectations). To be able to mea-
sure this clustering/gap effect, one often speaks of the
discrepancy of a particular point set. We begin with a
discussion of the classical notion of discrepancy on the
unit hypercube, as adapted from Niederreiter (1992).

Let u = {u(k)} be a sequence of vectors defined
within the unit hypercube [0,1)? in d dimensions. For
a given set B C RY, let

n

An(B;u)2 S I(u(k) € B)

k=1

be the number of vectors u(k) from u(1),...,u(n) con-
tained in the set B. Let B be a nonempty family of
Lebesgue measurable subsets of R%. A general defini-
tion of the discrepancy D,, of the first n terms of the
sequence u is

A, (B;
DaBiu) 2 sup | 225 _\m)l, ()
BeB n
where A\y(-) is Lebesgue measure on R?.
If the class of sets B is taken to be all sets of the form

d

B =]]0,a:)

i=1

for a; € [0,1), then the above definition yields the star
discrepancy D (u) of the sequence u (p. 14, Niederre-
iter 1992). The significance of this definition lies in its
use in establishing a bound on the error in an estimate
of an integral using the sequence of points u. In par-
ticular, the following well-known result is known as the
Koksma-Hlawka inequality.

Theorem 4 (Koksma-Hlwaka Inequality): Let g
be a real-valued function defined on [0,1]% and suppose
that g has bounded variation V (g) in the sense of Hardy
and Krause (see p. 19 of Niederreiter 1992 for a defini-
tion). Then for any sequence of vectors u = {u(k)} in
[0,1)?, we have

la(n) —a| <V (g)Dy,(u),

where
A

a= / g9(z)dz < o0,
[0,1]¢

and for a given sequence of points u = {u(k)} with
u(k) € [0,1)¢,

a(n) =

S|

> g(u(k)).

It is known (p. 32, Niederreiter 1992) that sequences
u exist with the property that

D;,(u) = O(n~" (logn)),

so that the error in a(n) is at most of order n~!(logn)?.
This is a faster asymptotic rate than that obtained by
the Monte Carlo method (n~'/2), which motivates the
use of quasi-random numbers for numerical integration.
It should be noted however, that these asymptotic re-
sults may not be representative of the sample sizes n
used in practice. In other words, for moderate n, it
may be that the Monte Carlo method yields lower error
than can be obtained through the use of a quasi-random
sequence; see Kocis and Whiten (1997). This effect is
especially pronounced in higher dimensions d.

If a sequence u of vectors has a star discrepancy that
converges to 0 as n — 00, then we can view the se-
quence of vectors as an analogue of a sample from the
uniform distribution on [0,1)?. Tt is very natural to
generalize the notion of discrepancy to a non-uniform
distribution on more general domains. Indeed, more
general distributions on the unit hypercube have al-
ready been considered in the literature (Niederreiter,
Tichy and Turnwald 1990).

Let 7 be a probability distribution on some set S C
R. Let B denote a class of r-measurable sets in S. For
a given sequence of points u = {u(k)} with u(k) € R?,
define the 7-discrepancy of u to be

A, (B;
DI (B;u) = sup | 2B
BeB n

—n(B)]. (7)

Note the similarity of (7) to (6). In particular, the
goal of this definition is to characterize the property
that the sequence u is an analogue of the probability
distribution 7 on S. Niederreiter, Tichy and Turnwald



(1990) studied a more general version of this definition
where weights could be assigned to each of the points
in the sequence u, but restricted the domain S to be
the unit hypercube.

We will say that u is a quasi-random sequence of
numbers with distribution = if

DT (B;u) = 0

as n — 00, where B is the class of all sets of the form

n
11 (a:, ),
i=1
where —oo < a; <b; <o00,i=1,...,d.

Our goal is to use such sequences to estimate ex-
pectations of the form Eg¢(X), where X is distributed
according to 7.

So how can a sequence for which the m-discrepancy
rapidly converges to 0 be computed? Our goal in the
next section is to show how, for the class of distribu-
tions that can be obtained through a NORTA trans-
formation, to use a quasi-random sequence of points in
[0,1)? to obtain a quasi-random sequence of points with
the desired distribution.

4 THE QUARTA METHOD

We would like to be able to generate quasi-random vec-
tors with given marginals and given feasible correlation
matrix (where the exact meaning of this statement is
given in the previous section). We do so by extending
the NORTA method, and term the method QUARTA,
which is intended to be mnemonic for “quasi-random
to anything”.

Suppose that (u(n) : n > 1) is a quasi-random se-
quence of d-dimensional vectors in the unit hypercube
[0,1)? with independent components (recall from the
previous section that there is an appropriate notion of
“independence” in this setting where the vectors are
actually deterministic). We wish to transform these
vectors into a quasi-random sequence (z(n) : n > 1)
of d-dimensional random vectors with marginals F; and
feasible correlation matrix Yx. We will transform u()
into z(¢) for i > 1. Note that in the following procedure
the index 4 on the u(i)’s and z(i)’s has been dropped
for ease of readability.

1. Identify a correlation matrix Xz that yields (at
least approximately) the appropriate correlation
matrix ¥ x exactly as in the Monte Carlo version
of NORTA. Compute R, a Cholesky factor of ¥z,
so that ¥, = RTR.

2. Transform u into y, where y has normal marginals,
via y; = &7 (u;).

3. Set z = Ry, so that z is standard multivariate nor-
mal with correlation matrix ¥ .

4. Compute z via a NORTA transformation of z, i.e.,
set x; = FJ-_1(<I>(zj)) forj=1,...,d

The time-consuming Step 1 above need only be
done once, and then the required dependent quasi-
random vectors can be rapidly generated (Step 2 can
be performed very quickly; see Marsaglia, Zaman and
Marsaglia 1994). These quasi-random vectors are anal-
ogous to i.i.d. random vectors with a distribution 7
say, with the required marginals and (at least approxi-
mately) the required covariance matrix.

When all of the marginal distribution functions F;
have densities f; with respect to Lebesgue measure, it
is a simple matter to specify the distribution 7 using the
“change of variables technique”; see p. 408 of Apostol
(1969) for example. When this is not the case, one can
of course still specify 7, but not in such a nice form.

The primary use for vectors distributed according
to 7 is in numerical integration, and more specifically,
in calculating an expected value with respect to the
distribution 7. In particular, one can approximate

o’ JRre 9(z)m(dz) via
an® 3" glali)),

where each vector X (i) is generated according to the
procedure outlined above. We will give two examples
of such a calculation in Section 5.

5 NUMERICAL EXAMPLES

In this section we present two examples where we wish

to compute aéEg(X ) for some function g and some
random vector X. Both examples are contrived, but
serve to demonstrate the potential applicability of the
ideas presented in this paper. We will compare the er-
ror of an estimator amc based on a pure Monte Carlo
approach to one obtained using our proposed QMC
methodology aqme. It is easy to assess the error in
a pure Monte Carlo experiment using the sample vari-
ance. However, it is more difficult to assess the error
using QMC methods.

In both of our examples, we will use an approach sug-
gested by Cranley and Patterson (1976) for assessing
the error in the QMC approach. In the QMC method,
Eg(X) is estimated via n™*Y_7_, g(z(k)) for some de-
terministic sequence of points {z(k)}. The sequence
{z(k)} is, in turn, based upon a deterministic sequence
{u(k)} of points in the d-dimensional unit hypercube
[0,1)?. The error may be assessed by randomly shifting



the sequence {u(k)} several times, each time comput-
ing an estimate of Eg(X). The resulting estimates are
i.i.d. and unbiased, and consequently the error may be
assessed. The procedure is as follows.

1. Select a run length m, and for each i = 1,....m
perform Steps 2, 3 and 4 below.

2. Generate a random vector U that is uniformly dis-
tributed in [0, 1)%.

3. Compute ﬂ(k)é(u(k) + U)mod 1, where the
mod operation is performed componentwise, k =
1,...,n.

4. Compute

n

Yi=n""Y g(#k)),
k=1
where the Z(k)’s are obtained from the @(k)’s using
a NORTA transformation.

5. Compute the sample mean agmc and sample vari-
ance vy, of (Y1,...,Yn).

6. Compute a confidence interval for «, given by
agme £ 2y/Vm/m, where z is chosen from normal
tables to ensure the required confidence level.

An assessment of the error in the estimator agme is

the confidence interval halfwidth zy/vy, /m.

To enable a fair comparison, the pure Monte Carlo
estimator amc should be based on the same number of
function evaluations, namely mn.

We used Sobol’ sequences as implemented in Press
et al. (1992) to generate the required quasi-random se-
quences for both examples.

Our first example is low-dimensional, and in such sit-
uations, other methods for numerical integration such
as quadrature schemes are typically preferred to either
Monte Carlo or quasi-Monte Carlo approaches. How-
ever, the example serves as a useful first demonstration
that there is potentially value in the quasi-Monte Carlo
approach.

Example 1 Suppose that X = (X1, X5), where each
X; is exponentially distributed with mean 1, and the
correlation between X; and X, is 0.4. We wish to
compute E(X; + X5) using both standard Monte Carlo
methods, and quasi-Monte Carlo methods. It is useful,
for comparison purposes, to note that the exact answer
is 2.

The ARTAGEN software package (Cario and Nelson
1997) was used to determine the appropriate normal
correlation (0.4464) required in the NORTA procedure
to arrive at a correlation of 0.4 between 2 exponential

random variables. In our experiments, we first took
n = 128 (a quasi-random sequence of length 128), and
m = 100.

The resulting confidence interval for E(X; + X2) was
2.000 £+ 0.007. In contrast, a confidence interval gen-
erated using the standard Monte Carlo method (again
generating the X;’s using NORTA) with 12800 realiza-
tions gave a confidence interval of 2.02 £ 0.03. Thus,
the quasi-random approach reduces variance by a fac-
tor of (0.03/0.007)? =~ 18 over standard Monte Carlo.
(This variance reduction factor was recomputed several
times, and each time was of the same order of magni-
tude, namely approximately 20.) It is, of course, im-
portant to also consider the time required to achieve
these results. These results were each obtained in ap-
proximately 2 minutes of computation using MATLAB
on a Sun Sparc 2. A more precise reporting of the times
is not relevant, since no attempt was made to optimize
the code for either of the implementations, and a more
precise comparison depends on both the implementa-
tion and computer architecture. What is important is
that the variance reduction reported above essentially
“comes for free”, in the sense that both methods require
approximately the same amount of computation.

In fact, we expect that the variance reduction fac-
tor above will increase with n, since the quasi-random
estimator is expected to converge at rate n~'(logn)?,
while the standard Monte Carlo estimator is expected
to converge at rate n~/2. To gauge the rate of con-
vergence of the quasi-random estimator, in Figure 1 we
plotted the log of the confidence interval halfwidth as
determined by the Cranley Patterson procedure versus
n. The resulting graph clearly shows a slope of approx-
imately —1, indicating that the rate of convergence is
approximately of the order n=1'. Of course, we would
not expect a term of the order (logn)? to show up in
such a plot.

This first example certainly lends support to the no-
tion that the use of quasi-random numbers can lead to
computational improvements in Monte Carlo calcula-
tions involving the use of the NORTA method. Our
second example reinforces this notion through a more
interesting application.

Suppose that we wish to compute the expected length
of the longest path in a stochastic activity network as
shown in Figure 2. We assume that the time required
to complete task (arc) j in the network is exponentially
distributed with mean p;, and that the correlation ma-
trix of the task durations is X x. Specifically, we set

= (10,5,12,11,5,5),



Figure 1: Log-log plot of confidence interval halfwidth
versus n for the quasi-random estimator in Example 1.
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Figure 2: Stochastic activity network example with arc
labels as shown.

Example 2

and

105 05 03 0 O

105 0 03 0

_— 1 0 05 03
X = 1 01 05
1 0.3

1

(Only the upper half of this positive semidefinite matrix
is specified as it is symmetric.) The correlation matrix
Yz which yields Y x after a NORTA transformation
was again obtained using the ARTAGEN software. The
matrix Xz is obtained from ¥ x by simply replacing all
0.5’s with 0.54656, all 0.3’s with 0.34208, and all 0.1’s
with 0.11936. The resulting ¥z is positive definite. We
again took m = 100 and n = 128.

Once again, both the quasi-Monte Carlo approach
and the standard Monte Carlo approach took approxi-
mately the same time to compute. The resulting quasi-
Monte Carlo confidence interval for the expected length
of the longest path was 26.52+0.09. The corresponding
standard Monte Carlo confidence interval was 26.6+0.3.
We see that the quasi-Monte Carlo estimator reduces
variance from the standard estimator by a factor of
(0.3/0.09)% ~ 11.

Furthermore, as in Example 1, we expect that the
quasi-random estimator converges at a rate that is close
to linear. Figure 3 below lends credence to this suppo-
sition.

Figure 3: Log-log plot of confidence interval halfwidth
versus n for the quasi-random estimator in Example 2.
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In both of these examples the quasi-Monte Carlo es-
timator outperforms the standard Monte Carlo estima-
tor, as we might have expected. These results rein-
force the notion that the use of dependent quasi-random
numbers can lead to useful efficiency improvements over
estimators based on pseudo-random numbers, and the
log-log plots above suggest that the improvements can
be expected to grow without bound as the runlength
increases.

Appendix

Before proving Theorem 2, we first give two preliminary
results.

Lemma 5 Suppose that X is a nondegenerate random
variable, and that g1 : R — IR and g2 : R — R are
continuous, strictly increasing functions. If Eg(X) <
oo for i = 1,2, then cov(g1(X),g2(X)) > 0, i.e., the
covariance is strictly positive.



Proof: For i = 1,2, define g; *(-) as in (3). We have
that

cov(g1(X), g2(X))

_ /°° T Po(X) < 2,9:(X) <) -

P(g1(X) < 2)P(g2(X) < y) de dy ®
- / / P(X < min{g (2), 95 (1)}) -

P(g:(X) < 2)P(g2(X) < y) dody (9)
> 0.

The first equality (8) above is given in Whitt (1976),
who attributes the result to Hoeffding (1940). The in-
equality follows since the integrand in (9) is given by
P(g:(X) < )P(g2(X) > y) if g7 () < 67" (y), and
P(g1(X) > 2)P(g2(X) < y) otherwise.

It remains to show that the above inequality is, in
fact, strict. Define

V={v:P(X <v)P(X >v) >0}

to be the set of values v such that X has positive prob-
ability of being both less than or equal to v, and greater
than v. Note that V is an interval of strictly positive
length, by our assumption that X is nondegenerate.
Hence g;(V) = {z : ¢ = g;(v),v € V} is an interval of
strictly positive length, for ¢ = 1,2. Choose v; € V,
vy € V with v < vs.

Now select wy, w2 € [v1,v2] with wy < ws, and define
x = gi1(wy), and y = ga(w2). Observe that

P(g1(X) <2)P(g2(X) >y) = PX <w)P(X > wy)

> 0,

and that this holds for all w; < ws with v; < w; <
ws < v9. Equivalently, this holds for all z,y with

g1(v1) <z < gi(v2) and g2(g; " (@) <y < g2(v2).
(10)
Observe that (10) is a set of positive Lebesgue measure
(in 2 dimensions), and it immediately follows that the
covariance (9) is strictly positive. O

We also need the following result, which strengthens
Lemma 2 of Cario and Nelson (1997).

Lemma 6 Let (Z1,Z>) have a standard bivariate nor-
mal distribution with cor(Z1,Z2) = p1. Let (N1, Ns)
have a standard bivariate mnormal distribution with
cor(N1,N3) = ps > p1. Let g1,92 be continuous and
strictly increasing, and suppose that Eg;(N)?> < oo,
where N has a standard normal distribution, for i =
1,2. Then

Eg1(N1)g2(N2) > Eg1(Z1)g2(Z2).

The proof of this result uses the result of Lemma 5, and
is virtually identical to that of Theorem 1 of Cario and
Nelson (1997). It is therefore omitted.

Proof of Theorem 2: Let 1 < 4,57 < d, and set
g1 = F;'(3(-)), and go = F;'(®(-)). Then g; and g
satisfy the conditions of Lemma 6, and so if X; and X
are generated via the NORTA method from Z; and Z;,
we immediately see that EX;X; is a strictly increasing
function of the correlation p between Z; and Z;. Hence
the covariance between X; and Xj is strictly increasing

in p, and so (4) can have at most one solution. O
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